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 Supplementary methods 

 Sample descriptions 

We analyzed a total sample of 52,361 individuals sequenced with Illumina technology. Of 

these, 24,510 individuals (18,403 after QC) were collected as part of the Alzheimer Disease 

European Sequencing consortium (ADES), comprising 15 studies from Germany, France, 

The Netherlands, Spain, Italy, and the United Kingdom. All studies were approved by the 

ethics committees of respective institutes, and all participants provided informed consent 

for study participation. These samples were combined with 27,851 samples from the USA 

(14,155 after QC), the majority of which were from the Alzheimer’s Disease Sequencing 

Project (ADSP), which were described previously1 (Supplementary Table 1).  

 

Across all studies, AD cases were defined according to NIAA criteria2 for possible or 

probable AD or according to NINCDS-ADRDA criteria3 depending on the date of diagnosis. 

When possible, supportive evidence for an AD pathophysiological process was sought 

(including CSF biomarkers) or the diagnosis was confirmed by neuropathological 

examination (Supplementary Table 1). Cases were annotated with the age at onset or 

age at diagnosis (2014 samples), otherwise, samples were classified as late onset AD (366 

samples). Controls were not diagnosed with AD. All contributing datasets were sequenced 

using a paired-end Illumina platform, but different exome capture kits were used, and a 

subset of the sample was sequenced using whole genome sequencing (Supplementary 
Table 2).  

1.1.1 ADES-FR 

The ADES-FR project combines WES and WGS data from AD cases and controls from 

France4. Part of the patients are from the CNRMAJ-Rouen center (n=921) and patient 

ascertainment is described in detail in Nicolas et al.5 including an update of the inclusions 

by the French National network CNR-MAJ (national reference center for young Alzheimer 

patients). Briefly, unrelated cases with early-onset AD (age at onset ≤65 years) from 

France were recruited among patients who fulfilled the NIAA criteria2. The clinical 
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examination included personal medical and family history assessment, neurologic 

examination, neuropsychological assessment, and neuroimaging. In addition, 

cerebrospinal fluid (CSF) biomarkers indicative of AD were available for 67% of the cases. 

Cases with CSF biomarkers not consistent with AD diagnostics were excluded. A positive 

family history (i.e., at least a secondary case among first- or second-degree relatives, 

whatever the age of onset) was present in 45% of cases. Patients were either screened by 

Sanger sequencing and QMPSF for pathogenic variants in APP, PSEN1 or PSEN2 prior 

to WES or by the interpretation of WES data or both. Carriers of pathogenic variants were 

not included for WES or were secondarily excluded following WES analysis so that none 

of the CNRMAJ-Rouen patients included in this work prior to shared analyses is a carrier 

of a pathogenic variant in APP, PSEN1, PSEN2 as well as in a list of Mendelian dementia 

causative genes6. In addition, some controls were recruited directly from the CNRMAJ 

(n=30). Another large part of the samples was from the European Alzheimer’s Disease 

Initiative (EADI) dataset7. This study combined clinical prevalent and incident cases of AD 

(n=1,121) (i) from Lille cross-sectional studies and (ii) from the Three-City (3C) study, a 

population-based, prospective study with 12-years of follow-up8. Diagnoses were 

established according to the DSM-III-R and NINCDS-ADRDA criteria3. Controls were 

selected among the 3C individuals not diagnosed with dementia after a 12-year follow-up 

(n=670). In addition, other controls were obtained from the FREX consortium9. These 

controls (n=576) were specifically designed from 6 French cities with the aim of studying 

and establishing the French population genetic structure of rare variants. Overall, the 

ADES-FR samples includes 2,042 AD cases (1,088 EOAD and 954 LOAD) and 1,276 

controls. All patients and controls provided informed written consent for genetic analyses 

in a clinical and/or in a research setting, according to each study. In addition, the ethics 

committee of the Rouen University Hospital approved the use of retrospective data in the 

context of the ADES-FR project and with other ADES European and American partners 

(CERNI notifications 2017-015 and 2019-055). 

For Stage-2, entire exomes of 529 independent and unrelated AD patients, including 384 

patients from the ECASCAD study were included. All had CSF biomarkers consistent with 

AD (except two patients who had neuropathological confirmation), and 90% of them were 

EOAD cases, the remaining 10% cases had an age of onset between 65 and 75 years. As 

controls, we extracted BAM files of the 11 genes selected in Stage-1 among the genome 
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sequencing data from the FranceGenRef study. Individuals included in this study were 

selected based on the places of birth of their grandparents within France and at a maximum 

distance of 30 kilometers. A total of 862 individuals (274 females and 588 males) were 

sampled from three different studies: 50 individuals (25 females and 25 males) were blood 

donors sampled in the Finistère district, 354 individuals (177 females and 177 males) were 

blood donors from the PREGO biobank with ancestries in the other districts of Brittany 

(Côtes d’Armor, Ile-et-Vilaine, Morbihan) and in the 5 districts of the Pays-de-la-Loire 

region (Loire-Atlantique, Maine-et-Loire, Mayenne, Sarthe, Vendée), 458 individuals (72 

females and 386 males) were volunteers from the GAZEL cohort (www.gazel.inserm.fr/en) 

who were selected among the volunteers who gave a blood sample and who answered a 

questionnaire on their parents and grandparents’ places of birth. All individuals signed 

informed consent for genetic studies at the time they were enrolled and had their blood 

collected. 

 

1.1.2 AgeCoDe-UKBonn  

The AgeCoDe-UKBonn sample was derived from the following two sources, the German 

study on Aging, Cognition, and Dementia in primary care patients (AgeCoDe, n=294) and 

the interdisciplinary Memory Clinic at the University Hospital of Bonn (UKBonn, n=100).  

—The German study on Aging, Cognition, and Dementia: The AgeCoDe study is a 

multicenter prospective general practice-based cohort study since 2001, including 

community dwelling elderly aged 75 years or older that were recruited at six study sites 

(Bonn, Düsseldorf, Hamburg, Leipzig, Mannheim, and Munich). The AgeCoDe study was 

approved by the local ethics committees of the Universities of Bonn, Hamburg, Düsseldorf, 

Heidelberg/Mannheim, Leipzig, and Munich. Before participation written informed consents 

were collected from all subjects. The AgeCoDe study aims to identify risk factors and 

predictors of cognitive decline and dementia10,11. Participants were recruited from general 

practitioner (GP) registries. Inclusion criteria were an age of 75 and older, absence of 

dementia, one or more visits to the GP in the past year, no hearing or vision impairments 

and German as a native language. Exclusion criteria were only home-based GP 

consultations, severe illness with a fatal outcome within 3 months and a language barrier. 

The baseline assessment including 3,327 subjects was completed between 2002 and 
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2003. After the baseline assessment 70 subjects were excluded due to presence of 

dementia after standard assessment and 40 subjects were excluded with an age below 75 

years. Participants were interviewed for follow up every 18 months. All assessments are 

performed at the participant’s home by a trained study psychologist or physician. At all 

visits, assessment includes the Structured Interview for Diagnosis of Dementia of 

Alzheimer type, Multi-infarct Dementia, and Dementia of other etiology according to DSM-

IV and ICD-10 (SIDAM)12. The SIDAM comprises: (1) a 55-item neuropsychological test 

battery, including all 30 items of the MMSE and assessment of several cognitive domains 

(orientation, verbal and visual memory, intellectual abilities, verbal abilities/ calculation, 

visual–spatial constructional abilities, aphasia/ apraxia); (2) a 14-item scale for the 

assessment of the activities of daily living (SIDAM-ADL-Scale); and (3) the Hachinski 

Rosen-Scale. Dementia was diagnosed according to DSM-IV criteria. AgeCoDe provided 

DNA from 294 persons who progressed to late onset AD dementia at any follow up. 

—UKBonn: The interdisciplinary Memory Clinic of the Department of Psychiatry and 

Department of Neurology at the University Hospital in Bonn provided early-onset AD 

patients (n=100). Diagnoses were assigned according the NINCDS/ADRDA criteria3 and 

on the basis of clinical history, physical examination, neuropsychological testing (using the 

CERAD neuropsychological battery, including the MMSE), laboratory assessments, and 

brain imaging. 

1.1.3 Barcelona- SPIN 

Neuropathological samples were obtained from the Neurological Tissue Bank of the 

Biobanc-HospitalClinic-IDIBAPS, and disease evaluation was performed according to 

international consensus criteria. Clinical samples were recruited from the multimodal Sant 

Pau Initiative on Neurodegeneration (SPIN) cohort (https://santpaumemoryunit.com/our-

research/spin-cohort/)13, and were evaluated at the Memory Unit at Hospital de Sant Pau 

(Barcelona). The repository includes clinical data of more than 6,000 participants, >2900 

plasma samples, genetic material (DNA and RNA) of >3,200 and >400 subjects, 

respectively, and >2,000 CSF samples. All controls had normal cognitive scores in the 

formal neuropsychological evaluation and normal core CSF AD biomarkers, based on 

previously published cut-offs14. AD patients fulfilled clinical criteria of “probable AD 

dementia with evidence of the AD pathophysiological process”3 and therefore had 
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abnormal core AD biomarkers (low Aβ1–42 and high t-Tau or p-Tau) in the CSF. The 

original protocol and the subsequent amendments were approved by our local Ethics 

Committee at the Sant Pau Research Institute as well as the Committee of the Neurological 

Tissue Bank. The SPIN cohort is based on blinded enrollment and only clinically relevant 

biomarker results are disclosed. 

1.1.4 AC-EMC  

The Alzheimer Center Erasmus MC cohort (AC-EMC) includes patient referred to the 

Department of Neurology of the Erasmus Medical Center (Rotterdam, the Netherlands). 

DNA samples from 125 patients with probable AD were included in the current study. The 

average age at onset was 60 years (range 41-77). A large fraction of the patients had a 

positive family history, defined as at least one first degree relative with dementia. All 

patients underwent clinical examination, neuropsychological assessment, neuroimaging, 

and if indicated, a lumbar puncture. The diagnosis was established according to the 

National Institute of Neurological and Communicative Disorders and Stroke-Alzheimer’s 

Disease and Related Disorders Association (NINCDS-ADRDA) criteria for AD3.The study 

was approved by the Medical Ethical Committee of the Erasmus Medical Center, and 

written informed consent was obtained from all participants or their legal representatives. 

1.1.5 ERF 

The Erasmus Rucphen Family (ERF) Study is a family-based cohort study that is 

embedded in the Genetic Research in Isolated Populations (GRIP) program in the South 

West of the Netherlands. The aim of this program was to identify genetic risk factors in the 

development of complex disorders. For the ERF study, 22 families that had at least five 

children baptized in the community church between 1850-1900 were identified with the 

help of genealogical records. All living descendants of these couples and their spouses 

were invited to take part in the study. Data collection started in June 2002 and was finished 

in February 2005. 

1.1.6 Rotterdam Study 

The Rotterdam Study15 is an ongoing prospective population-based cohort study, focused 

on chronic disabling conditions of the elderly16 of which a random subset was exome 
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sequenced. Participants were screened for dementia at baseline and at follow-up 

examinations using the Mini-Mental State Examination (MMSE) and the Geriatric Mental 

Schedule (GMS) organic level17. Screen-positives (MMSE <26 or GMS organic level >0) 

underwent extensive examination18. Finally, individuals were diagnosed in accordance with 

standard criteria for dementia (Diagnostic and Statistical Manual of Mental Disorders, Third 

Edition, Revised (DSM-III-R)) and Alzheimer’s disease, NINCDS-ADRDA3. Follow-up for 

incident dementia was complete until January 1st, 2014. The Rotterdam Study has been 

approved by the Medical Ethics Committee of the Erasmus MC and by the Ministry of 

Health, Welfare and Sport of the Netherlands, implementing the Wet Bevolkingsonderzoek: 

ERGO (Population Studies Act: Rotterdam Study). All participants provided written 

informed consent to participate in the study and to obtain information from their treating 

physicians. 

1.1.7 ADC-Amsterdam 

The ADC-Amsterdam cohort includes patients who visit the memory clinic of the Alzheimer 

Center at the Amsterdam University Medical Center, The Netherlands, and was described 

previously19. DNA samples from 854 patients with probable and possible AD were included 

in the current study. Additionally, 353 individuals diagnosed with psychiatric and subjective 

cognitive complaints were included as controls. Individuals in this cohort were extensively 

characterized to reduce the chance of misdiagnosis. Patients underwent an extensive 

standardized dementia assessment, including medical history, informant-based history, a 

physical examination, routine blood and CSF laboratory tests, neuropsychological testing, 

electroencephalogram (EEG) and MRI of the brain. The diagnosis of probable AD was 

based on the clinical criteria formulated by the National Institute of Neurological and 

Communicative Disorders and Stroke—Alzheimer’s Disease and Related Disorders 

Association (NINCDS-ADRDA) and based on National Institute of Aging–Alzheimer 

association (NIA-AA)2. Clinical diagnosis is made in consensus-based, multidisciplinary 

meetings. All patients gave informed consent for biobanking and for the use of their clinical 

data for research purposes. Selection for whole exome sequencing was based on an early 

age-of-onset (age at diagnosis <70 years) and available CSF biomarkers. 
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1.1.8 Netherlands Brain Bank 

From the Netherlands Brain Bank20 we selected brain tissues donated by patients 

diagnosed with Alzheimer Disease. DNA was isolated and used for WES sequencing. 

1.1.9 Amsterdam-UMC 

This cohort consists of WES data that were generated as part of a diagnostic work-up. All 

samples are from healthy adults for whom WES analysis was performed to aid the 

analysis of a patient, in most cases these were healthy parents of an affected child for 

whom trio-WES analysis was performed. These parents either have no pathogenic 

variant, or are carrier of one recessive pathogenic variant that does not affect health. 

1.1.10 100-plus Study 

The 100-plus Study, is a prospective cohort study of cognitively healthy centenarians that 

associated with the Alzheimer Center at the Amsterdam University Medical Center. 

Detailed participant recruitment and procedures were described previously21. Trained 

researchers visited the centenarians at their home residence annually, where they were 

subjected to questionnaires regarding demographics, lifestyle, medical history, physical 

well-being and objective measurements of cognitive and physical functions. Cognitive 

function is tested by an extensive neuropsychological testing battery. For the current study, 

DNA samples 375 centenarians were included who completed at least one 

neuropsychological test at baseline, and exome sequencing from 349 centenarians passed 

QC (removal was mostly due to kinship). Centenarians who scored >22 on the MMSE were 

regarded as controls, while centenarians who scored ≤22 were regarded as cases22. The 

Medical Ethics Committee of the Amsterdam UMC approved this study and informed 

consent was obtained from all participants. The study has been conducted in accordance 

with the declaration of Helsinki.  

1.1.11 EMIF-AD 90-plus Study 

The EMIF-AD 90+ study23 is a cohort-study of the oldest-old (90+), situated at the 

Amsterdam UMC and the University of Manchester. The study contributed n=72 controls. 
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Controls were tested to have a Mini-Mental State Examination (MMSE) >=26 and a global 

Clinical Dementia Rating (CDR) score of 0 at baseline. 

1.1.12 CBC: Control Brain Consortium 

The Control Brain Consortium was previously described24. It consists of whole-exome 

sequencing in 478 samples derived from several brain banks in the United Kingdom and 

the United States of America. Samples were included when subjects were, at death, over 

60 years of age, had no signs of neurological disease and were subjected to a 

neuropathological examination, which revealed no evidence of neurodegeneration. 

The data was made publicly available at www.alzforum.org/exomes/hex. 

1.1.13 PERADES 

The PERADES sample (Defining Genetic, Polygenic and Environmental Risk for 

Alzheimer’s Disease) comprises individuals with Alzheimer’s disease (AD) and healthy 

controls recruited across UK, Italy and Spain. The majority of the individuals are from the 

UK (n=4095 with samples recruited in Cardiff: n=2405), while the rest (n=841) were 

recruited in Spain and Italy. More specifically the recruitment centres were: MRC Centre 

for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK; Institute of 

Psychiatry, London, UK; University of Cambridge, Cambridge, UK; University of 

Southampton, Southampton, UK; University of Nottingham, Nottingham, UK; Catholic 

University of Rome, Rome, Italy; Santa Lucia Foundation, Rome, Italy; Instituto di 

Neurologia Policlinico Universitario, Rome, Italy; University of Milan, Milan, Italy; 

Laboratory of Gene Therapy, San Giovanni Rotondo, Italy; University of Perugia, Perugia, 

Italy; University of Cantabria and IDIVAL, Santander, Spain and the Regional Neurogenetic 

Centre (CRN), ASP Catanzaro, Lamezia Terme, Italy. The collection of the samples within 

the MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University was 

through national recruitment through multiple channels, including specialist NHS services 

and clinics, research registers and Join Dementia Research (JDR) platform. The 

participants were assessed at home or in research clinics along with an informant, usually 

a spouse, family member or close friend, who provided information about and on behalf of 

the individual with dementia. Established measures were used to ascertain the disease 

severity: Bristol activities of daily living (BADL), Clinical Dementia Rating scale (CDR), 
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Neuropsychiatric Inventory (NPI) and Global Deterioration Scale (GlDS). Individuals with 

dementia completed the Addenbrooke’s Cognitive Examination (ACE-r), Geriatric 

Depression Scale (GeDS) and National Adult Reading Test (NART) too. Control 

participants were recruited from GP surgeries and by means of self-referral (including 

existing studies and Joint Dementia Research platform). For all other recruitment, all AD 

cases met criteria for either probable (NINCDS-ADRDA, DSM-IV) or definite (CERAD) AD. 

All elderly controls were screened for dementia using the Mini Mental State Examination 

(MMSE) or ADAS-cog, were determined to be free from dementia at neuropathological 

examination or had a Braak score of 2.5 or lower. Control samples were chosen to match 

case samples for age, gender, ethnicity and country of origin. Informed consent was 

obtained for all study participants, and the relevant independent ethical committees 

approved study protocols. The whole exome sequencing (WES) was performed in-house 

at the MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University. With 

the Nextera technology (Nextera Rapid Capture Exome v1.2), DNA was simultaneously 

fragmented and tagged with sequencing adapters in a single step. The enriched libraries 

were sequenced using the Illumina HiSeq 4000 (Illumina, USA) as paired-end 75 base 

reads according to manufacturer’s protocols. 

1.1.14 StEP-AD 

The overall goals of the Stanford Extreme Phenotypes in AD (StEP AD) project are to 

identify and characterize novel genetic variants that promote resilience to AD pathology in 

the presence of the APOE4 allele or that drive pathogenesis in the absence of the APOE4 

allele. Genomes are collected from several sources, some intramural and some 

extramural. Invariably, the cognitive assessment protocols for these different sources vary 

somewhat but all include APOE genotyping, extensive neuropsychological testing, 

collection of one or more AD biomarkers, and consensus adjudication. 

Genomes were sequenced for subjects in the following three categories: (1) Protected 

APOE4 carriers that have the APOE3/4 genotype, are at least 80 years old, and have 

normal cognition. If additional follow-up is expected we will accept subjects as young as 

77; (2) Super-protected APOE4 carriers that have the APOE4/4 genotype, are at least 70 

years old, and have normal cognition (if additional follow-up is expected subjects as young 

as 67 will be accepted); (3) APOE4-negative, early-onset cases that have the APOE2/2, 
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2/3, or 3/3 genotype and are diagnosed with probable AD before age 65. Most are also 

negative for known PSEN1, PSEN2 or APP mutations. 

1.1.15 Knight-ADRC 

The samples Samples from the Charles F. and Joanne Knight Alzheimer’s Disease 

Research Center (Knight ADRC) were recruited at Washington University School of 

Medicine (WUSM) in Saint Louis, MO (USA). (REF). All the cases received a diagnosis of 

dementia of the Alzheimer's type (DAT), using criteria equivalent to the National Institute 

of Neurological and Communication Disorders and Stroke-Alzheimer's Disease and 

Related Disorders Association for probable AD3,25. Cognitively normal participants 

received the same assessment as the cases, and were deemed nondemented. Prior 

written consent, participants are genotyped for APOE4 allele and screened for known 

mutation in APP, PSEN1, PSEN2, MAPT, GRN, or C9orf72 by the Clinical and Genetics 

Core of the Knight ADRC. The approval number for the Knight ADRC Genetics Core family 

studies is 201104178. 

1.1.16 UCSF/NYGC/UAB 

Studies in the UCSF/NYGC/UAB dataset were described previously26. Cases were 

selected from the University of California, San Francisco (UCSF) Memory and Aging 

Center with an intentional selection of early-onset cases to maximize the likelihood of 

identifying genetic contributors, along with healthy older adult controls (a total of 664 cases 

and 102 controls). All UCSF cases and controls were clinically assessed during an in-

person visit to the UCSF Memory and Aging Center (MAC) that included a neurological 

exam, cognitive assessment, and medical history. Each participant’s study partner (i.e., 

spouse or close friend) was also interviewed regarding functional abilities. A 

multidisciplinary team composed of a neurologist, neuropsychologist, and nurse then 

established clinical diagnoses for cases according to consensus criteria. This cohort was 

intentionally depleted of cases with known Mendelian variants associated with 

neurodegenerative diseases. A small number of samples (19 cases and 21 controls) were 

obtained from the University of Alabama at Birmingham (UAB) from an expert clinician who 

employed the same diagnostic procedures.  
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1.1.17 UCL-DRC EOAD 

University College London Dementia Research Centre (UCL-DRC) early-onset 

Alzheimer’s disease cohort included patients seen at the Cognitive Disorders Clinics at 

The National Hospital for Neurology and Neurosurgery (Queen Square), or affiliated 

hospitals. Individuals were assessed clinically and diagnosed as having probable 

Alzheimer’s disease based on contemporary clinical criteria in use at the time, including 

imaging and neuropsychological testing where appropriate. All individuals consented for 

genetic testing and had causative mutations for Alzheimer’s disease (PSEN1, PSEN2, 

APP) and prion disease (PRNP) excluded prior to entry into this study. 

1.1.18  ADSP 

ADSP Discovery phase (used in Stage-1): Cases and controls were selected from over 

30,000 non-Hispanic Caucasian subjects from multiple cohorts described in detail 

elsewhere27. All controls were greater than 60 years and were cognitively normal based on 

direct assessment. All cases met NINCDS-ADRDA criteria for possible, probably, or 

definite Alzheimer’s disease. All cases had a documented age-at-onset, and for those with 

pathologically conformed AD, an age-at death. APOE genotypes were available for all. 

Cases were selected to have a minimal AD risk based on sex, age and APOE genotype. 

Controls were selected as those with the least probability of converting to AD by age 85. 

Controls were older (86.1 years, SD = 5.2) than cases (76.0 years, SD = 9.2). The selection 

criteria and the rationale for study design are described elsewhere28. Eventually, 5,096 

cases and 4,965 controls were selected for exome sequencing by this protocol, as well as 

682 additional cases from multiplex families with a strong AD family history.  

 

ADSP Discovery extension and Augmentation phase (used in Stage-2): Under funding 

provided by NHGRI, an additional 3,000 subjects were whole genome sequenced. This 

included 1,466 cases and 1,534 controls. Of these 1,000 each of Non-Hispanic White 

(NHW), Caribbean Hispanic (CH), and African American (AA) descent were sequenced. 

Of these a total of 739 autopsy samples were sequenced [568 cases (500 NHW cases and 

68 AA cases) and 171 controls (164 NHW and 7 AA)]. The Case-Control and Enriched 

Case Study spans 24 cohorts provided by the Alzheimer’s Disease Genetics Consortium 
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(ADGC) and the Cohorts for Heart and Aging Research in Genomic Epidemiology 

(CHARGE) Consortium.  

The Augmentation Phase encompasses sequencing done under private and NIH funding 

by investigators who are not members of the ADSP. The investigators for these studies 

have agreed to share their GWAS, WGS and WES data with the ADSP. Private funding 

has been provided by industry and anonymous donors. Under the NIA AD Genetics 

Sharing Policy and the NIAGADS Data Distribution Agreement, individual NIA funded 

investigators studying the genetics and the genomics of AD provide their data to NIAGADS. 

 

Alzheimer’s Disease Neuroimaging Initiative (ADNI) (used in Stage-2): A public-private 

partnership, the purpose of ADNI is to develop a multisite, longitudinal, prospective, 

naturalistic study of normal cognitive aging, mild cognitive impairment (MCI), and early 

Alzheimer's disease as a public domain research resource to facilitate the scientific 

evaluation of neuroimaging and other biomarkers for the onset and progression of MCI and 

Alzheimer's disease. In 2017, ADNI geneticists began collaborations with the ADSP. Whole 

genome sequence data on 809 ADNI subjects (cases, mild cognitive impairment, and 

controls) have been harmonized using the ADSP pipeline. Data used in the preparation of 

this article were obtained from the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched in 

2003 as a public-private partnership, led by Principal Investigator Michael W. Weiner, MD. 

The primary goal of ADNI has been to test whether serial magnetic resonance imaging 

(MRI), positron emission tomography (PET), other biological markers, and clinical and  

neuropsychological assessment can be combined to measure the progression of mild 

cognitive impairment (MCI) and early Alzheimer’s disease (AD). For up-to-date information, 

see www.adni-info.org. 

 Sequence read alignment and variant calling 

We included raw sequencing data with three different types in our sample: 

—Exome sequences (ES): reads cover the exonic regions of the genome according to a 

predefined ‘capture kit’. Regions covered by capture kits differ according to kit-versions, or 

supplier.  

—Whole Genome Sequencing (WGS); reads cover the whole genome. 
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—Exome extracts: reads that cover the target genes + 1000bp padding, 

1.2.1 Exome sequence read processing 

Raw sequencing data from all studies were processed on a single site (Cartesius 

Supercomputer provided by SURF, in the Netherlands), and processed with a uniform 

pipeline. Reads were extracted from FastQ, BAM, CRAM or SRA files. For each lane/read 

group separately, paired reads were converted to SAM format using FastQToSam or picard 

RevertSam (Picard Tools version 2.10.529), processed with Picard MarkIlluminaAdapters 

and subsequently transformed to interleaved fastq format with Picard SamToFastq (while 

setting marked adapter regions to base quality 2). Next, reads were aligned to the human 

reference genome (build 37 including unlocalized contigs and the Epstein-Barr virus 

sequence.) using the BWA MEM algorithm (BWA version 0.7.15-r1140)30. Alignments were 

processed with Samblaster (version 0.1.24) to add mate tags31. Read group alignments 

were then merged and duplicate reads were marked using Picard MarkDuplicates.  

 

We found that the presence of novel Indels and novel SNPs in certain samples correlated 

with the presence of larger amounts of soft-clipped reads, indicative of the presence of 

chimeric DNA fragments. Each sample for which the percentage of soft-clipped base 

alignments exceeded 0.5% was therefore processed with a custom tool (see section 1.2.3)  

which identified and removed parts of reads that were likely of chimeric origin. This tool 

was executed after the Picard MarkDuplicates step. Then, reads were sorted to 

chromosome order by samtools sort (version 1.8)32.  

 

We estimated contamination percentages using VerifyBamID233, retrieved 4 September 

2018), while correcting for the 2 PCA components (default), based on common SNPs 

(allele frequency ≥0.01) present in the 1000-genomes dataset (phase3, version 5b)34. Base 

quality scores were recalibrated using GATK BQSR (version 3.8-1)35 on the sample 

capture kit region + 100bp padding. Known indels were obtained from the Mills and 1000G 

gold standard indels in the GATK resource kit35. Known SNPs were obtained from dbSNP 

(version 150) and gnomAD (version 2.0.2)36. Subsequently, variants were called on the 

sample capture kit region + 100bp padding using HaplotypeCaller35, while using the ‘-

contamination’ correction option, with the estimated contamination percentages. Ploidy 
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was set to 1 for chromosome Y, and 2 for the other chromosomes, minPruning was set to 

2, and the new quality model (--newqual) was used. Results were exported as gVCF 

format. Finally, gVCFs were combined per study in batches with a maximum size of 500 

samples using GATK CombineGVCFs. Then, variants were called using GATK 

GenotypeGVCF35, using the new quality model and setting max-alternate-alleles to 20. 

Variants were then annotated with GATK variant score recalibrator (VQSR) using allele 

specific annotations, while for all other options the best practices were followed. 

1.2.2 Processing of WGS reads and exome extracts 

WGS samples were aligned according to the same pipeline and variants were called for 

the genomic region covered by the union of the exome capture kits. Then, genotypes were 

called using GATK GenotypeGVCF based on both exome and WGS gVCFs. Exome-

extracts were also processed with the same pipeline. Resulting gVCFs were combined for 

the targeted regions with exome and WGS gVCFs (using GATK GenotypeGVCF). VQSR 

annotations were found to be less reliable if trained on a dataset that covered only the 

target genes, due to the relatively low number of variants. Therefore, VQSR variant 

annotations obtained on non-extracted samples (covering all genes and many variants) 

were transferred with priority to the dataset that contained also the extracted samples 

(covering only the target genes). Existing VQSR annotations were kept for variants unique 

to the exome-extract dataset. 

1.2.3 Chimeric read declipping 

Chimeric fragments consist of multiple genomic sequences, joined together into one 

sequence. Sequencing of such fragments can result in reads that do not entirely align to 

the genome, and/or align at multiple locations. This results in so-called ‘soft-clipped’ 

alignments, where parts of the read sequence are not aligned. These soft-clipped regions 

cause issues for the variant caller, as it uses not just the aligned part of the reads, but also 

the unaligned soft-clipped regions during local reassembly and variant calling. The reason 

for this is that these clipped sequences can be an indication of an insertion variant. In case 

these clipped regions are caused by chimera’s, this is however not a correct strategy, and 

can cause false variant calls. To prevent their effect on variant calling, we i) estimate the 

extent of the chimera problem by quantifying the number of soft-clipped alignments, and ii) 
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remove these soft-clipped sections for affected samples if they are (likely) caused by 

chimeras. To do this, the soft-clipped sections are turned into hard-clipped alignments, in 

which the underlying sequence is removed (the read is shortened), such that the variant 

caller cannot revive the clipped sequence during variant calling. In the following 

description, we assume paired end sequencing (in which both ends of the fragment are 

sequenced, resulting in two reads). We remove the following soft-clipped sequences: 

i) One well-known type of artificial chimera occurs when the sequenced fragment is shorter 

than the read length. Fragments have adapters at the end, used as starting point for 

sequencing. In these cases, the 3’ end of read 1 will cover the adapter of read 2, and vice 

versa. Due to this, read 1 and 2 will have overlapping alignments with possibly soft-clipped 

3’ends. Such read pairs can be detected based on their overlapping alignments. To remove 

the adapter sequence, we align the known adapter sequence to determine the clipping 

point, and hard-clip the identified sequences from there.  

ii) A genomic chimera can have a join-point at different sites in the sequence fragment.  

—If the chimeric join point occurs between read 1 and 2, or close to the end of read 1 or 

2, then read 1 and 2 will (usually) be aligned at a distance from each other. If this distance 

is >100kb, or one of the reads is unmapped, we remove the soft-clipped regions at the 

3’end of both reads.  

—If there are multiple, mostly non-overlapping, alignments for a read at different genomic 

locations, it is usually an indication that the chimeric join point occurs somewhere in the 

middle of that read. The overlapping parts of these alignments are pruned (in all alignments 

for that read). Then, soft-clipped sequences in the alignments that face each other are 

hard-clipped. 

In the above situation, it frequently occurs also that the fragment is short. The chimeric join 

point might then be present in both reads. If both reads have multiple alignments, we 

handle each read as described above.  

—If the fragment is short, but not very short, read 1 might have multiple alignments, while 

read 2 has a soft-clipped 3’end (or vice versa). For example, for genomic region A and B, 

a chimeric fragment might read AABBB. Read 1 (AABB) might then have multiple 

alignments, one for the AA and one for the BB section. Read 2 (BBBA) however might 

have only an alignment for B, but not for A, as the sequence from A is too short to obtain 
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an accurate alignment. The chimeric sequence A in read 2 will therefore be soft-clipped. 

We detect these situations based on overlapping alignments for fragment B, and hard-clip 

the soft-clipped 3’end of read 2. 

—If the chimeric sequence consists of a very short piece at the 5’ end of either read 1 or 

2, this part might not be aligned as it is too short. It is in these situations unclear if the 

sequence has a chimeric origin, as such unaligned pieces can also be caused by indels. 

We find that in samples affected by chimeras, it is beneficial to remove these soft-clipped 

5’ends. While this reduces the coverage of indels, in most cases many fragments still cover 

the complete indel. Also, differences in coverage between samples occurs commonly in 

exomes, where the covered regions are highly variable between capture kits, and handling 

this is part of the downstream pipeline (see posterior probabilities).  

—After alignment pruning and removal of the soft-clipped regions caused by chimera’s, we 

unalign the alignments that are <= 1bp in length, we transform supplementary alignments 

to primary alignments if the primary alignment is unaligned, drop unaligned supplementary 

alignments, update alignment tags, and validate the read records and cigar strings.  

 Sample QC 

Results of the sample QC steps are shown in Supplementary Table 3a.  

Before sample QC, we performed a pre-variant QC step, to remove bad quality variants 

(see Variant QC steps for details) that might impact sample quality statistics. In addition, 

we required that variants cover at least 25% of the samples with at least read depth 6. 

Next, sample QC was performed.  

1.3.1 Missingness 

We removed samples that had a GQ<20 for 40% of the variants in its own exome kit, or a 

depth < 6 for 35% of the variants in its own exome kit. Additionally, we removed samples 

for which chromosomes were missing (GQ < 20 for 99% of the variants on a chromosome 

in the samples exome kit).  



 
25 

1.3.2 Contamination 

Samples with a contamination percentage > 7.5% were removed. 

1.3.3 Sex-check 

We performed a sex-check, by comparing annotated sex with genetic sex (Supplementary 
Figure 3). Genetic sex was determined based on the coverage of the sex chromosomes. 

Coverage was determined using off-target reads. Only coverage in regions outside capture 

kits (+500 bp padding), outside peaks in coverage called with MACS (version 1.4)37 and 

outside segmental duplications (Segmental Dups track downloaded from UCSC which 

includes the PAR regions38). Coverage was determined in 20kb windows, and normalized 

for GC content using linear regression. Regions of 20kb with more than 100 N bases were 

discarded. X and Y chromosome coverage was normalized by dividing by the autosome 

coverage. Thresholds were set empirically, based on the distribution of male and female 

samples (see Supplementary Figure 3). 

1.3.4 Population outliers 

Next, we performed a PCA analysis to identify population outliers. Variants that were in the 

intersection region of all capture kits, and had a minor allele frequency ≥0.005 and a depth 

≥6 for 90% of the samples, were used for this purpose. Variants were pruned with bcftools 

+prune tool (version 1.8)32 with max LD set to 0.2 in 500kb windows. Only variants that 

were also in the 1000 genomes dataset (phase 3, v5b) were kept. PCA was performed on 

dosages (based on genotype calls for 1000G, and based on genotype probabilities for the 

study samples). Variant dosages were first normalized, as described39, based on statistics 

obtained on the 1000G samples. Then, PCA was performed on the 1000G samples, and 

all ADES samples were mapped to this PCA space (Extended Data 2). Finally, we 

removed outliers for each of the first 4 PCA components (Supplementary Figure 4, 
Supplementary Figure 5), where outliers were defined as samples that fell outside the 

range median(pca_component) ± 8 * mad(pca_component), where mad is the median 

absolute deviation and the pca_component vector only contains the ADES samples.  

For the Stage-2 dataset, which contains a large fraction of non-European individuals, an 

outlier approach was not sufficient. Therefore, a k-nearest neighbor classifier (SKLearn 
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v0.20.3, k=10) was trained on the first 10 PCA components, using the 1000G samples, to 

predict their ancestry (distinguishing Africans, Europeans, Admixed Americans, East 

Asicans, and South Asians). This predictor was applied to all samples in the Stage-2 data, 

and samples predicted to be non-European were removed. Subsequently, we continued 

with the outlier approach already described.  

1.3.5 Excess novel SNPs 

1.3.6 Excess novel indels 

We calculated and compared the number of novel SNPs and the number of novel indels 

per study, both in the union of the capture kits (Supplementary Figure 6 and 
Supplementary Figure 7) and the intersection of the capture kits (Supplementary 
Figure 8, Supplementary Figure 9). Novel variants were defined as variants that were 

not present in DBSNP v150. These statistics were calculated based on posterior dosages 

(described below). Thresholds were set at the median value + 6 * mad for novel SNPs 

and +12*mad for novel Indels.  

1.3.7 Heterozygous/homozygous (Het/Hom) and transition/transversion 

ratios (Ts/Tv) 

Furthermore, we performed a per-sample QC on the following statistics (calculated on the 

intersection of the capture kits): Ts/Tv ratio of known SNPs (Supplementary Figure 10), 

and Ts/Tv ratio of novel SNPs (Supplementary Figure 11), Het/Hom rate of known SNPs 

(Supplementary Figure 12). Known SNPs are those that are present in dbSNP v150, 

while other SNPs are considered novel. The acceptable range for Het/Hom was set to ±6 

* mad. For Ts/tv measures, only a lower limit of -6 * mad was used.  

1.3.8 Identity By Descent (IBD) analysis 

We performed an IBD analysis on the remaining samples using Seekin40. We kept variants 

with a minor allele frequency ≥0.005, and for which at least 90% of the samples had depth 

>=6. Variants were pruned with bcftools +prune tool (version 1.8), with max LD set to 0.2 

in 500kb windows. Only variants that were also in the 1000G dataset were kept. We 

performed a PCA as described before. Using Seekin (version 1.0), we corrected for these 
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PCA components using the options ‘modelAF’ and ‘getAF’, using 4 PCA components. 

Next, kinship was determined using all variants with the heterogeneous estimator of 

Seekin40. Duplicate samples with inconsistent annotation were removed (inconsistent 

status, APOE genotype, or gender, or more than 2 years difference in age at onset for 

cases). Otherwise, we kept the sample with the most complete annotation: we preferred 

samples with age (at onset), and APOE genotype over samples without. Also, we preferred 

whole genome sequenced samples over exomes, and samples with lower missingness 

over samples with higher missingness. For related samples up to 3rd degree (marked by 

the threshold of >9.375% shared identity by descent, which is the middle value between 

the expected value for 3rd-degree (12.5%) and 4th-degree (6.25%)), we preferred (in order) 

cases over controls, samples with more clinical data (age (at onset), apoe status), WGS 

samples, and samples with higher coverage.  

Additionally, Stage-1 and 2 samples were processed together, to detect samples that were 

duplicated between Stage-1 and 2. These samples were removed from Stage-2.  

1.3.9 Bad PCR plates 

We removed all samples on 3 PCR plates that were enriched with gender mismatches.  

1.3.10 Removal of dementia-related (likely) pathogenic variant-carriers 

Next, on the Stage-1 set, we performed a manual curation of causative variants in a short 

list of Mendelian dementia genes. We extracted rare variants in the following two gene lists 

and interpreted them following the American College of Medical Genetics and Genomics 

and the Association for medical Pathology41, (i) autosomal dominant AD genes: APP, 

PSEN1, PSEN2 (autosomal dominant AD), GRN, MAPT, FUS, TARDBP, VCP, (fronto-

temporal lobar degeneration spectrum), NOTCH3 (CADASIL), PRNP (Prion diseases); (ii) 

autosomal recessive genes: NPC1, NPC2 (Niemann-Pick type C disease), TYROBP, 

TREM2 (homozygous LOF: Nasu-Hakola disease, 1 carrier)). Carriers of variants that 

reached enough evidence to be rated at least as likely pathogenic (class 4) were excluded 

from the analysis, whatever their disease status. Of note, for autosomal recessive genes, 

heterozygous carriers were not excluded, only carriers of bi-allelic pathogenic variants 

were excluded. 
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1.3.11 AD label 

We excluded samples for which clinical information was indicative of non-AD dementia 

(e.g. vascular dementia). In addition, part of the case-control samples included minimal 

neuropathological information. Among them, we further excluded samples with discordant 

Braak stages, i.e. cases with stage <2 (n=265) and controls with stage >4 (n=43).  

1.3.12 Handling of exome-extract samples 

Part of the Stage-2 dataset consists of exome-extracts, which only cover the targeted 

genes with 1000bp padding. For these samples, we relied on the study QC. Separate 

checks were performed for missingness (no outliers), contamination (1 outlier), and 

population (no outliers).  

1.3.13 Merging of Stage-1 and -2 sample QC 

For the mega-analysis sample, Stage-1 and 2 QC were merged, while adding a separate 

IBD step to additionally remove <= 3rd degree family relations as described above that 

remained between samples in Stage-1 and -2.  

 Variant QC 

Throughout an extensive QC, we attempted to find root causes for the presence of false 

variants. We identified two significant issues that were not handled by the default variant 

calling pipeline: false positive variants due to (soft-clipped) chimeric alignments and 

oxygenation of G bases.  

After removal of samples excluded by the sample QC, variant statistics were recalculated. 

Then, we performed variant QC as described in Supplementary Table 4 (non-exome-
extract samples) and Supplementary Table 5 (all samples, only targeted regions). 

1.4.1 Multi allelic variants 

First, multi-allelic variants were split into bi-allelic variants, and indels were normalized, 

using the bcftools norm tool. The tool was modified to also split the phased PGT fields, 

such that downstream variant merging was possible. Additionally, the splitting of the 
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genotype likelihoods and read counts was modified (PL and AD fields), which is detailed 

in the next section. We removed bi-allelic variants that had as alternate allele ‘*’ (which 

reflects overlap with a deletion variant), as well as multi-allelic variants for which the 

reference allele was lower in frequency than the frequency for at least two alternate alleles. 

1.4.2 Variant merging  

Variants that were in close vicinity, in cis and always occurred together, were merged into 

single events, to account for for example nearby frameshifts that cancel each other out. 

Only indels with ≤10bp distance and SNPs with ≤2bp distance were considered for 

merging. We used the read-phasing output of GATK (PID/PGT fields) to determine which 

variants occurred in-phase. 

1.4.3 Oxo-G  

In some samples novel variants were enriched for G>T and C>A variants, caused by the 

oxygenation of G bases during sample processing42. Using a custom tool (see below), that 

uses per-sample statistics from Picard CollectSequencingArtifactMetrics, we identified and 

filtered variants and variant calls that could be attributed to this issue. We removed variants 

with an average OXO sensitivity > 1.5, or a remaining total dosage after OXO correction 

≤0.1.  

1.4.4 Short Tandem Repeat (STR) and Low Copy Repeats (LCR) regions 

STR and LCR regions were obtained respectively from the simple tandem repeats track by 

TRF from UCSC, and the LCRs as identified by the mdust program43. Variants in these 

regions were excluded. 

1.4.5 Allele Balance 

The balance between reference and alternate reads (allele balance) was determined both 

for heterozygous and homozygous calls. Allele balance was calculated based on posterior 

genotype probabilities (see below). Variants that had an average allele balance < 0.25 or 

> 0.75 for heterozygous calls, or < 0.9 for homozygous calls were removed.  
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1.4.6 Depth Fraction 

The relative depth of heterozygous calls to other calls was determine, based on posterior 

genotype probabilities (see below). Variants for which the heterozygous depth was < 20% 

of the depth of other calls were removed. 

1.4.7 Hardy Weinberg 

Hardy-Weinberg scores (all samples and control samples: hw_all and hw_control) were 

calculated based on posterior genotype probabilities (see below). P-values were calculated 

using a chi-square test. We removed variants for which the p-value for control samples 

was < 5 * 10-8. 

1.4.8 VQSR  

Variants that were tagged by the variant quality score recalibration method from GATK 

were removed. For Stage-1, for SNPs we removed variants from the VQSR > 99.5% 

sensitivity tranche, while for indels we removed variants from the VQSR > 99.0% sensitivity 

tranche. For the Stage-2 and mega datasets, these sensitivity thresholds were too low, 

possibly due to higher quality input and/or more included samples. This resulted in a larger 

fraction of removed variants, with higher ts/tv values than obtained in Stage-1. We 

therefore conservatively set the threshold to 99.8% for SNPs and 99.5% for indels, to attain 

similar removal rates of variants for Stage-1 (2.1%) and 2 (1.8%), and the mega analysis 

(2.0%) (Supplementary Table 3, S5).  

1.4.9 Pre-variant QC versus final variant QC 

For the pre-variant QC, which is performed prior to performing the sample QC, we 

performed all the above steps. Additionally, we removed variants with a missingness rate 

> 25%. Genotype calls which had a depth < 6 were considered missing. For the final variant 

QC, the missingness step was not performed, as it is included as part of the variant 

selection. Compared to the pre-variant QC, the final variant QC had variant batch detection 

as an additional step.  
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1.4.10 Variant Batch Detection 

Finally, a custom tool was developed to remove variants that still presented batch effects 

that were not explainable by population structure or phenotype effects (see below). On 

variants identified to have a batch effect, we performed variant batch correction, by setting 

batches that caused problems for a certain variant to missing. Afterwards, variants that still 

had a Variant Batch Detector (VBD) score > 25, or a VBD score > 15 and MAF < 0.005, 

were removed from the analysis.  

 Genotype posterior probabilities 

Due to the use of different capture kits and whole genome sequencing (WGS) data, the 

analyzed dataset has highly variable coverage patterns across the samples. Many variants 

have as a consequence less than 100% coverage across the samples. In burden testing, 

a missingness percentage of up to 20% is allowed. This requires an accurate handling of 

missing genotype calls in variants that contribute to the burden score. In cases of low and 

absent read coverage, direct calling of the genotype is not possible. Therefore instead, a 

probabilistic approach is used, in which each genotype is assigned a certain probability. 

1.5.1 Genotype likelihoods  

The GATK variant caller outputs the likelihood of each sample genotype in the PL field of 

the VCF. These likelihoods are based on the available sequencing reads for a sample. In 

case of missing data, each genotype is considered equally likely (i.e. p=⅓ in case of diploid 

chromosomes for ref/ref, ref/alt and alt/alt genotypes). These likelihoods cannot be used 

directly in a burden analysis, as by assuming equal likelihoods for each genotype the allele 

frequency of samples with missing coverage would effectively by 50%, and likely 

substantially differ from that of samples with coverage.  

1.5.2 Posterior probability  

This is solved by the use of posterior probabilities. Here the allele frequency in the study 

sample is used as a prior in assigning genotype probabilities. Using Bayes theorem, 

posterior genotype probabilities take the following form (assuming a diploid setting): 𝑃(𝑔) =
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, where P(g) is the posterior probability for genotype g, with g encoded as 0,1 or 

2 for respectively the reference, heterozygous and homozygous alternate genotype. L(g) 

is the genotype likelihood as given by the variant caller. The genotype frequency 𝜓(𝑔) =
)

()*#)!#!
𝜔#(1 − 𝜔))*# is derived from the alternate allele frequency 𝜔, assuming Hardy-

Weinberg equilibrium. Notably, the allele frequency 𝜔 needs to be derived from the study 

sample, such that 𝜔 matches the allele frequency in samples with coverage, thereby 

preventing biases. A difficulty is that accurate estimation of this allele frequency requires 

posterior genotype probabilities. Here we follow the approach previously described by Li 

et al44 using an EM-algorithm in which iteratively posterior probabilities and the allele 

frequency are estimated, until convergence (maximum difference in allele frequency 

between iterations is 1e-7) is reached. Finally, posterior dosages in the diploid case were 

calculated as d = P(1) + 2 P(2).  

1.5.3 Multi-allelic variants  

As described in the previous section, variants with multiple alleles are split into bi-allelic 

variants prior to analysis. For this, the bcftools norm tool is used. However, splitting of the 

genotype likelihood was adapted from the default approach in bcftools. The standard 

REF/ALT interpretation of the resulting biallelic likelihoods was considered problematic for 

the analysis, as often the alleles would be neither REF nor ALT. Genotype probabilities 

would then not sum to 1. We adapted therefore to a NON_ALT/ALT interpretation of bi-

allelic variants. Specifically, this meant that genotype likelihoods were converted to 

probabilities, and then summed to obtain the NON_ALT/NON_ALT, NON_ALT/ALT and 

ALT/ALT genotype probabilities (separately for each ALT in the multi-allelic variant to 

create multiple bi-allelic variants).  

Notably, in the absence of coverage, the variant caller considers each multi-allelic 

genotype equally likely. In this situation, the NON_ALT/NON_ALT genotype becomes the 

most likely genotype, as it sums more genotypes. As this causes biases, we correct for 

this, using an additional correction factor equal to 1 / (#summed multi-allelic genotypes) for 

each bi-allelic genotype. Next to the genotype likelihood, the read count field (AD field) was 

also modified to follow the above described NON_ALT/ALT interpretation. To that end, 
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read counts that contributed to the NON_ALT/NON_ALT and NON_ALT/ALT genotypes 

were summed during variant splitting.  

1.5.4 Posterior sample QC-measures  

Standard sample QC measures, when calculated on variant calls, are affected by samples 

with low or missing coverage. To prevent that, these measures were instead based on 

genotype posterior probabilities: 

Nr. Of indels/SNPs: Determined by summing (across all samples) posterior dosages.  

Ts/Tv ratio: Determined by summing posterior dosages of transition variants and dividing 

them by the summed posterior dosages of transversion variants 

Het/Hom ratio: Determined by summing (across all samples) the posterior genotype 

probability of the heterozygous genotype, and dividing it by the summed posterior genotype 

probability of the homozygous genotype.  

Posterior variant QC-measures 

Heterozygous allele balance: Defined as 
∑ ,"(-).#$%
&
"

∑ ,"(-)/.#$%0.'()1&
"

, where Pi(1) is the posterior 

genotype probability for the heterozygous genotype for sample I, N is the number of 

samples, and rref and ralt are the number of reads carrying the reference or alternate 

genotype.  

Homozygous allele balance: Defined as ∑ ,"()).'()&
"

∑ ,"())/.#$%0.'()1&
"

, where Pi(2) is the posterior 

genotype probability of the homozygous genotype for sample i.  

Heterozygous depth ratio: Defined as 
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&
"
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&
"
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Hardy-Weinberg equilibrium: Posterior genotype probabilities assume Hardy-Weinberg 

equilibrium (HWE), thereby biasing variants with high rates of missingness towards HWE. 

Hardy-Weinberg equilibrium is therefore tested on non-probabilistic genotype calls, after 

filtering out samples with a read coverage < 6. 
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 Oxo-G variant call filtering 

During sample preparation, oxidation of G-nucleotides can lead to the generation of 8-

oxoguanine lesions in DNA. These lesions lead to false positive G-T variants, and, 

dependent on the protocol step in which the oxidation occurs, also false positive C-A 

variants42. While this is primarily an issue for somatic variant calling, it also impacts 

germline rare-variant calls, in particular in exomes where coverage is variable. In modern 

protocols, these effects have mostly been mitigated, however, in older samples these false 

positive mutations can be a significant source of errors. Next to oxoG errors, similar 

problems are known to occur in DNA obtained from formalin-fixed samples. In these 

samples, deamination can occur, converting cytosine to uracil (C>U), thereby creating false 

positive C->T (and G->A) mutations. While the approach below handles these types of 

errors as well, this problem was not encountered in a significant manner in the dataset.  

A modern variant caller such as GATK determines nucleotide-specific base error rates 

based on a comparison of the sequenced reads to the genome (in the case of GATK 

through base quality score recalibration (BQSR)). In GATK, this error rate is modelled on 

the observed nucleotide in the read (e.g. in case of a G->T mutation a T for reads aligned 

to the positive strand and an A for reads aligned on the negative strand). Although G-

oxidation will lead to a somewhat higher base error rates in T and A nucleotides, the variant 

caller does not recognize that these errors occur mainly when the genomic reference 

contains respectively a G (or C in case of C->A mutations). This leads to underestimated 

error rates and, in the end, false positive variant calls. Briefly, our approach to detect and 

filter these oxo-G affected variant calls is therefore based on comparing i) the dosage as 

determined when considering a error model that does not consider oxoG errors ii) the 

dosage as determined with a model that does consider (sample-specific) oxoG errors. The 

ratio of these two dosages is considered a ‘sensitivity’ score, which is used to filter 

genotype calls and/or variants. Dosages are computed using a genotype likelihood 

calculation detailed below, and are ‘posterior dosages’ (see previous section): continuous 

numbers between 0 and 2, which take into account the confidence in the genotypes and 

the frequency of the variant in the study sample. In the variant QC pipeline, genotype calls 

with a sensitivity > 1.5 are set to missing, after which variant QC statistics are recalculated. 

Variants are flagged for exclusion if they have an average sensitivity > 1.5 or a summed 
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dosage with the oxo-G error model < 0.1. The average sensitivity of a variant is here 

defined as the ratio of the summed normal dosages and the summed oxo-G-corrected 

dosages. In more detail, the method consists of the following steps: 

1.6.1 Oxo-G statistics  

To determine the parameters for the base error model, we estimate for each sample the 

rate at which oxidation and other base errors occur, dependent also on different sequence 

contexts (neighboring bases affect the G-oxidation rates). These per-sample statistics are 

collected using Picard CollectSequencingArtifactMetrics. Next to base errors, we also 

obtain summary error metrics per sample, based on measures available as part of the 

CollectSequencingArtifactMetrics. These consider two forms of the oxoG errors: pre-

adapter (in this case G->T errors occur in forward reads, and C->A errors in backward 

reads) and bait-bias (in this case G->T errors occur in the exome template strand (often 

the positive strand), while C-A errors occur in the reverse strand).  

1.6.2 Full error model  

The error model describes mutation-specific error rates (in contrast to the usual read-

nucleotide specific error rates). It takes into account sequence context (a single nucleotide 

before and after the variant). Strand-specific and forward/backward read specific error 

rates are averaged: although this information would be useful, it is not available per sample 

in the variant file (VCF), and a direct link between the original reads in the bam file and the 

read count in the VCF file is not straightforward to make due to the reassembly step 

performed by the variant caller.  

1.6.3 Contrasting error model  

A contrasting error model is created which exclusively models non-oxoG related errors. To 

this end, we select samples that are not affected by oxoG-related issues, based on the 

previously described summary metrics. As these summary metrics are sequence-context 

specific, we obtain a worst-case summary metric per sample, by taking the highest error 

value across all sequence contexts per sample. Samples with an error rate > 0.0001 for 

either pre-adapter or bait-bias errors are excluded. Using the remaining samples, 

regression models are trained which predicts (sequence context-specific) G->T and C->A 
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mutation rates. These regression models are used to fill in G->T and C->A mutation rates 

for the samples that were excluded due to oxoG effects. Features for these regression 

models are the (sequence-context-specific) mutation rates for all mutations except G->T 

and C->A. To handle the extensive collinearity in these features, we reduce the feature 

space to 10 dimensions by using PCA, and make use of ridge regression.  

1.6.4 Genotype likelihood calculation  

For each sample, genotype likelihoods are calculated both using the contrasting and full 

error model. Read counts (rref and ralt for respectively reads carrying the reference and the 

alternate allele) are obtained from the VCF file. Based on the error model, sequence 

context, and reference and alternate allele, ref->alt (era) and alt->ref (ear) error rates are 

obtained. For a sample s (identifier omitted for brevity), and assuming a diploid setting, the 

likelihood of each genotype is calculated then as: 

ref/ref:(1 − 𝑒.4).#$%𝑒.4.'() 

ref/alt: +(-*5#')05'#
)

,
.#$%

+(-*5'#)05#'
)

,
.'()

 

alt/alt:(1 − 𝑒4.).'()𝑒4..#$% 

Likelihoods are normalized to sum to 1, and then converted to posterior probabilities 

(𝑝.56 .56⁄ ,𝑝.56 478⁄  and 𝑝478 478⁄ ) as outlined in the previous section. The dosage per sample 

is then calculated as 𝑑9 = 𝑝.56 478⁄ ,9 + 2𝑝478 478⁄ ,9 (where s refers to a specific sample) while 

sensitivity per sample is determined as: 𝑠9 = 𝑑;<=8.498'=#,9 𝑑6>77,9⁄ . Here, full and contrasting 

refer to the used error model to calculate the dosage. In practical use, we found that 

estimated oxoG-related errors are underestimated. This can be attributed to two factors: i) 

information loss as no information on read strand, and presence of mutations on forward 

and backward reads could be used. This could have diluted the estimated oxoG related-

errors by a factor 2, ii) a selection bias, as false positive variants caused by this issue are 

likely sites that present more extreme oxoG-related errors, either by chance or due to 

(possibly unmodelled) sequence characteristics. To alleviate this issue, an error 

multiplication factor f was introduced, such that errors considered in the full model are 

rescaled according to 𝑓(𝑒6>77 + 𝑒;<=8.498'=#) + 𝑒;<=8.498'=#. In practice, using 𝑓 = 5 led to an 

adequate filtering of oxoG related variants.  



 
37 

1.6.5 Genotype and variant filtering  

Next to a genotype sensitivity measure, we also calculate a variant sensitivity measure: 

𝑠?4.'4=8 =
∑ @234)#'5"46,5'89($
	
5'89($5
∑ @%;((,5'89($
	
5'89($5

. Variants were exluded from the analysis if 𝑠?4.'4=8 > 1.5, 

or if ∑ 𝑑6>77,94AB75	
94AB759 < 0.1. For variants with 𝑠?4.'4=8 > 1.1 we performed genotype 

filtering, setting to missing all genotypes where the genotype sensitivity 𝑠9 > 1.5. 

Afterwards, variant QC measures (missingness, Hardy-Weinberg, allele balance, etc) are 

recalculated.  

 PCA covariates 

For both variant QC and burden testing, PCA population covariates were estimated. These 

were calculated after sample QC, using an approach described previously32. Variants that 

were in the intersection region of all capture kits, and had a minor allele frequency ≥0.005 

and a depth ≥6 for 90% of the samples, were used for this purpose. Variants were then 

pruned with bcftools +prune tool (version 1.8)32 with max LD set to 0.2 in 500kb windows. 

PCA was performed on dosages (based on genotype probabilities). Variant dosages were 

first normalized, as described39, after which PCA was performed.  

 

To estimate PCA covariates for the Stage-2 exome-extract samples in concordance with 

the covariates estimated for the non-extract samples, we selected the variants from their 

target areas that also occurred in the set of variants used for determining the PCA in the 

non-extract samples. Then, using the non-extract samples, a linear regression model was 

learned to map these common variants to PCA covariate values, for each covariate 

separately. Spearman rank correlations between predictions and actual values were 

significant up till PCA component 7. Correlations were 0.7, 0.47, 0.35, 0.23, 0.49, 0.12 and 

0.06 for the first 7 PCA components. PCA distributions for extract samples looked similar 

to those obtained for non-extract samples (Supplementary Figure 13-15). 

 Variant batch detection and correction 

For genetic studies, statistical power is a primary concern. This necessitates large-scale 

collaborations between sites, as well as the collection of samples that have been 
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sequenced across a large time period. In such settings, it is often impossible to control 

which capture kits are used, if exome or WGS sequencing is performed, and many other 

relevant sequencing parameters such as read or fragment lengths. In the ADES 

consortium, this has resulted in the use of 18 different (versions of) capture kits, the use of 

both exome and WGS sequencing, read lengths that vary from 50 to 150 bp 

(Supplementary Figure 1), and many other differences. Moreover, the different 

contributing studies also have very different case/control balances, ranging from 

exclusively cases to almost exclusively controls. When performing variant association, this 

presents a problem, as this step is highly sensitive to batch effects. Even after sample and 

variant QC, we found that certain variants still present batch effects that lead to spurious 

associations. 

1.8.1 Examples of batch effects 

It is not always immediately clear what the cause of such remaining batch effects is. Some 

examples which were encountered: 

—Certain capture kit methods use restriction enzymes to cut sequence fragments before 

sequencing. We observe that mutations in these restriction sites can at some loci lead to 

an artificial loss of heterozygosity in the sequencing reads, resulting in a lower-than-

expected allele frequency. Additionally, it is not possible to filter out PCR duplicates for 

these kits, leading to possible false positive mutations.  

—For capture kits that fragment DNA at relatively ‘fixed’ positions in the genome we also 

observe an increase in batch effects. Explanations for this might include position-related 

biases in reads or mutations that affect the read coverage of one haplotype. This is 

observed for capture kits that use restriction enzymes for fragmentation, but to a lesser 

extent also for those that use transposases, which can have tagmentation biases45. Finally, 

such batch effects are also present in probe-based kits for variants that in terms of read 

length are distant from a capture probe. 

—Increased batch effects are also observed in WGS samples when compared to exome 

samples. A possible explanation might be that WGS samples have sequence reads 

originating from the whole genome, in contrast to exome capture kits. In some cases, this 

could result in sequences being misaligned at certain locations that are not present when 

using (certain) exome capture kits.  
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While not every batch effect can be easily be predicted based on causal mechanisms, the 

presence of many different batches in the dataset still enables the detection of the variants 

with problematic batch effects.  

1.8.2 Algorithm overview 

To this end, we developed a method to detect variants that are affected by such batch 

effects. The main challenge is to distinguish between non-technical effects that present as 

batch effects (such as a variant that is enriched in a certain country, and/or only in AD 

cases) and real batch effects that are caused by technical issues. This is solved by using 

a two-step approach. In the first step, the algorithm attempts to explain the presence of a 

variant in specific carriers only through population structure, presence of haploblocks, 

and/or phenotype effects. Secondly, it is determined if the explanation for the presence of 

a variant in specific carriers significantly improves if also technical covariates (membership 

of study batches, various sequencing parameters, etc.) are allowed. Variants for which this 

is the case are considered to be affected by technical issues, and are either corrected 

(detailed below) or not considered in the analysis. Below, we first detail the covariates that 

are used, the algorithm that is used to select the covariates, the regression model, how the 

presence of not-at-random missing genotypes (i.e. missingness depends on having a 

specific genotype) is detected, and finally how the algorithm is used in practice.  
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Overview of batch effect detection strategy. Each step of the batch effect detection is 

represented, and further explained below in the sections indicated in the boxes 

1.8.3 Technical covariates  

Statistics were generated with SAMtools32, Picard29, verifybamid233, and custom scripts. 

Covariates (vectors that contain a value for each sample) were defined for: 
— Batch, study, capture kit: Covariates describing (for each sample) membership 

(no: 0, yes: 1) for each batch, study or (version of a) capture kit. 
— Read length, insert size: Covariates describing read length and average fragment 

insert size. In addition, covariates were added describing the distance to the nearest 

capture probe (which differs across the samples due to the use of different kits), 

both in absolute terms, as well as relative to fragment size or read length 

(Supplementary Figure 1). For WGS samples, 0 was used as the distance.  

— Contamination: Contamination percentage as determined by Verifybamid2 (see 

sample QC) 

— Missingness: Sample missingness (defined as genotype quality GQ < 40, for 

variants that are in the intersection of all capture kits, Supplementary Figure 2. 

— Size selection: The standard deviation of fragment insert-sizes divided by the 

average of fragment insert sizes. Indicative of the extent of size selection that was 

performed on the fragments.  

— Read error rate: Error rate of the reads (mismatches / bases mapped). 

— GC ratio: Depth of sequences with 35% GC / Depth of sequences with 50% GC 

— Mismapping ratio: Fraction of fragments for which the two reads map to different 

chromosomes 

— Duplicate ratio: Fraction of duplicated reads. 

— Not mapped ratio: Fraction of reads that are not mapped. 

— Read quality variability: Standard deviation of average Illumina quality scores 

across read cycles (a cycle corresponds to a single base position in each read). 

— Fraction of N nucleotides: Percentage of bases being the N (unknown) nucleotide. 

— Insertion/deletion error fraction: Nr. of insertions or deletions divided by the nr. of 

bases mapped. 
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— Ts/tv rate, Het/Hom rate, Novel SNPs/Indels rate: Sample statistics as defined in 

the sample QC.  

— Gender: Genetic sex (Supplementary Figure 3). 

— Supplementary reads / fraction of soft-clipped bases: Fraction of reads with 

supplementary alignments, and fraction of mapped bases that are soft-clipped. 

— Pre-adapter/Bait oxo-G error pattern: Phred-scaled error indicating the presence 

of an oxoG error pattern. ‘Pre-adapter’ indicates oxoG errors that occurred before 

adapter ligation, such that read 1 carries G->T mutations and read 2 carries C->A 

mutations, while ‘Bait’ indicates an oxoG pattern which is exome bait-specific.  

— Presence of Illumina adapters or poly-A tails: Fraction of reads with respectively 

Illumina adapters or poly-A tails.  

1.8.4 Non-technical covariates 

— PCA covariates: The top 10 PCA covariates, calculated after sample QC, using an 

approach described previously, and detailed above32. 

— Age: sample age (controls) or age-at-onset (cases). Missing values are imputed to 

the mean age.  

— AD status: case or control status 

— Haploblock markers: to obtain haploblock markers, we select nearby high-quality 

variants (passing variant QC, with minor allele frequency > 0.025% and a 

missingness < 10% (missingness defined as read depth < 6)). These variants were 

phased using Eagle v2.439, with default settings. The resulting haploid genotype 

calls were used as covariates (algorithm detailed below). The region from which 

these ‘nearby’ variants are obtained was by default the 50kb up- and downstream 

from the variant that was tested for batch effects, with the exception of variants that 

were within 100bp (as there might be complex false positive events that present as 

multiple variants close together, which could present a false in-linkage signal). The 

region can be extended from 50kb up to a maximum of 250kb if there are too few 

variants (<25), or it can be reduced in size if too many are found (>1000).  

— Complex haploblock markers: In addition, a search is performed for combination 

of these nearby variants to better mark the haploblock(s) in which the tested variant 

occurs (detailed below). Allowed Boolean operations are AND and NOT (e.g., a 
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covariate can be defined which is true if variant 1 AND NOT variant 2 are present in 

a sample).  

1.8.5 Forward-backward covariate search 

The above covariates are used in a regression model (detailed below) to explain the tested 

variant. Covariates are selected using a greedy forward selection/backward elimination 

approach. First, all covariates are normalized to a range 0-1. A covariate set E is defined, 

which contains covariates that are excluded from the regression, that is, their regression 

parameter is clamped to 0. Furthermore, a covariate set I is defined, which contains 

covariates that are part of the regression: the parameters of these covariates are optimized 

using a maximum-likelihood approach. Initially, all covariates are in set E, and the 

regression model is fitted using only an intercept.  

For all covariates in set E, the maximum likelihood gradient is determined. The covariate 

with the maximum gradient value is selected, and added to set I, after which the regression 

fit is reoptimized. If the AIC (Akaike Information Criterion46) score of the fit is improved, this 

step is accepted, and a new gradient search is performed to select the next covariate. If 

the AIC however decreases, the variant is removed from set I. The above steps are then 

repeated for the covariate with the next highest likelihood gradient. The forward search is 

stopped if none of the top 10 covariates improve the AIC metric. If more than 10 covariates 

are in set I, a backward elimination step is performed, in which each covariate in set I is in 

turn dropped from the regression to determine if this improves the AIC score. This step is 

subsequently repeated every time when 5 new covariates have been added to set I.  

1.8.6 Prioritizing non-technical covariates 

To prioritize non-technical explanations for the presence of a variant, the above feature 

search is first performed using only non-technical covariates, until no model improvements 

can be found. The resulting AIC score is noted as the non-technical score. Next, technical 

covariates are added to the covariate set E, and the feature search is continued until no 

model improvements can be found anymore. The resulting score at that point is noted as 

the technical score. The final variant batch detection score is then calculated as the delta 

between these two scores, that is: vbd score = technical score - non-technical score.  
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1.8.7 Diploid logistic regression model 

For haploid genotypes (chromosome Y), the above algorithm can be performed using a 

logistic regression model, in which 𝛾D = 𝑙𝑟=𝛼 + 𝛽𝑥DA Here, j is the sample, lr is the logistic 

function, 𝛼 is the intercept, 𝑥D is the covariate vector for sample j, and 𝛽 is the vector with 

covariate regression parameters. Normally, in a standard logistic regression, 𝛾D ∈ {0,1}. 

However, due to low coverage data, 𝛾 is adapted to represent for each sample the 

probability of the alternate genotype being present (note: not the posterior probability, but 

the probability given by the variant caller). Standard implementations of logistic regression 

usually perform a simplification of the maximum likelihood which assumes dichotomous 

labels. Therefore, a slightly more generic version of logistic regression was implemented 

which does not make this assumption. Let 𝑝D(𝑎, 𝛽) = 𝑙𝑟=𝑎 + 𝛽𝑥DA. The log-likelihood then 

takes the following form: 𝐿𝐿(𝑎, 𝛽) = ∑ 𝑙𝑜𝑔 I𝛾D𝑝D(𝑎, 𝛽) + =1 − 𝛾DA +1 − 𝑝D(𝑎, 𝛽),J − 𝜆∑ 𝛽')	
'

	
D . 

This function is maximized in terms of 𝑎 and 𝛽. A small regularization term 𝜆 = 0.005 is 

added to prevent problems with singularities. 

In case of diploid genotypes, this model does not suffice, as each sample can have either 

a reference, heterozygous or homozygous alternate genotype. The approach is to model 

this as what can be seen as two coupled logistic regression models. Conceptually, in a 

simplified sense: 𝑑D = 𝑙𝑟=𝛼 + 𝛽𝑔D,- + 𝜃𝑥DA + 𝑙𝑟=𝛼 + 𝛽𝑔D,) + 𝜃𝑥DA, where 𝑑D is a dosage for 

sample j, in the range [0,2], Here, gj,i is the matrix containing covariates that represents 

(complex combinations of) phased variants of sample j for haplotype i, and xj is the vector 

with covariate values for sample j that are haplotype-independent, with vector 𝜃 containing 

the associated parameter values. Note that the two models share all parameters, but can 

differ (for phased variants) in their covariates.  

More in detail, this is not modelled through dosages, but through genotype probabilities rj, 

hj and oj, containing respectively the (non-posterior) genotype probabilities of the 

reference, heterozygous and homozygous alternate genotypes for sample j.  

Let 𝑝D,'(𝛼, 𝛽, 𝜃) = 𝑙𝑟=𝛼 + 𝛽𝑔D,' + 𝜃𝑥DA, which will be noted more shortly as 𝑝D,', then the 

maximum likelihood formulation takes the following form:  

𝐿𝐿(𝑎, 𝛽, 𝜃) 	= 	∑ 𝑙𝑜𝑔(𝑟D 	(1 − 𝑝D,-)(1 − 𝑝D,)) + ℎD(𝑝D,-(1 − 𝑝D,)) 	+	(1 − 𝑝D,-)	𝑝D,)) 	+	
D

	𝑜D𝑝D,-𝑝D,))	 − 	𝜆(∑ 𝛽E)	
E + ∑ 𝜃7)	

7 )  
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To optimize this likelihood (as well as for the logistic regression model above), gradients 

were derived, and the optimization was implemented using the SLSQP optimizer available 

through Scipy41. 

1.8.8 Tree search for complex haploblock-markers 

Earlier, a forward selection-backward elimination algorithm was described to optimize the 

set of covariates. The main reason to use such an algorithm is clarified here. To tag a 

haploblock uniquely, the status of multiple SNPs is usually required to define an accurate 

marker (e.g. the marker is true if variant 1 is present, but not variant 2). Such markers are 

needed to define the haploblock(s) in which a tested variant occurs. Adding all possible 

combination of nearby variants would computationally be prohibitively expensive. Regular 

variant imputation algorithms have a similar problem, and solve this by using Hidden 

Markov Models on top of phased population haplotypes. It is however not immediately 

apparent how such an approach can be combined with a regular covariate regression 

framework as described above. Instead, to still enable the multi-variant haploblock 

markers, the forward-backward search is used to explore a tree of increasingly complex 

multi-variant haploblock markers.  

The algorithm starts as described, with a set E of all covariates that are inactive, i.e. not 

part of the regression, and an empty set I which will contain all covariates that become 

‘active’, i.e. that are selected to be part of the regression model. Next to the covariates that 

do not represent a genetic variant, set E contains at the start only single-variant haplotype 

markers and no complex multi-variant haplotype markers. That is, the haplotype marker 

set 𝑄 ⊆ 𝐸 is equal to M, where M is the set of single-variant markers that are near the 

tested variant (see section on ‘non-technical covariates’ for how this set of markers is 

selected). Once a marker 𝑞 ∈ 𝑄 is moved to set I, we extend set Q (and thereby set E). For 

a positive association of q with the tested variant, we perform: 𝑄 = 𝑄 ∪ {𝑞 ∧ 𝑚, 𝑞 ∧ ¬𝑚 ∨

𝑚 ∈ 𝑀}, while for a negative association of q we perform:𝑄 = 𝑄 ∪ {¬𝑞 ∧ 𝑚,¬𝑞 ∧ ¬𝑚 ∨𝑚 ∈

𝑀}. Upon removal of marker q from set I, the reverse operation is performed. Note that 

usually in this case, one of the complex markers directly dependent on q has already been 

added to set I.  
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1.8.9 Detection of missing-not-at-random genotypes 

While missing genotype calls are usually only observed due to lack of read coverage, this 

is not always the case. In certain situations, missingness was found to correlate with 

genotype status in certain batches (e.g. non-reference calls were more likely to be 

missing). This is not detected through the above algorithm, as for a missing genotype call 

all possible genotypes have the same probability, and therefore the sample has, as 

designed, no effect on the likelihood of the regression model. To detect these situations, 

the regression model optimized with the non-technical covariates (first step of algorithm) 

was used to impute the dosage of all samples. Then, a Fisher exact test was performed 

for each batch and contributing study, to detect possible allele frequency differences 

between samples for which the genotype call is missing, and for samples for which the 

genotype is not missing. More in detail, an imputed posterior dosage is determined using 

the maximum likelihood fit of the ‘non-technical’ regression model: 𝑑D 	= 	 𝑝D,-(1 − 𝑝D,)) 	+

	(1 − 𝑝D,-)	𝑝D,) 	+	 2𝑝D,-𝑝D,). Next, an allele-based Fisher exact test (number of alleles is 2 

times number of samples) is performed for each batch and study separately, contrasting 

samples with a missing genotype call with samples with a non-missing genotype call. P-

values < 1e-6 are considered indicative of a problematic batch effect.  

1.8.10 Two-phase approach 

In some cases, variants that were used as haploblock markers themselves carried large 

batch effects. Due to this, nearby variants with a similar batch effect pattern were not 

detected as having such a batch effect. To prevent this from occurring, a two-phase 

approach was adopted. In the first phase, VBD was run without any haploblock markers. 

This meant that the non-technical regression model only used the PCA and phenotype 

covariates. This results in a conservative scoring, as less of the variant is explained by 

non-technical covariates. Variants that scored a VBD score > 25 in this phase were 

excluded as haploblock marker in the second phase. In the second phase, the algorithm 

was then performed as described above, but without the haploblock markers that were 

excluded by the first phase.  
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1.8.11 Variant batch correction 

For many variants, problematic technical effects were limited to certain batches. In such 

cases, exclusion of the whole variant seemed unwarranted. To correct these variants, we 

performed a batch correction step. Variants with a VBD score > 25, or a VBD score > 15 

and a MAF < 0.05%, or a batch with a missing genotype batch p-value < 1e-6 were 

considered for correction. The correction process was performed iteratively, and continued 

until the VBD score < 10, and the minimum missing genotype batch p-value > 1e-4, or if 

the variant could not be corrected further. In each iteration, correction was performed in 

two steps. First, the correction process walked through the technical covariates in order of 

their addition to the regression model. If such a technical covariate described a batch, study 

or capture kit and led to an AIC score jump of at least 5, the genotypes for the variant under 

consideration were set to missing for all samples of such a batch, study or capture kit. This 

process was stopped once a covariate was encountered that did not fall under these 

criteria. Second, the correction process walked through all batches with a missing 

genotype batch p-value <1e-4, which were set to missing as well. If no batches had a p-

value <1e-4, but there were contributing studies with a missing genotype p-value <1e-4, 

then studies were considered instead. Variant were annotated both with VBD results before 

and after correction.  

1.8.12 Variant filtering 

Finally, variants were considered for analysis if after correction they had a VBD score < 

25, or a VBD score < 15 if they had a MAF < 0.05%.  

 Variant selection and annotation 

For the association tests, we performed variant selection (Supplementary Tables 4 and 
5).  

1.9.1 Protein coding transcripts.  

We selected variants in autosomal protein-coding genes that were annotated by VEP 

(version 94.547) to affect the Ensembl basic set of protein coding transcripts. VEP 

annotates both with Gencode v19 (build 37 native) and Gencode v29 (liftover from build 
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38)48). Transcripts of both Gencode versions were merged based on their identifier, with 

preference given to the v29-based annotation. Transcripts that passed our filter (protein 

coding + basic tag) in v19 but not in v29 were not considered.  

1.9.2 Variant type. 

We only kept variants that directly affected the protein (missense, stop_gained, 

splice_acceptor, splice_donor or frameshift annotation). For LOF annotations, we only kept 

those variants with a ‘HIGH’ VEP impact classification, while for missense annotations we 

required a ‘MODERATE’ VEP impact classification. 

1.9.3 Variant prioritization.  

We prioritized missense variants using REVEL (Rare Exome Variant Ensemble Learner)49 

(annotation obtained from DBNSFP4.1a50) and only kept variants with a score ≥ 25 (score 

range 0 - 100). LOF variants were prioritized using LOFTEE36 (version 1.0.2), and only 

LOF variants that had a LOFTEE ‘high-confidence’ flag were kept.  

1.9.4 Variant frequency.  

Of these, we only kept variants that were estimated to have at least one carrier, and had a 

minor allele frequency (MAF) of <1% in both our dataset and the gnomAD v2.1 non-neuro 

populations. 

1.9.5 Variant missingness.  

Finally, we removed (5) variants with >20% genotyping missingness (genotypes with a 

read depth < 6 are considered missing), or that did not pass a filter for differential 

missingness between the EOAD, LOAD and control groups (Fisher-Exact test comparing 

EOAD cases versus controls and LOAD cases versus controls). The threshold was set at 

p<1e-20. For the mega-analysis, this was found to be too strict, due to the increased 

number of samples leading to increased significance for smaller differential missingness 

deviations. Therefore, for the mega-analysis, we set the threshold to p<1e-30. 
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1.9.6 Variant categorization.  

Variants were divided in 4 deleteriousness categories: a LOF category, and 3 missense 

categories: REVEL ≥ 75, REVEL 50-75 and REVEL 25-50 (Supplementary Table 4).  

 Analyses and statistical tests 

1.10.1 Gene burden test 

Based on previous findings in SORL1, TREM2 and ABCA74 an enrichment can be 

expected of high impact rare risk variants in early onset cases compared to late onset 

cases. A regular case/control test (in which only a subset of the cases is EOAD) would be 

inefficient in picking up such signals. The alternative, performing an additional test that 

specifically tests for burden in EOAD cases, would however also be inefficient as (1) the 

additional signal from the LOAD cases would be excluded from the analysis and (2) adding 

such a test would lead to additional correction for multiple testing. Therefore, we combined 

both case-control and EOAD tests into one, through the use of ordinal logistic regression, 

where the genetic risk for AD is considered to increase EOAD > LOAD > control. This test 

is optimally suited for picking up differential variant loads between the sample categories 

(EOAD > LOAD > Control), but it can also pick up regular case-control signals for which 

genetic risk is equally distributed across EOAD and LOAD cases (EOAD ~ LOAD > 

Control) as well as EOAD-specific signals (EOAD > LOAD ~ Control). The burden test was 

implemented with the ordinal regression implementation available in the MASS package 

(version 7.3-51.5) for R (version 3.4.3). Six PCA population covariates (calculated on the 

samples remaining after sample QC, using an approach described previously39, and 

detailed above, were used, Supplementary Figure 13-S15), and p-values were calculated 

using a likelihood ratio test (‘lrtest’ function from the lmtest package, version 0.9-35). An 

additive model was considered, by summing the dosages of the minor alleles of selected 

variants. To prevent biases due to missing or low coverage, we sampled the dosage of 

each variant call (i.e. 0,1 or 2) according to the posterior probabilities (see above) of the 

reference, heterozygous or homozygous genotypes. While this sampling provides the 

same pointwise estimates as an (averaged) dosage approach, it takes into account the 

uncertainty of the genotype. Contrary to the dosage approach, it allows for a distinction 
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between a genotype with probabilities 0/1/0 (for respectively a reference, heterozygous 

and homozygous genotype) and a genotype with probabilities 0.33/0.33/0.33 (note that 

both genotypes have an averaged dosage of 1).  

The burden test was performed multiple times with independently sampled genotypes, to 

account for genotype uncertainty. P-values and beta values were averaged across these 

runs, while standard deviations were first converted to variances and then averaged. 

Repeated runs were performed until either the standard deviation of the mean of log10 

transformed p-values became < 0.01, 100 runs were reached, or a mean p-value > 0.01 

was obtained with at least 25 runs, or a mean p-value > 0.1 with at least 5 runs.  

1.10.2 Variant impact thresholds  

We tested the evidence for a differential burden for four sets of variants with incrementing 

levels of predicted deleteriousness: the LOF+REVEL≥25 threshold includes the variants 

from all deleteriousness categories, while the LOF+REVEL≥50 threshold and 

LOF+REVEL≥75 threshold condition on the variants with higher levels of predicted 

deleteriousness. Finally, the LOF threshold includes only variants that are predicted to lead 

to a complete loss-of-function. The rationale behind this is that for each gene, by 

concentrating maximum evidence for a differential burden-signal in one test, we maximize 

the power to identify a differential burden in this gene. Genes were only tested if the 

cumulative minor allele count (cMAC) of predicted damaging variants was ≥10. Multiple 

testing correction was performed across all performed tests (up to 4 per gene) using the 

False Discovery Rate procedure51. Genes were considered for replication if the false 

discovery rate was ≤20%. In order to confirm the AD-association of the genes identified in 

Stage-1, we used the Stage-2 dataset: p values were corrected using the Holm-Bonferroni 

method52, while accounting for number of tests performed in Stage-2. Finally, for the meta-

analysis we corrected p values using the Holm-Bonferroni methods, while accounting for 

the number of tests performed in Stage-1. 

1.10.3 Carrier frequency and cumulative Minor Allele Frequency 

A carrier of a set of variants was defined as a sample for which the summed dosage of 

those variants was ≥0.5. Carrier frequencies (CFs) were determined as #carriers / 

#samples. Confidence intervals for the CFs were assumed to be described through a Beta 
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distribution (where a=#carriers, and b=#samples - #carriers). To accommodate situations 

for certain age-at-onset bins, in which the number of carriers was (close to) 0, a prior was 

added to a and b based on the carrier count in samples not included in the age-at-onset 

bin, scaled such that a=0.1. The cumulative Minor Allele Frequency (cMAF) for a set of 

variants and samples was defined as the sum of the minor allele frequencies (MAFs) of 

the included variants in those samples. When the summed frequency of these variants is 

<1%, the cMAF can be considered to have a similar uncertainty distribution as the MAF, 

which can be described using a Beta distribution, where a=#cumulative Minor Allele Count 

(cMAC) and b=2 * #samples - cMAC. Similar as for the CF, a prior was added based on 

the observed allele counts in non-included samples, scaled such that a=0.1.  

1.10.4 Odds ratios 

Effect sizes (odds ratios, ORs) of the ordinal logistic regression can be interpreted as 

weighted averages of the OR of being an AD case versus control, and the OR of being an 

early-onset AD case or not. Next to ordinal ORs, we estimated ‘standard’ ORs. This was 

done across all samples (case/control), as well as per age category (EOAD versus controls 

and LOAD versus controls), as well as for smaller age-at-onset categories: ≤65 (EOAD), 

(65-70], (70-80] and >80. Standard ORs were estimated using multinomial logistic 

regression, using the R net package (version 7.3-12), with correction for 6 PCA covariates. 

For low cMAC values, logistic regression has difficulties in obtaining accurate odds ratios 

and confidence intervals, as the normal distribution approximation for the log(OR) 

parameter starts to break down. For these situations (where cMAC≤10, or <3 for either 

cases or controls), the OR and its confidence intervals were estimated directly based on 

the cMAF of cases and controls: OR = (cMAFcase / cMAFcontrol) / ((1 - cMAFcase) / (1 - 

cMAFcontrol). While the uncertainty of this OR is difficult to evaluate directly, it is governed 

by the uncertainty in cMAFcase and cMAFcontrol. Confidence intervals were therefore 

estimated through the earlier described beta distribution approximation for the cMAF, by 

repeated sampling of possible cMAFcase and cMAFcontrol values.  
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1.10.5 Testing for an association between effect size and variant 

rareness 

To determine if there was a significant trend in effect sizes between the different variant 

frequency categories (1, 2, 3-5, 6-10, 10+ damaging alleles), an ordinal logistic regression 

test was performed with constrained beta’s |𝑏-| ≤ |𝑏)| ≤ |𝑏F*G| ≤ |𝑏H*-I| ≤ |𝑏-I0|, and 

compared to a H0-model with a single beta (Figure 2C, Supplementary Table 11).  

Optimization was performed by first estimating b in an unconstrained model, followed by 

adding the model constraints. Likelihood-ratios in this setting follow a chi-bar-squared 

distribution. Significance (FDR < 0.05) was therefore determined through sample label 

permutation, based on the bootstrapping approach outlined in Garre et al53. The number 

of permutations was limited to 10.000.  

1.10.6 Sensitivity analysis 

A sensitivity analysis was performed to determine if effects were potentially due to age 

differences between cases and controls (Extended Data 8) An age-matched sample was 

constructed by dividing samples in strata based on age/age-at-onset, with each stratum 

covering 2.5 years. Case/control ratios in all strata were kept between 0.1 and 10 by down-

sampling respectively controls or cases. Subsequently, samples were weighted using the 

‘propensity weighting within strata method’ proposed by Posner and Ash54. Finally, a case-

control logistic regression was performed both on the unweighted and weighted case-

control labels, and estimated odds ratios and confidence intervals were compared.  

1.10.7 Variant-specific analysis 

We performed a variant-specific analysis of the genes considered as significantly or 

suggestively associated with AD, to detect gene-specific idiosyncrasies not covered by our 

uniform exome-wide analysis. We checked for outlier variants among those that were 

included in the burden test, determining which ones had a significantly lower or opposite 

effect size (fisher exact test) compared to other included variants of the same category 

(missense or LOF). Furthermore, we determined which rare missense or potential LOF 

variants did associate with AD (logistic regression test, at least 15 carriers), irrespective of 

REVEL/LOFTEE. We performed corrections for multiple testing per gene using FDR, 
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reporting only variants with a threshold of FDR < 0.2 (Supplementary Table 16). In Stage-

2, we replicated these variants, accepting them as true if they attained a (per-gene) Holm-

Bonferoni corrected p-value < 0.05. We calculated burden odds ratios both with and without 

the 3 confirmed outlier variants (Table 3). 

 

 Sanger Validation of identified variants 

We performed a validation step using an existing dataset containing Sanger validation calls 

for variants in the SORL1 gene, the gene in which we detected by far the most variants.  

a. In a subset of 1,908 samples (from the ADC and Rotterdam Study datasets), we 

detected 76 singleton variants, and (irrespective of QC status) we tested them all using 

Sanger sequencing55. For the current work, we reanalyzed this dataset in the context of 

the current pipeline: of the 76 detected SORL1 variants. N=41 SORL1 variant calls passed 

QC in our current dataset and these were all confirmed through Sanger sequencing (100% 

true positive rate). For the remaining 35 SORL1 variants: N=8 variants were not present in 

the current dataset due to sample exclusion (all flagged due to ≤3rd degree family relations 

(IBD)). N=15 SORL1 variants were excluded in the case-control analysis, as they were 

flagged by our variant batch detector, mostly due to differences in missingness between 

cases and controls. For such variants, individual variant calls are usually still reliable, as 

batch effects are generally derived from the missing calls, indeed, they were all confirmed 

through Sanger sequencing. N=14 SORL1 variant calls were flagged/not called by our 

pipeline, and indeed were not confirmed with Sanger sequencing (100% true negative 

rate).  

b. We also obtained Sanger sequencing results for the Rouen study, where Sanger 

sequencing is performed as part of standard clinical practice and was also collected for 

several studies4,5 some of which are not yet published. A total of 69 variant calls that passed 

QC were tested through Sanger sequencing: 28 in SORL1, 32 in ABCA7 and 9 in TREM2. 

All variant calls were confirmed as true positives (100% true negative rate). 
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 Detailed gene discussion 
We investigated specific features of the AD-association for the genes identified with the 

rare-variant analysis using the mega-sample (including exome-extracts, and using the 

refined burden categories for TREM2 and ABCA1) (Table 3). For each gene, we 

investigated (i) the variant carrier frequency (Figure 2A), (ii) the odds ratios of the AD 

associations (Figure 2B,C), (iii) the age at AD onset (Figure 2A, B), (iv) missense and 

LOF categories (Figure 3), and (v) variant population frequency (Figure 2A,D).  

2.1.1 SORL1 

In the SORL1 gene we identified a total of 567 unique coding missense and predicted LOF 

variants that passed QC (Supplementary Data-SORL1). The 212 rare variants 

appertaining to the LOF+REVEL≥50 threshold, carried by 418 individuals, provided the 

strongest evidence for the AD association (p = 8.1E-26 (Table 1). The burden of such 

variants is concentrated in the younger AD cases: 2.75% of the EOAD cases and 1.51% 

of the LOAD cases carries at least one such variant compared to 0.68% of all controls. The 

association with AD is mainly driven by variants which are individually extremely rare and 

mostly singletons, (151/212 variants were singletons) (Figure 2D). Unique for the SORL1 

gene is the significant correlation between lower variant frequency and higher 

damagingness (Figure 2C, and Supplementary Table 11). LOF variants associated with 

a 40.7-fold increased risk of EOAD (95%CI 12.5-133) and 11.3-fold increased risk of LOAD 

(95%CI 3.3-38.3), missense variants with REVEL≥50 associated with a 2.5-fold (95%CI 

2.0-3.2) and 1.8-fold (95%CI 1.4-2.3) increased risk of EOAD and LOAD, respectively. In 

the variant-based analysis in the Stage-1 dataset, we identified two individual SORL1 

variants that associated with AD. We identified a rare variant V1459I (Supplementary 
Table 16) which was not included in the Stage-1 burden test because of its low REVEL 

score of 9, but we observed a suggestive association (OR 2.5, 95% CI: 1.22-5.07, FDR: 

0.038). In Stage-2 we did not replicate this signal: OR=0.86 (95% CI 0.37-2.01), such that 

this variant was not included in the burden test of the refined analysis of the mega-dataset. 

Second, we detected the S2175R missense variant as outlier in the Stage-1 dataset 

(OR=0.53, 95% CI 0.19-1.47; FDR 0.038): it had a significantly lower OR than other 
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missense variants. The Stage-2 dataset included too few carriers, such that we were not 

able to replicate this effect. Therefore, this variant was not removed from the analysis. 

2.1.2 TREM2 

We identified a total of 95 unique missense and LOF variants that passed QC 

(Supplementary Data-TREM2). In the burden tests, the LOF+REVEL≥25 threshold 

provided the strongest evidence for an AD association (p=5.2E-22); After refinement, we 

identified 25 variants appertaining to the LOF+REVEL≥25 threshold, carried by 404 

individuals: 2.22% of the EOAD cases and 1.77% of the LOAD cases carries at least one 

such variant compared to 0.62% of all controls. TREM2 LOF variants associated with a 

5.8-fold (95%CI 1.7-19) increased risk of EOAD and 5.4-fold (95%CI 1.8-16.8) increased 

risk of LOAD (after removal of the transcript specific LOF variant, see Supplementary 
Table 16). Missense variants associated with a 3.7-fold (95%CI 2.8-4.9) increased risk of 

EOAD, and a 2.7-fold (95%CI 2.1-3.6) increased risk of LOAD. Although damaging TREM2 

variants that drive the AD association are rare, a major fraction of the association signal 

was carried by missense variant R47H, and recurring A105V and Q33* variants, and the 

other part by the rarest variants (13/25 variants were singletons). Note that R62H was not 

included due to an allele frequency > 1% and a low REVEL score (0.04).  

In the variant-based analysis (Supplementary Table 16) we identified a significant 

association for the D87N variant (OR 2.6, 95%CI, 1.6-4.6, MAF: 0.14%, FDR: 0.01) which 

was not included in the burden test because its REVEL score was too low (20) 

(Supplementary Table 16). However, we could not replicate this signal in the Stage-2 

analysis, such that the variant was not included in the refined analysis of the mega-sample. 

For LOF variants, we detected an outlier splice acceptor variant rs538447052 (OR: 1.9, 

95%CI: 0.7-5.1, MAF: 0.06%), which only affected the non-canonical ENST00000373122 

transcript. This variant had a significantly lower odds ratio (outlier FDR: 0.041)  compared 

to the other LOF variants that affect all transcripts. We were able to replicate this outlier 

effect in the Stage-2 analysis, such that we removed it in the refined analysis of the mega-

sample.  
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2.1.3 ABCA7 

For the ABCA7 gene, we identified 684 unique missense and LOF variants 

(Supplementary Data-ABCA7). The 351 variants appertaining to the LOF+REVEL≥25 

variant threshold, carried by 1,489 individuals provided the strongest evidence for an AD 

association (p=4.1E-13) (Table 1); 6.2% of the EOAD cases and 5.04% of the LOAD cases 

carries at least one such variant compared to 3.90% of all controls. The AD-association is 

driven by variants which are individually extremely rare and mostly singletons (190/351 

variants were singletons) (Figure 2C), but also by several more common variants (Figure 
2D). LOF and missense variants in the ABCA7 gene were respectively associated with a 

2.2-fold (95%CI 1.4-3.5) and 1.6-fold (95%CI 1.4-1.8) increased EOAD risk, the risk for 

LOAD was slightly lower. (Figure 3). With a variant specific analysis, we identified 3 

missense variants detected as outlier in the burden test (Supplementary Table 16): i) 

R19W (outlier FDR: 1.1%), with an OR of 1.09 (95% CI: 0.4-3.2). ii) V1599M (outlier FDR: 

0.1%), with an OR of 0.84 (95%CI: 0.61-1.15, MAF:0.4%) iii) G1820S (outlier FDR 20%, 

OR: 0.67 (95%CI 0.28-1.6). In the refinement analysis, these variants were not removed 

as these outlier effects were not replicated in Stage 2.  Of note, our discovery analysis 

excluded two relatively often occurring LOF variants, flagged in our QC pipeline for 

differential missingness. However, for these variants, it was possible to reliably calculate a 

single-variant association (by excluding samples with low depth). The first variant is the 

recurrent splice region variant c.5570+5G>C which previously showed a splicing defect56 

as it fell out of our variant selection criteria (coding exons and canonical, ±2 bp splice sites). 

A loss of function effect was demonstrated in vitro for this variant57. The second variant is 

the LOF frameshift variant 708-710:EEQ/X (earlier observed by de Roeck et al58). Finally, 

we did not have the possibility to call an intronic variable number tandem repeat (VNTR) 

variant which was recently associated with an increased risk of developing AD, suggesting 

that the level of association of ABCA7 in AD is still likely underestimated in our study59. 

Also, it is important to keep in mind that the real impact of some LOF mutations in ABCA7 

may be restricted by a transcript rescue mechanism58. 

2.1.4 ATP8B4 

We identified 257 variants in the ATP8B4 gene (Supplementary Data-ATP8B4), and the 

94 variants appertaining to the LOF+REVEL≥25 threshold, carried by 850 individuals, 
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provided the strongest evidence for an AD-association (p=9.6E-09) (Table 1); 3.56% of the 

EOAD cases and 3.1% of the LOAD cases carries at least one such variant compared to 

2.1% of all controls. However, unique for the ATP8B4 gene, the burden was mainly focused 

on REVEL 75-100 and REVEL 25-50 variants, while other variant categories, as well as 

singleton variants, did not significantly associate (Figure 2C). Instead, the AD-association 

was driven mainly by one missense variants: G395S with a variant-OR of 1.6 (95%CI1.35-

1.91), MAF 0.91%.  

Additionally, with a variant specific analysis (Supplementary Table 16), we identified 

H987R with OR 3.14 (95%CI 1.55-6.34), and MAF 0.03%, which was not added to the 

burden due to a low REVEL score (26). However, the variant-association did not replicate 

in Stage 2 (OR 1.58 95%CI 0.45-5.53), such that the variant was not added to the burden 

in the Mega analysis. Furthermore, we identified variant P83A as an outlier with OR: 0.81 

(95%CI 0.28-2.38) in Stage 1, but due to the low number of carriers, the signal did not 

replicate in Stage 2 (OR 0.85, 95%CI 0.10-6.98) such that this variant was not removed 

from the burden analysis. Note that the OR point-estimate for ATP8B4 missense variants 

(OR=1.5; 95%CI: 1.3-1.7) is higher than the OR for LOF variants (OR=1.1; 95%CI: 0.6-

1.9). A possible explanation could be that the risk-increasing effect of the association-

driving missense variants depends on a gain-of-function effect rather than on a loss-of-

function effect. However, evidence for this will need to be collected by comparing larger 

sample sizes and functional experiments. 

2.1.5 ABCA1 

We identified 429 missense and LOF variants in the ABCA1 gene that passed QC 

(Supplementary Data-ABCA1). In the burden analysis, the LOF+REVEL≥75 threshold 

provided the strongest evidence for an AD-association (p=2.6E-07, Table 1); After 

refinement, this appertained to 120 variants, carried by 1.5% of the EOAD cases and 1.1% 

of the LOAD cases, compared to 0.5% of all controls. The AD-association is mainly driven 

by variants which are individually extremely rare and mostly singletons (80/120) variants 

are singletons), but also by more common variants, in particular N1800H (MAF: 0.08%). 

(Fig 2C,D). The burden of damaging ABCA1 variants (LOF+REVEL≥75 variant threshold) 

is concentrated in younger AD patients. LOF and missense variants in the ABCA1 gene 

were respectively associated with a 4.7-fold (95%CI 2.2-10.3) and 2.7-fold (95%CI 1.9-3.8) 
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increased EOAD risk, and this was lower for LOAD cases (Table 3). With our variant 

specific test, we detected 2 variants as outliers: i) a missense variant P85L which had an 

OR of 0.92 (95%CI 0.56-1.51) and MAF 0.2% (FDR  1.9%) and the outlier signal replicated 

in Stage 2 with OR 0.85 (0.46-1.56). We found an additional outlier signal for missense 

variant D1018G with OR 0.81 (95%CI: 0.29-2.22), and MAF:0.05% with FDR  13%. This 

signal also replicated in the Stage 2 with an OR 0.42 (95%CI 0.13-1.34). Therefore, we 

removed these variants from in refined analysis. 

2.1.6 ADAM10 

We identified 101 missense and LOF mutations that passed QC (Supplementary Data-
ADAM10). The 19 variants appertaining to the LOF+REVEL≥50 threshold, carried by 22 

individuals, provided the strongest evidence for an AD-association (p=2.8E-05, Table 1); 
0.23% of the EOAD cases and 0.05% of the LOAD cases carries at least one such variant 

compared to 0.02% of all controls. With the rare occurrence of such variants (16/19 variants 

are singletons), it is difficult to detect an exome-wide significant signal, even for variants 

with the strongest AD-associations in this large sample. We found that LOF+REVEL≥50 

variants were suggestively associated with a 9.0-fold (95%CI 2.9-28) increased risk of 

EOAD. We note that one splice-acceptor LOF variant, carried by a single control in Stage-

1, only affects transcripts ENST00000402627 and ENST00000561288. These transcripts, 

being 71 and 38 amino acids long, miss the majority of the canonical transcript (748 amino 

acids). This individual was last checked at age 89.  

2.1.7 RIN3 

For the RIN3 gene, we identified 278 unique missense and LOF variants (Supplementary 
Data-RIN3). The 23 variants appertaining to the LOF+REVEL≥50 variant threshold, carried 

by 583 individuals, provided the strongest evidence for an AD association (p=1.6E-05) 

(Table 2); 2.7% of the EOAD cases and 2.1% of the LOAD cases carries at least one such 

variant compared to 1.6% of all controls. While 14/23 variants were singletons, the majority 

of the AD-association was driven by 2 more common variants:  Y793H (MAF 0.84%) and 

W63C (MAF: 0.08%) (Figure 2C,D). RIN3 shows moderate effect sizes: LOF variants in 

the RIN3 gene were associated with a 2.9-fold (95%CI 0.6-32.0) and 1.7-fold (95%CI 0.4-
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18.6) increased risk of EOAD and LOAD, respectively, while missense variants associated 

with a 1.6-fold (95%CI 1.3-2.0) and 1.3-fold (95%CI 1.1-1.6) respectively (Figure 3, Table 
3). 

2.1.8 CLU 

For the CLU gene, we identified 105 unique missense and LOF variants (Supplementary 
Data-CLU). The 24 variants appertaining to the LOF+REVEL≥25 variant threshold, carried 

by 26 individuals, provided the strongest evidence for an AD association (p=5.0E-04) 

(Table 3); 0.23% of the EOAD cases and 0.09% of the LOAD cases carries at least one 

such variant compared to 0.03% of all controls. Most variants were extremely rare, 22/24 

were singletons (Figure 2C,D). We observed large effect sizes. LOF variants in the CLU 

gene were associated with a 14.2-fold (95%CI 2.9-470.4) and 3.8 (0.6-122.4) increased 

EOAD and LOAD risk respectively (Figure 3, Table 3). 

2.1.9 ZWCWP1 

For the ZWCPW1 gene, we identified 117 unique missense and LOF variants 

(Supplementary Data-ZWCWP1). The 11 variants appertaining to the LOF variant 

threshold, carried by 15 individuals, provided the strongest evidence for an AD association 

(p=7.8E-04) (Table 2); 0.15% of the EOAD cases and 0.05% of the LOAD cases carries 

at least one such variant compared to 0.01% of all controls. The AD signal was driven by 

LOF variants only, each of which was very rare, and 8/11 variants were singletons (Figure 
2C,D). Effect sizes of ZWCPW1 were also large, with LOF variants being associated with 

a 9.1-fold (95%CI 3.1-90.1) and 2.9-fold (95% CI: 0.8-27.4) increased risk of EOAD and 

LOAD, respectively (Figure 3, Table 3). 

2.1.10 ACE 

For the ACE gene, we identified 363 unique missense and LOF variants Supplementary 
Data-ACE). The 38 variants appertaining to the LOF+REVEL≥75 variant threshold, carried 

by 99 individuals, provided the strongest evidence for an AD association (p=9.0E-04) 

(Table 3); 0.60% of the EOAD cases and 0.39% of the LOAD cases carries at least one 
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such variant compared to 0.20% of all controls. (Figure 2A). Effect sizes were moderate. 

LOF variants associated with 1.7-fold (95% CI: 0.9-3.4) and 1.2-fold (95% CI: 0.6-2.2) 

increased risk for EOAD and LOAD respectively. Remarkably, missense variants showed 

a larger association of 3.9 (95% CI: 1.8-8.8) and 2.7 (95%CI: 1.3-5.9) respectively (Figure 
3, Table 3). 

 

  



 
60 

 Supplementary Figures and Tables 

 Figures 

3.1.1 Supplementary Figure 1: Read length per study 

 
 
Illumina read length, by study for all samples (dots).  
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3.1.2 Supplementary Figure 2: Genotype Quality 

 
 
Fraction of genotype calls with a genotype quality < 20. Each sample was evaluated in context of its capture 
kit. Samples that are considered outliers due to missingness are indicated with a red ‘*’ symbol.   
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3.1.3 Supplementary Figure 3: Genetic sex 

 

Check of sex chromosome copy number versus clinical sex annotation. Samples that failed the sex check 
were plotted last to increase their visibility. Samples that were classified as XXY, XXY and XXX are indicated 
by respectively right, down and upwards pointing triangle symbols. Samples with increased uncertainty due 
to low coverage were plotted with increased translucency. A number of samples failed this check, and were 
found to be enriched in 3 sequencing plates. Samples from these plates were excluded from the analysis.  
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3.1.4 Supplementary Figure 4: first two population PCA components per 

study 

 

First two PCA components per study. Samples indicated as a ‘x’ are outliers.  
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3.1.5 Supplementary Figure 5: Third and fourth population PCA components 

per study 

 
Third and fourth PCA component for each study. Samples indicated as a ‘x’ are outliers. 
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3.1.6 Supplementary Figure 6: Number of novel SNPs (union of capture kits) 

 

Nr. of novel SNPs per sample, in the region representing the union of all capture kits + 100bp padding. QC 
outliers are shown as red stars. Variants are classified as novel if they are not present in DBSNP v150. Per 
geographical region, the comprehensiveness of the annotation of local rare variants in DBSNP might vary. 
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3.1.7 Supplementary Figure 7: Number of novel indels (union of capture kits) 

 

Nr. of novel indels per sample, in the region representing the union of all capture kits + 100bp padding. QC 
outliers are shown as red stars. Variants are classified as novel if they are not present in DBSNP v150. Per 
geographical region, the comprehensiveness of the annotation of local rare variants in DBSNP might vary. 
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3.1.8 Supplementary Figure 8: Number of novel SNPs (intersection of 

capture kits) 

 

Nr. of novel SNPs per sample, in the intersection of all capture kits. QC outliers are shown as red stars. 
Variants are classified as novel if they are not present in DBSNP v150. Per geographical region, the 
comprehensiveness of the annotation of local rare variants in DBSNP might vary. 
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3.1.9 Supplementary Figure 9: Number of novel indels (intersection of 

capture kits) 

 

Nr. of novel indels per sample, in the intersection of all capture kits. Sample QC outliers are shown as red 
stars. Variants are classified as novel if they are not present in DBSNP v150. Per geographical region, the 
comprehensiveness of the annotation of local rare variants in DBSNP might vary. 
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3.1.10 Supplementary Figure 10: Ts/Tv ratio known variants 

(intersection capture kits) 

 

Transition/Transversion ratio per sample, of known variants in the region covered by all capture kits. QC 
outliers are shown as red stars. Variants are classified as known if they are present in DBSNP v150. 
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3.1.11 Supplementary Figure 11: Ts/Tv ratio novel variants (intersection 

of capture kits) 

 

Transition/Transversion ratio per sample, of novel variants in the region covered by all capture kits. QC 
outliers are shown as red stars. The distribution is wide due to a low number of novel SNPs per sample 
(Supplementary Figure 8). Ts/Tv values are for plotting purposes maximized at 8. Variants are classified 
as novel if they are not present in DBSNP v150. 



 
71 

3.1.12 Supplementary Figure 12: Het/Hom ratio known variants 

(intersection capture kits) 

 

Heterozygous/Homozygous ratio per sample, of known variants in the region covered by all capture kits. 
Sample QC outliers are shown as red stars. Variants are classified as known if they are present in DBSNP 
v150. Low het/hom ratios can be an indication of inbreeding, while high het/hom ratios can be an indication 
of outbreeding or sequence contamination. The problem of contamination is mostly limited to more common 
variants, and not the rare variants that are the focus of this study.
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3.1.13 Supplementary Figure 13: First two PCA components per 

study, after sample QC. 

 

First two PCA covariates after sample QC. All analysis are corrected for the first 6 PCA components.  
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3.1.14 Supplementary Figure 14: Third and fourth PCA 

components per study, after sample QC. 

 

Third and fourth PCA covariates after sample QC. All analysis are corrected for the first 6 PCA 

components.  
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3.1.15 Supplementary Figure 15: Fifth and sixth PCA components 

per study, after sample QC. 

 

Fifth and sixth PCA covariates after sample QC. All analyses are corrected for the first 6 PCA 
components. 
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 Supplementary Tables
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3.2.1 Supplementary Table 1: Contributing Studies 

 

Characteristics of the samples contributed by each study, grouped by country. A.A.O: mean age at onset; A.L.S. mean age at last screening. EOAD: early 
onset cases, a.a.o. ≤65. LOAD, a.a.o >65. Study descriptions can be found in section 1 of the Supplement. Bold: country name; italic: total per continent.

 Samples 
Gender  

(%female) 
APOE 

genotype 
(% E4) 

WGS  
(%) 

Case/Control Stage-1 Case/Control Stage-2 Diagnostic validation 

 before  
QC (#) 

after  
QC (#) EOAD LOAD Controls EOAD LOAD Controls Neuro- 

patho- 
logy 

CSF Clinical 
Study Stage-

1+2 Stage-1+2 Stage-1 Stage-2 Case Control Case Control Case Control # AAO # AAO # ALS # AAO # AAO # ALS 

France                          

ADES-FR 4738 4645 3254 1391 62% 48% 53% 22% 30% 9% 1068 59.0 930 78.2 1256 75.5 477 57.1 52 69.1 862 61.9 16 1152 3477 
Germany                          

AgeCoDe-UKBonn 394 371 371 0 68% - 41% - 0% 0% 98 59.0 272 84.7 1 -       0 0 371 
Spain                          

Barcelona SPIN 60 59 59 0 44% 44% 6% 33% 0% 0% 50 56.4   9 72.8       37 13 9 
The Netherlands                          

AC-EMC 125 110 70 40 60% - 44% - 0% - 57 57.0 13 69.1   29 57.3 11 69.3   3 40 67 
ERF 1325 400 400 0 50% 57% 75% 31% 0% 0% 1 - 3 76.0 396 48.1       0 0 400 

Rotterdam Study 2699 1891 1891 0 69% 55% 44% 26% 0% 0% 1 - 366 83.5 1524 82.7       0 0 1891 

ADC-Amsterdam 1564 1073 483 590 55% 35% 58% 32% 0% 0% 341 57.3 142 68.6   158 57.6 129 71.9 303 58.4 0 892 181 
Netherlands Brain 

Bank 251 223 0 223 70% 57% 41% 26% 0% 0%       51 57.2 119 80.0 53 82.7 223 0 0 

Amsterdam-UMC 6930 4299 0 4299 53% 37% - - 0% 0%       123 57.4 29 69.3 4147 45.3 0 0 4299 

100-plus Study 375 349 254 95 84% 69% 14% 14% 0% 0%   64 101.5 190 102.9     95 100.4 0 0 349 
90-plus Study 103 71 0 71 - 54% - 13% - 0%           71 92.3 0 0 71 

United Kingdom                          

CBC 471 363 363 0 54% 40% 62% 34% 0% 0% 33 60.1 78 76.8 252 75.8       363 0 0 

PERADES 4936 4140 4140 0 58% 58% 54% 22% 0% 0% 1265 58.1 2185 76.9 690 81.5       0 0 4140 
UCL-DRC EOAD 539 409 409 0 55% - 47% - 0% - 389 54.9 20 76.6         7 35 367 

Europe total                          

ADES 24510 18403 11694 6709 60% 52% 53% 25% 9% 2% 3303 57.4 4073 79.0 4318 77.5 838 57.2 340 74.0 5531 53.5 649 2132 15622 
                          

USA                          

ADSP 25798 12557 9651 2906 57% 58% 47% 17% 11% 10% 757 62.4 4519 77.2 4375 86.5 189 61.3 992 78.8 1725 78.0 0 0 12557 

StEP-AD 278 278 0 278 50% 58% 12% 89% exome-extract       171 57.2 2 67.5 105 79.6 0 0 278 
Knight-ADRC 1039 1038 0 1038 53% 56% 69% 38% exome-extract       275 59.3 383 75.8 380 77.5 0 0 1038 

UCSF/NYGC/UAB 736 282 0 282 52% 63% 58% 24% 100% 100%       154 50.6 40  88 69.5 0 0 282 
USA total                          

USA 27851 14155 9651 4504 56% 58% 48% 20% 12% 11% 757 62.4 4519 77.2 4375 86.5 789 59.9 1417 78.0 2298 77.6 0 0 14155 
                          

Total 52361 32558 21345 11213 58% 55% 51% 22% 10% 5% 4060 58.8 8592 77.9 8693 82.1 1627 58.1 1757 77.2 7829 62.2 649 2132 29777 
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3.2.2 Supplementary Table 2: Capture Kits 

Study Capture kits (#samples, after QC) 

AgeCoDe-UKBonn Nimblegen V2: 371 

ADES-FR 

Agilent V1: 6, Agilent V3: 10, Agilent V4: 119,  
Agilent V4UTR: 14, Agilent V5: 1362,  
Agilent V5UTR: 849, Agilent V6UTR: 469,  
WGS: 954 

100-plus Study Agilent V6: 135, Nimblegen V3: 214 

90-plus Study Agilent V6: 71 

AC-EMC Agilent V6: 40, Nimblegen v2: 70 

ADC-Amsterdam Agilent V6: 770, Nimblegen v3: 303 

Brain Bank Agilent V6: 223 

ERF Agilent V4: 400 

Rotterdam Study Nimblegen v2: 1891 

Amsterdam-UMC MedExome: 4299 

Barcelona SPIN Nimblegen v3: 59 

CBC 

Nimblegen V2: 63,  
Multiplex Illumina TruSeq v2: 100,  
Multiplex Illumina TruSeq: 200 

PERADES Nextera v1.2: 4140 

UCL-DRC EOAD Sureselect: 5, Haloplex: 404 

ADSP 

Illumina Rapid Capture Exome: 4211,  
Agilent V4: 16, Agilent V5: 208,  
Agilent V6: 6, Nimblegen VCRome V21: 6077,  
Nimblegen v2: 9, Nimblegen v3: 786,  
WGS: 1244 

UCSF/NYGC/UAB WGS: 282 
WGS: Whole Genome Sequencing 
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3.2.3 Supplementary Table 3 Sample QC  

 

Samples were primarily excluded due to non-European ancestry or close family relations. Exome-extract 
samples only contain reads that cover the 10 genes discovered in Stage-1. In Stage-2, samples were 
removed that were duplicated w.r.t. Stage-1. In the mega-analysis, a merged sample QC removed all family 
relations to the third degree between Stage-1 and Stage-2 (i.e. the size of the mega-sample does not equal 
the sum of the Stage-1 and Stage-2 samples). 
 

 

 

 

 

 

Samples Stage-1 Stage-2 Mega 

QC-steps Total Removed Total Removed Total Removed 

0. Samples processed 25,982  26,379  52,361  

1. Missingness 25,857 125 26,374 5 52,231 130 

2. Contamination 25,430 427 26,345 29 51,775 456 

3. Sex-check 25,244 186 26,330 15 51,574 201 

4. Population outliers 24,405 839 15,563 10,767 39,968 11,606 

5. excess novel SNPs 24,248 157 15,469 94 39,717 251 

6. excess novel Indels 24,227 21 15,469 0 39,696 21 

7. other QC 24,212 15 15,462 7 39,674 22 

8a. IBD 22,334 1,878 13,859 1,603 35,689 3,985 

8b. Duplicate w.r.t. Stage-1  22,334 NA 13,637 222 35,689 NA 

9. Bad plates 22,213 121 13,637 NA 35,568 121 

10. Causative mutations 22,047 166 13,637 NA 35,402 166 

11. Braak mismatch/unlabeled 21,345 702 11,213 2,424 31,905 3,497 

Sample totals (exomes and exome-extracts) 

EOAD 4,060  1,627  5,643  

LOAD 8,592  1,757  10,165  

Controls 8,693  7,829  16,097  

Totals excluding exome-extracts: 

EOAD 4,060  1,181  5,197  

LOAD 8,592  1,372  9,780  

Controls 8,693  6,482  14,750  
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3.2.4 Supplementary Table 4: Variant QC (excluding exome-extract 

samples, all genes) 

Variants Stage-1 Stage-2 Mega 
QC-steps Total Ratio Total Ratio Total Ratio 
0. Variants called 11,752,148 100.0% 7,673,870 100.0% 15,172,697 100.0% 
1. Bi-allelic variants 12,938,556 110.1% 8,223,193 107.2% 16,829,185 110.9% 
2. Variant merging (in-phase variants, multi-allelic overlap, low 
reference allele frequency) 12,309,375 104.7% 7,555,341 98.5% 15,688,759 103.4% 
3. Oxo-G mutations 10,408,894 88.6% 6,966,627 90.8% 13,621,311 89.8% 
4. STR/LCR regions 9,590,204 81.6% 6,243,771 81.4% 12,576,698 82.9% 
5. Allele balance (het. 0.25-0.75, hom. > 0.9) 8,012,587 68.2% 5,318,752 69.3% 10,293,141 67.8% 
6. Depth fraction heterozygous calls > 0.2 7,814,724 66.5% 5,227,137 68.1% 9,909,839 65.3% 
7. Hardy-Weinberg (p < 5e-8, chi-square test) 7,779,331 66.2% 5,178,054 67.5% 9,857,042 65.0% 
8. VQSR 7,612,856 64.8% 5,084,524 66.3% 9,655,998 63.6% 
9. Variant Batch Detector 7,543,193 64.2% 4,908,915 64.0% 9,454,876 62.3% 

       
Variant selection       
10. In protein coding autosomal genes (Gencode V19/V29) 6,883,630 58.6% 4,358,607 56.8% 8,618,616 56.8% 
Missense       

11. Missense variants 1,486,559 12.6% 764,058 10.0% 1,789,034 11.8% 
12. REVEL > 25 540,934 4.6% 269,492 3.5% 658,387 4.3% 
13 (GnomAD) MAF < 1% / dosage > 0.5 530,072 4.5% 250,029 3.3% 643,920 4.2% 
14. Missingness (< 20% + no differential missingness) 353,913 3.0% 182,533 2.4% 470,563 3.1% 

LOF       
11. Loss-of-function variants 
(stop-gained,frameshift,splice acceptor/donor) 144,429 1.2% 65,358 0.9% 165,516 1.1% 
12. Loftee HC + VEP high impact 109,550 0.9% 49,425 0.6% 125,766 0.8% 
13. (GnomAD) MAF < 1% / dosage > 0.5 108,016 0.9% 45,644 0.6% 123,514 0.8% 
14. Missingness(< 20% + no differential missingness) 57,543 0.5% 27,191 0.4% 74,645 0.5% 

       
Categories       
REVEL 25-50 198,068 1.7% 102,866 1.3% 262,244 1.7% 
REVEL 50-75 99,910 0.9% 51,295 0.7% 133,059 0.9% 
REVEL 75-100 54,212 0.5% 27,487 0.4% 72,832 0.5% 
LOF 57,543 0.5% 27,191 0.4% 74,645 0.5% 

       
Thresholds       
LOF+REVEL≥25 409,733 3.5% 208,839 2.7% 542,780 3.6% 
LOF+REVEL≥50 211,665 1.8% 105,973 1.4% 280,536 1.8% 
LOF+REVEL≥75 111,755 1.0% 54,678 0.7% 147,477 1.0% 
LOF 57,543 0.5% 27,191 0.4% 74,645 0.5% 

All variants in the union of the exome capture kits are considered. For each gene, we considered in our 
variant selection 4 different selection thresholds. MAF: minor allele frequency. 
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3.2.5 Supplementary Table 5: Variant QC: including exome-extract 

samples, only targeted genes 

Variants in targeted genes Stage-1 Stage-2 Mega 
QC-steps Total Ratio Total Ratio Total Ratio 
0. Variants called 10,339 100.0% 7,238 100.0% 13,032 100.0% 
1. Bi-allelic variants 11,384 110.1% 7,803 107.8% 14,531 111.5% 
2. Variant merging 
(in-phase variants, multi-allelic overlap, low REF AF) 

10,674 103.2% 7,253 100.2% 13,652 104.8% 

3. Oxo-G mutations 9,075 87.8% 6,705 92.6% 11,948 91.7% 
4. STR/LCR regions 8,443 81.7% 6,034 83.4% 11,115 85.3% 
5. Allele balance (het. 0.25-0.75, hom. > 0.9) 7,207 69.7% 5,282 73.0% 9,453 72.5% 
6. Depth fraction heterozygous calls > 0.2 6,958 67.3% 5,180 71.6% 9,129 70.1% 
7. Hardy-Weinberg (p < 5e-8, chi-square test) 6,941 67.1% 5,164 71.3% 9,112 69.9% 
8. VQSR 6,851 66.3% 5,075 71.3% 8,966 68.8% 
9. Variant Batch Detector 6,848 66.2% 5,072 70.1% 8,963 68.8% 
Variant selection 

      

10. In protein coding autosomal genes (Gencode V19/V29) 6,848 66.2% 5,072 70.1% 8,963 68.8% 
Missense 

      

11. Missense variants 1,590 15.4% 894 12.4% 1,873 14.4% 
12. REVEL > 25 1,066 10.3% 591 8.2% 1,263 9.7% 
13 (gnomAD) MAF < 1% / dosage > 0.5 1,022 9.9% 567 7.8% 1,228 9.4% 
14. Missingness (< 20% + no differential missingness) 781 7.6% 428 5.9% 943 7.2% 

LOF 
      

11. Loss-of-function variants 
(stop-gained,frameshift,splice acceptor/donor) 

206 2.0% 106 1.5% 255 2.0% 

12. Loftee HC + VEP high impact 191 1.8% 97 1.3% 236 1.8% 
13. (gnomAD) MAF < 1% / dosage > 0.5 189 1.8% 96 1.3% 234 1.8% 
14. Missingness (< 20% + no differential missingness) 136 1.3% 64 0.9% 168 1.3% 

Categories 
      

REVEL 25-50 296 2.9% 168 2.3% 360 2.8% 
REVEL 50-75 266 2.6% 140 1.9% 320 2.5% 
REVEL 75-100 214 2.1% 119 1.6% 258 2.0% 
LOF 136 1.3% 64 0.9% 168 1.3% 
Thresholds 

      

LOF+REVEL≥25 912 8.8% 491 6.8% 1,106 8.5% 
LOF+REVEL≥50 616 6.0% 323 4.5% 746 5.7% 
LOF+REVEL≥75 350 3.4% 183 2.5% 426 3.3% 
LOF 136 1.3% 64 0.9% 168 1.3% 

Stage-1, Stage-2 and Mega analysis regards here only the 10 genes identified in Stage-1. For each gene, 
we considered in our variant selection 4 different selection thresholds. MAF: minor allele frequency. 
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3.2.6 Supplementary Table 6: Power in stage-1 

A: power by cMAC ncarriers = 10 ncarriers = 25 ncarriers = 50 

    P < value  P < value   P < value 

Odds ratio Test P-50% P-80% 1E-04 1E-05 1E-06 1E-07 P-50% P-80% 1E-04 1E-05 1E-06 1E-07 P-50% P-80% 1E-04 1E-05 1E-06 1E-07 

EOAD: 1.5 
LOAD: 1.3 

Case - Control 0.495 0.751 0% 0% 0% 0% 0.426 0.760 0% 0% 0% 0% 0.285 0.699 0% 0% 0% 0% 

EOAD vs. rest 0.481 0.769 0% 0% 0% 0% 0.406 0.759 0% 0% 0% 0% 0.390 0.765 0% 0% 0% 0% 

Ordinal 0.488 0.792 0% 0% 0% 0% 0.435 0.807 0% 0% 0% 0% 0.264 0.654 0% 0% 0% 0% 

EOAD: 2.5 
LOAD: 1.5 

Case - Control 0.352 0.757 0% 0% 0% 0% 0.176 0.597 0% 0% 0% 0% 0.055 0.284 2% 0% 0% 0% 

EOAD vs. rest 0.310 0.689 0% 0% 0% 0% 0.120 0.435 2% 1% 0% 0% 0.045 0.284 4% 0% 0% 0% 

Ordinal 0.338 0.693 0% 0% 0% 0% 0.074 0.416 2% 1% 0% 0% 0.015 0.098 7% 3% 0% 0% 

EOAD: 3.5 
LOAD: 2.0 

Case - Control 0.264 0.672 0% 0% 0% 0% 0.065 0.309 1% 0% 0% 0% 0.008 0.049 10% 3% 1% 0% 

EOAD vs. rest 0.176 0.608 0% 0% 0% 0% 0.066 0.335 3% 1% 0% 0% 0.008 0.084 15% 5% 2% 0% 

Ordinal 0.142 0.503 1% 0% 0% 0% 0.020 0.175 5% 1% 0% 0% 0.001 0.020 29% 12% 3% 1% 

EOAD: 5.0 
LOAD: 2.5 

Case - Control 0.184 0.492 0% 0% 0% 0% 0.025 0.103 5% 0% 0% 0% 0.001 0.008 31% 13% 4% 1% 

EOAD vs. rest 0.113 0.372 1% 0% 0% 0% 0.026 0.135 6% 2% 1% 1% 0.001 0.014 32% 16% 7% 5% 

Ordinal 0.073 0.357 2% 0% 0% 0% 0.006 0.042 13% 4% 1% 0% 0.000 0.001 58% 39% 21% 12% 

EOAD: 10.0 
LOAD: 3.33 

Case - Control 0.085 0.223 0% 0% 0% 0% 0.001 0.017 18% 4% 0% 0% 0.000 0.000 73% 48% 26% 13% 

EOAD vs. rest 0.026 0.139 9% 2% 0% 0% 0.000 0.004 44% 22% 11% 6% 0.000 0.000 90% 72% 53% 40% 

Ordinal 0.010 0.082 8% 2% 1% 0% 0.000 0.001 61% 35% 19% 8% 0.000 0.000 98% 95% 83% 67% 

EOAD: 20.0 
LOAD: 5.0 

Case - Control 0.024 0.138 0% 0% 0% 0% 0.000 0.002 39% 15% 2% 0% 0.000 0.000 97% 85% 69% 46% 

EOAD vs. rest 0.005 0.044 19% 7% 1% 1% 0.000 0.000 72% 55% 36% 23% 0.000 0.000 100% 98% 91% 86% 
Ordinal 0.001 0.013 20% 8% 7% 1% 0.000 0.000 90% 73% 56% 35% 0.000 0.000 100% 100% 99% 97% 

EOAD: 40.0 
LOAD: 10.0 

Case - Control 0.012 0.078 0% 0% 0% 0% 0.000 0.000 67% 32% 4% 0% 0.000 0.000 100% 99% 93% 84% 
EOAD vs. rest 0.005 0.032 22% 10% 1% 1% 0.000 0.000 74% 61% 46% 35% 0.000 0.000 99% 99% 95% 92% 
Ordinal 0.001 0.006 24% 7% 6% 1% 0.000 0.000 96% 81% 69% 51% 0.000 0.000 100% 100% 100% 100% 
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B: power by deleteriousness 
threshold genes - LOF genes - LOF+REVEL>=75 genes - LOF+REVEL>=50 genes - LOF+REVEL>=25 

  P < value P < value P < value P < value 

Odds ratio Test 1E-04 1E-05 1E-06 1E-07 1E-04 1E-05 1E-06 1E-07 1E-04 1E-05 1E-06 1E-07 1E-04 1E-05 1E-06 1E-07 

EOAD: 1.5 
LOAD: 1.3 

Case - Control 0% 0% 0% 0% 0% 0% 0% 0% 1% 0% 0% 0% 2% 1% 0% 0% 

EOAD vs. rest 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 1% 0% 0% 0% 

Ordinal 0% 0% 0% 0% 0% 0% 0% 0% 1% 0% 0% 0% 2% 1% 1% 0% 

EOAD: 2.5 
LOAD: 1.5 

Case - Control 1% 0% 0% 0% 2% 1% 1% 0% 5% 3% 2% 2% 11% 8% 6% 4% 

EOAD vs. rest 1% 1% 0% 0% 3% 2% 1% 1% 6% 5% 3% 2% 14% 11% 8% 6% 

Ordinal 1% 1% 1% 0% 3% 2% 2% 1% 8% 6% 5% 4% 17% 14% 11% 9% 

EOAD: 3.5 
LOAD: 2.0 

Case - Control 2% 1% 1% 1% 4% 3% 2% 2% 10% 8% 6% 5% 22% 17% 14% 12% 

EOAD vs. rest 2% 1% 1% 1% 4% 3% 2% 2% 10% 7% 6% 5% 21% 16% 13% 11% 

Ordinal 2% 2% 1% 1% 6% 5% 4% 3% 14% 11% 9% 7% 28% 23% 19% 16% 

EOAD: 5.0 
LOAD: 2.5 

Case - Control 2% 2% 1% 1% 6% 5% 4% 3% 14% 12% 9% 8% 29% 24% 21% 18% 

EOAD vs. rest 3% 2% 1% 1% 7% 5% 4% 3% 15% 12% 9% 8% 29% 24% 20% 17% 

EOAD: 10.0 
LOAD: 3.33 

Case - Control 4% 3% 2% 2% 10% 8% 6% 5% 21% 17% 14% 13% 39% 34% 30% 26% 

EOAD vs. rest 6% 5% 4% 3% 14% 11% 9% 7% 27% 22% 19% 16% 46% 41% 36% 32% 

Ordinal 7% 6% 4% 4% 16% 13% 11% 9% 30% 25% 22% 19% 50% 45% 41% 37% 

EOAD: 20.0 
LOAD: 5.0 

Case - Control 5% 4% 3% 3% 13% 10% 8% 7% 26% 22% 18% 16% 46% 41% 36% 33% 

EOAD vs. rest 9% 7% 6% 5% 19% 16% 13% 11% 34% 30% 26% 23% 55% 50% 46% 42% 

Ordinal 11% 8% 7% 6% 21% 17% 15% 13% 37% 32% 29% 26% 58% 53% 49% 46% 

EOAD: 40.0 
LOAD: 10.0 

Case - Control 7% 5% 4% 3% 15% 12% 10% 9% 29% 25% 21% 19% 50% 45% 41% 37% 

EOAD vs. rest 10% 8% 6% 5% 20% 17% 14% 12% 35% 31% 27% 24% 56% 52% 47% 44% 

Ordinal 12% 9% 8% 6% 23% 19% 16% 14% 39% 34% 31% 28% 60% 55% 52% 48% 
 

Power calculations were performed for ordinal logistic regression and Firth logistic regression (case-control and EOAD vs. rest). Given odds ratios for EOAD and 
LOAD cases, and the cumulative minor allele count (cMAC) per gene, we sampled the number of alleles in EOAD cases, LOAD cases and controls according to a 
multinomial distribution. We randomized these allele-carriers across the cases and controls in the dataset, and performed the burden test (as described in the 
methods). Power percentages are indicated for different p-value thresholds. A: Power by cMAC. cMAC values per gene were set to the value indicated by the 
‘ncarriers=x’ columns. B: Power by deleteriousness threshold:  For the ‘genes’ columns, values per gene were set according to the cMAC values observed in the 
Stage-1 dataset (Figure 1B) for the 4 different variant deleteriousness thresholds. Power for genes with cMAC <10 was set to 0, as these genes were not analyzed.
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3.2.7 Supplementary Table 7: List of genes and tests performed for the targeted GWAS analysis 

Tested gene: 
Ensemble id 

gene 
name 

description gene prioritization 
source 

GWAS locus  
name 

GWAS sentinel 
SNPs : dbSNP id 

EADB OR (95% 
CI) 

EADB p-value performed burden tests 
(allele count) 

ENSG00000136717 BIN1 bridging integrator 1 
[Source:HGNC 
Symbol;Acc:HGNC:1052] 

schwarzentruber BIN1 rs6733839 1.17 (1.16-1.19) 6.06E-118 LOF+REVEL>=25 (147), 
LOF+REVEL>=50 (12) 

ENSG00000073921 PICALM phosphatidylinositol binding 
clathrin assembly protein 
[Source:HGNC 
Symbol;Acc:HGNC:15514] 

schwarzentruber EED rs3851179 0.9 (0.89-0.92) 2.95E-48 LOF+REVEL>=25 (49), 
LOF+REVEL>=50 (25) 

ENSG00000203710 CR1 complement C3b/C4b 
receptor 1 (Knops blood 
group) [Source:HGNC 
Symbol;Acc:HGNC:2334] 

schwarzentruber CR1 rs679515 1.13 (1.11-1.15) 7.16E-46 LOF+REVEL>=25 (322), 
LOF+REVEL>=50 (43), 
LOF+REVEL>=75 (26), 
LOF (22) 

ENSG00000120885 CLU clusterin [Source:HGNC 
Symbol;Acc:HGNC:2095] 

schwarzentruber CLU rs11787077 0.91 (0.9-0.92) 1.70E-44 LOF+REVEL>=25 (26), 
LOF+REVEL>=50 (15), 
LOF+REVEL>=75 (12), 
LOF (10) 

ENSG00000120899 PTK2B protein tyrosine kinase 2 beta 
[Source:HGNC 
Symbol;Acc:HGNC:9612] 

schwarzentruber LOF+REVEL>=25 (236), 
LOF+REVEL>=50 (98), 
LOF+REVEL>=75 (43), 
LOF (14) 

ENSG00000166926 MS4A6E membrane spanning 4-
domains A6E [Source:NCBI 
gene;Acc:245802] 

schwarzentruber MS4A4A rs1582763 0.91 (0.9-0.92) 3.74E-42 
 

ENSG00000064687 ABCA7 ATP binding cassette 
subfamily A member 7 
[Source:HGNC 
Symbol;Acc:HGNC:37] 

schwarzentruber ABCA7 rs12151021 1.1 (1.09-1.12) 1.59E-37 LOF+REVEL>=25 (1363), 
LOF+REVEL>=50 (1044), 
LOF+REVEL>=75 (400), 
LOF (115) 

ENSG00000124731 TREM1 triggering receptor 
expressed on myeloid cells 
1 [Source:HGNC 
Symbol;Acc:HGNC:17760] 

schwarzentruber TREM2 rs10947943;rs14333
2484; 
rs75932628;rs60755
019 

0.94 (0.93-
0.96);1.41 (1.32-
1.5); 
2.39 (2.09-
2.73);1.55 (1.33-
1.8) 

1.13e-09;2.78e-
25; 
2.53e-37;2.07e-
08 

LOF+REVEL>=25 (15), 
LOF+REVEL>=75 (12), 
LOF+REVEL>=50 (12), 
LOF (12) 

ENSG00000095970 TREM2 triggering receptor expressed 
on myeloid cells 2 
[Source:HGNC 
Symbol;Acc:HGNC:17761] 

schwarzentruber LOF+REVEL>=25 (385), 
LOF+REVEL>=50 (53), 
LOF+REVEL>=75 (50), 
LOF (49) 

ENSG00000085514 PILRA paired immunoglobin like 
type 2 receptor alpha 
[Source:HGNC 
Symbol;Acc:HGNC:20396] 

schwarzentruber SPDYE3 rs7384878 0.92 (0.91-0.94) 1.06E-26 LOF+REVEL>=25 (11) 

ENSG00000078487 ZCWPW1 zinc finger CW-type and 
PWWP domain containing 
1 [Source:HGNC 
Symbol;Acc:HGNC:23486] 

schwarzentruber LOF+REVEL>=25 (79), 
LOF+REVEL>=50 (72), 
LOF+REVEL>=75 (16), 
LOF (16) 

ENSG00000138613 APH1B aph-1 homolog B, gamma-
secretase subunit 

schwarzentruber APH1B rs117618017 1.11 (1.09-1.13) 2.15E-25 LOF+REVEL>=25 (46), 
LOF+REVEL>=50 (36), 
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[Source:HGNC 
Symbol;Acc:HGNC:24080] 

LOF+REVEL>=75 (21), 
LOF (12) 

ENSG00000120885 CLU clusterin [Source:HGNC 
Symbol;Acc:HGNC:2095] 

schwarzentruber PTK2B rs73223431 1.07 (1.06-1.08) 4.03E-22 LOF+REVEL>=25 (26), 
LOF+REVEL>=50 (15), 
LOF+REVEL>=75 (12), 
LOF (10) 

ENSG00000120899 PTK2B protein tyrosine kinase 2 beta 
[Source:HGNC 
Symbol;Acc:HGNC:9612] 

schwarzentruber LOF+REVEL>=25 (236), 
LOF+REVEL>=50 (98), 
LOF+REVEL>=75 (43), 
LOF (14) 

ENSG00000198087 CD2AP CD2 associated protein 
[Source:HGNC 
Symbol;Acc:HGNC:14258] 

schwarzentruber CD2AP rs7767350 1.08 (1.06-1.09) 7.94E-22 LOF+REVEL>=25 (51), 
LOF+REVEL>=50 (21), 
LOF+REVEL>=75 (16) 

ENSG00000137642 SORL1 sortilin related receptor 1 
[Source:HGNC 
Symbol;Acc:HGNC:11185] 

schwarzentruber SORL1 rs74685827;rs11218
343 

1.19 (1.13-
1.25);0.84 (0.81-
0.87) 

2.81e-11;1.4e-21 LOF+REVEL>=25 (1308), 
LOF+REVEL>=50 (380), 
LOF+REVEL>=75 (205), 
LOF (63) 

ENSG00000087589 CASS4 Cas scaffold protein family 
member 4 [Source:HGNC 
Symbol;Acc:HGNC:15878] 

schwarzentruber CASS4 rs6014724 0.89 (0.87-0.91) 4.13E-21 LOF+REVEL>=25 (111) 

ENSG00000100599 RIN3 Ras and Rab interactor 3 
[Source:HGNC 
Symbol;Acc:HGNC:18751] 

schwarzentruber SLC24A4 rs7401792;rs125906
54 

1.04 (1.02-
1.05);0.93 (0.92-
0.95) 

4.83e-08;4.25e-
21 

LOF+REVEL>=25 (629), 
LOF+REVEL>=50 (588), 
LOF+REVEL>=75 (10) 

ENSG00000030582 GRN granulin precursor 
[Source:HGNC 
Symbol;Acc:HGNC:4601] 

eadb GRN rs5848 1.07 (1.06-1.09) 2.38E-20 LOF+REVEL>=25 (110), 
LOF+REVEL>=50 (45), 
LOF+REVEL>=75 (24) 

ENSG00000204287 HLA-DRA major histocompatibility 
complex, class II, DR alpha 
[Source:HGNC 
Symbol;Acc:HGNC:4947] 

schwarzentruber HLA-DQA1 rs6605556 0.91 (0.9-0.93) 7.07E-20 LOF+REVEL>=25 (10) 

ENSG00000159640 ACE angiotensin I converting 
enzyme [Source:HGNC 
Symbol;Acc:HGNC:2707] 

schwarzentruber ACE rs4277405 0.94 (0.93-0.95) 8.80E-20 LOF+REVEL>=25 (1113), 
LOF+REVEL>=50 (245), 
LOF+REVEL>=75 (101), 
LOF (52) 

ENSG00000136485 DCAF7 DDB1 and CUL4 associated 
factor 7 [Source:HGNC 
Symbol;Acc:HGNC:30915] 

schwarzentruber 
 

ENSG00000108219 TSPAN14 tetraspanin 14 
[Source:HGNC 
Symbol;Acc:HGNC:23303] 

schwarzentruber TSPAN14 rs6586028 0.93 (0.91-0.94) 1.97E-19 LOF+REVEL>=25 (34), 
LOF+REVEL>=50 (12) 

ENSG00000148429 USP6NL USP6 N-terminal like 
[Source:HGNC 
Symbol;Acc:HGNC:16858] 

schwarzentruber USP6NL rs7912495 1.06 (1.05-1.08) 9.74E-19 LOF+REVEL>=25 (31) 

ENSG00000168918 INPP5D inositol polyphosphate-5-
phosphatase D 
[Source:HGNC 
Symbol;Acc:HGNC:6079] 

schwarzentruber INPP5D rs10933431 0.93 (0.92-0.95) 3.62E-18 LOF+REVEL>=25 (386), 
LOF+REVEL>=50 (75), 
LOF+REVEL>=75 (20) 

ENSG00000002587 HS3ST1 heparan sulfate-glucosamine 
3-sulfotransferase 1 
[Source:HGNC 
Symbol;Acc:HGNC:5194] 

schwarzentruber CLNK rs6846529 1.07 (1.05-1.08) 2.20E-17 LOF+REVEL>=25 (31), 
LOF+REVEL>=50 (18) 
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ENSG00000179526 SHARPIN SHANK associated RH 
domain interactor 
[Source:HGNC 
Symbol;Acc:HGNC:25321] 

eadb SHARPIN rs34173062 1.13 (1.09-1.16) 1.72E-16 LOF+REVEL>=25 (27), 
LOF+REVEL>=50 (16) 

ENSG00000146090 RASGEF1C RasGEF domain family 
member 1C [Source:HGNC 
Symbol;Acc:HGNC:27400] 

nearest RASGEF1C rs113706587 1.09 (1.07-1.12) 2.22E-16 LOF+REVEL>=25 (44) 

ENSG00000073712 FERMT2 fermitin family member 2 
[Source:HGNC 
Symbol;Acc:HGNC:15767] 

schwarzentruber FERMT2 rs17125924 1.1 (1.07-1.12) 8.32E-16 LOF+REVEL>=25 (73), 
LOF+REVEL>=50 (14) 

ENSG00000127184 COX7C cytochrome c oxidase subunit 
7C [Source:HGNC 
Symbol;Acc:HGNC:2292] 

nearest COX7C rs62374257 1.07 (1.05-1.09) 1.38E-15 
 

ENSG00000137845 ADAM10 ADAM metallopeptidase 
domain 10 [Source:HGNC 
Symbol;Acc:HGNC:188] 

schwarzentruber MINDY2 rs602602 0.94 (0.93-0.96) 2.07E-15 LOF+REVEL>=25 (45), 
LOF+REVEL>=50 (23), 
LOF+REVEL>=75 (15), 
LOF (10) 

ENSG00000166035 LIPC lipase C, hepatic type 
[Source:HGNC 
Symbol;Acc:HGNC:6619] 

schwarzentruber LOF+REVEL>=25 (357), 
LOF+REVEL>=50 (156), 
LOF+REVEL>=75 (126), 
LOF (30) 

ENSG00000126856 PRDM7 PR/SET domain 7 
[Source:HGNC 
Symbol;Acc:HGNC:9351] 

nearest PRDM7 rs56407236 1.11 (1.08-1.14) 6.47E-15 LOF+REVEL>=25 (79), 
LOF+REVEL>=50 (41), 
LOF+REVEL>=75 (41), 
LOF (41) 

ENSG00000108798 ABI3 ABI family member 3 
[Source:HGNC 
Symbol;Acc:HGNC:29859] 

nearest ABI3 rs616338 1.32 (1.23-1.42) 2.82E-14 LOF+REVEL>=25 (49), 
LOF+REVEL>=50 (32) 

ENSG00000146904 EPHA1 EPH receptor A1 
[Source:HGNC 
Symbol;Acc:HGNC:3385] 

schwarzentruber EPHA1 rs11771145 0.95 (0.93-0.96) 3.30E-14 LOF+REVEL>=25 (369), 
LOF+REVEL>=50 (180), 
LOF+REVEL>=75 (74), 
LOF (42) 

ENSG00000221855 TAS2R41 taste 2 receptor member 41 
[Source:HGNC 
Symbol;Acc:HGNC:18883] 

schwarzentruber LOF+REVEL>=25 (20) 

ENSG00000185899 TAS2R60 taste 2 receptor member 60 
[Source:HGNC 
Symbol;Acc:HGNC:20639] 

schwarzentruber 
 

ENSG00000159840 ZYX zyxin [Source:HGNC 
Symbol;Acc:HGNC:13200] 

schwarzentruber LOF+REVEL>=25 (99), 
LOF+REVEL>=50 (72), 
LOF+REVEL>=75 (19) 

ENSG00000066336 SPI1 Spi-1 proto-oncogene 
[Source:HGNC 
Symbol;Acc:HGNC:11241] 

schwarzentruber SPI1 rs10437655 1.06 (1.04-1.07) 5.28E-14 
 

ENSG00000197943 PLCG2 phospholipase C gamma 2 
[Source:NCBI 
gene;Acc:5336] 

schwarzentruber PLCG2 rs12446759;rs72824
905 

0.95 (0.94-
0.96);0.74 (0.68-
0.81) 

1.22e-13;8.48e-
12 

LOF+REVEL>=25 (249), 
LOF+REVEL>=50 (69), 
LOF+REVEL>=75 (38), 
LOF (14) 

ENSG00000071051 NCK2 NCK adaptor protein 2 
[Source:HGNC 
Symbol;Acc:HGNC:7665] 

schwarzentruber NCK2 rs143080277 1.47 (1.33-1.63) 2.07E-13 LOF+REVEL>=25 (24), 
LOF+REVEL>=50 (12) 
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ENSG00000149927 DOC2A double C2 domain alpha 
[Source:HGNC 
Symbol;Acc:HGNC:2985] 

eadb DOC2A rs1140239 0.94 (0.93-0.96) 2.59E-13 LOF+REVEL>=25 (135), 
LOF+REVEL>=50 (56) 

ENSG00000108091 CCDC6 coiled-coil domain containing 
6 [Source:HGNC 
Symbol;Acc:HGNC:18782] 

schwarzentruber ANK3 rs7068231 0.95 (0.94-0.96) 3.32E-13 LOF+REVEL>=25 (11) 

ENSG00000161929 SCIMP SLP adaptor and CSK 
interacting membrane protein 
[Source:HGNC 
Symbol;Acc:HGNC:33504] 

schwarzentruber SCIMP rs7225151 1.08 (1.05-1.1) 4.13E-13 
 

ENSG00000108379 WNT3 Wnt family member 3 
[Source:HGNC 
Symbol;Acc:HGNC:12782] 

nearest WNT3 rs199515 0.94 (0.93-0.96) 9.34E-13 LOF+REVEL>=25 (39), 
LOF+REVEL>=50 (28), 
LOF+REVEL>=75 (16) 

ENSG00000142192 APP amyloid beta precursor 
protein [Source:HGNC 
Symbol;Acc:HGNC:620] 

schwarzentruber APP rs2154481 0.95 (0.94-0.97) 1.00E-12 LOF+REVEL>=25 (189), 
LOF+REVEL>=50 (144), 
LOF+REVEL>=75 (19) 

ENSG00000145214 DGKQ diacylglycerol kinase theta 
[Source:HGNC 
Symbol;Acc:HGNC:2856] 

eadb IDUA rs3822030 0.95 (0.94-0.96) 8.29E-12 LOF+REVEL>=25 (105), 
LOF+REVEL>=50 (32), 
LOF+REVEL>=75 (15), 
LOF (12) 

ENSG00000103510 KAT8 lysine acetyltransferase 8 
[Source:HGNC 
Symbol;Acc:HGNC:17933] 

schwarzentruber BCKDK rs889555 0.95 (0.94-0.97) 1.96E-11 LOF+REVEL>=25 (22), 
LOF+REVEL>=50 (18), 
LOF+REVEL>=75 (13) 

ENSG00000178226 PRSS36 serine protease 36 
[Source:HGNC 
Symbol;Acc:HGNC:26906] 

schwarzentruber LOF+REVEL>=25 (128), 
LOF+REVEL>=50 (58), 
LOF+REVEL>=75 (34), 
LOF (22) 

ENSG00000196549 MME membrane 
metalloendopeptidase 
[Source:HGNC 
Symbol;Acc:HGNC:7154] 

eadb MME rs16824536;rs61762
319 

0.92 (0.89-
0.95);1.16 (1.11-
1.21) 

3.63e-08;2.16e-
11 

LOF+REVEL>=25 (387), 
LOF+REVEL>=50 (317), 
LOF+REVEL>=75 (93), 
LOF (48) 

ENSG00000131042 LILRB2 leukocyte immunoglobulin 
like receptor B2 
[Source:HGNC 
Symbol;Acc:HGNC:6606] 

eadb LILRB2 rs587709 1.05 (1.04-1.07) 3.63E-11 
 

ENSG00000106460 TMEM106B transmembrane protein 106B 
[Source:HGNC 
Symbol;Acc:HGNC:22407] 

eadb TMEM106B rs13237518 0.96 (0.94-0.97) 4.88E-11 
 

ENSG00000095585 BLNK B cell linker [Source:HGNC 
Symbol;Acc:HGNC:14211] 

eadb BLNK rs6584063 0.89 (0.86-0.92) 6.73E-11 LOF+REVEL>=25 (22), 
LOF+REVEL>=50 (11) 

ENSG00000167716 WDR81 WD repeat domain 81 
[Source:HGNC 
Symbol;Acc:HGNC:26600] 

eadb WDR81 rs35048651 1.06 (1.04-1.08) 7.67E-11 LOF+REVEL>=25 (573), 
LOF+REVEL>=50 (444), 
LOF+REVEL>=75 (37), 
LOF (17) 

ENSG00000028528 SNX1 sorting nexin 1 
[Source:HGNC 
Symbol;Acc:HGNC:11172] 

nearest SNX1 rs3848143 1.05 (1.04-1.07) 8.41E-11 LOF+REVEL>=25 (175), 
LOF+REVEL>=50 (22), 
LOF (10), 
LOF+REVEL>=75 (10) 

ENSG00000219545 UMAD1 UBAP1-MVB12-associated 
(UMA) domain containing 1 

nearest UMAD1 rs6943429 1.05 (1.03-1.06) 1.03E-10 
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[Source:HGNC 
Symbol;Acc:HGNC:48955] 

ENSG00000146648 EGFR epidermal growth factor 
receptor [Source:HGNC 
Symbol;Acc:HGNC:3236] 

eadb SEC61G rs76928645 0.93 (0.91-0.95) 1.62E-10 LOF+REVEL>=25 (302), 
LOF+REVEL>=50 (114), 
LOF+REVEL>=75 (21) 

ENSG00000142192 APP amyloid beta precursor 
protein [Source:HGNC 
Symbol;Acc:HGNC:620] 

schwarzentruber ADAMTS1 rs2830489 0.95 (0.94-0.97) 1.69E-10 LOF+REVEL>=25 (189), 
LOF+REVEL>=50 (144), 
LOF+REVEL>=75 (19) 

ENSG00000184986 TMEM121 transmembrane protein 121 
[Source:HGNC 
Symbol;Acc:HGNC:20511] 

nearest IGH gene 
cluster 

rs7157106;rs101312
80 

1.05 (1.03-
1.07);0.94 (0.92-
0.96) 

1.99e-08;4.26e-
10 

LOF+REVEL>=25 (12) 

ENSG00000086289 EPDR1 ependymin related 1 
[Source:HGNC 
Symbol;Acc:HGNC:17572] 

nearest EPDR1 rs6966331 0.96 (0.94-0.97) 4.64E-10 LOF+REVEL>=25 (35), 
LOF+REVEL>=50 (17), 
LOF+REVEL>=75 (11) 

ENSG00000129911 KLF16 Kruppel like factor 16 
[Source:HGNC 
Symbol;Acc:HGNC:16857] 

nearest KLF16 rs149080927 1.05 (1.04-1.07) 5.09E-10 
 

ENSG00000157368 IL34 interleukin 34 [Source:HGNC 
Symbol;Acc:HGNC:28529] 

nearest IL34 rs4985556 1.07 (1.05-1.09) 5.98E-10 LOF+REVEL>=25 (167) 

ENSG00000091536 MYO15A myosin XVA [Source:HGNC 
Symbol;Acc:HGNC:7594] 

eadb MYO15A rs2242595 0.94 (0.92-0.96) 1.11E-09 LOF+REVEL>=25 (2797), 
LOF+REVEL>=50 (1683), 
LOF+REVEL>=75 (632), 
LOF (112) 

ENSG00000168421 RHOH ras homolog family member 
H [Source:HGNC 
Symbol;Acc:HGNC:686] 

eadb RHOH rs2245466 1.05 (1.03-1.06) 1.22E-09 
 

ENSG00000165029 ABCA1 ATP binding cassette 
subfamily A member 1 
[Source:HGNC 
Symbol;Acc:HGNC:29] 

eadb ABCA1 rs1800978 1.06 (1.04-1.08) 1.59E-09 LOF+REVEL>=25 (824), 
LOF+REVEL>=50 (614), 
LOF+REVEL>=75 (353), 
LOF (29) 

ENSG00000139405 RITA1 RBPJ interacting and tubulin 
associated 1 [Source:HGNC 
Symbol;Acc:HGNC:25925] 

eadb TPCN1 rs6489896 1.08 (1.05-1.1) 1.80E-09 
 

ENSG00000164733 CTSB cathepsin B [Source:HGNC 
Symbol;Acc:HGNC:2527] 

eadb CTSB rs1065712 1.09 (1.06-1.12) 1.94E-09 LOF+REVEL>=25 (412), 
LOF+REVEL>=50 (336), 
LOF+REVEL>=75 (312), 
LOF (20) 

ENSG00000154124 OTULIN OTU deubiquitinase with 
linear linkage specificity 
[Source:HGNC 
Symbol;Acc:HGNC:25118] 

eadb ANKH rs112403360 1.09 (1.06-1.12) 2.27E-09 
 

ENSG00000249853 HS3ST5 heparan sulfate-glucosamine 
3-sulfotransferase 5 
[Source:HGNC 
Symbol;Acc:HGNC:19419] 

nearest HS3ST5 rs785129 1.04 (1.03-1.06) 2.40E-09 LOF+REVEL>=25 (214), 
LOF+REVEL>=50 (165) 

ENSG00000203896 LIME1 Lck interacting 
transmembrane adaptor 1 
[Source:HGNC 
Symbol;Acc:HGNC:26016] 

eadb SLC2A4RG rs6742 0.95 (0.93-0.97) 2.58E-09 LOF+REVEL>=25 (14), 
LOF (14), 
LOF+REVEL>=50 (14), 
LOF+REVEL>=75 (14) 
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ENSG00000107679 PLEKHA1 pleckstrin homology domain 
containing A1 [Source:HGNC 
Symbol;Acc:HGNC:14335] 

eadb PLEKHA1 rs7908662 0.96 (0.95-0.97) 2.59E-09 LOF+REVEL>=25 (21) 

ENSG00000115825 PRKD3 protein kinase D3 
[Source:HGNC 
Symbol;Acc:HGNC:9408] 

nearest PRKD3 rs17020490 1.06 (1.04-1.08) 3.29E-09 LOF+REVEL>=25 (95), 
LOF+REVEL>=50 (63), 
LOF+REVEL>=75 (16) 

ENSG00000103811 CTSH cathepsin H [Source:HGNC 
Symbol;Acc:HGNC:2535] 

eadb CTSH rs12592898 0.94 (0.92-0.96) 4.18E-09 LOF+REVEL>=25 (63), 
LOF+REVEL>=50 (39), 
LOF+REVEL>=75 (31), 
LOF (11) 

ENSG00000161640 SIGLEC11 sialic acid binding Ig like 
lectin 11 [Source:HGNC 
Symbol;Acc:HGNC:15622] 

eadb SIGLEC11 rs9304690 1.05 (1.03-1.07) 4.74E-09 LOF+REVEL>=25 (25), 
LOF+REVEL>=75 (10), 
LOF+REVEL>=50 (10), 
LOF (10) 

ENSG00000003147 ICA1 islet cell autoantigen 1 
[Source:HGNC 
Symbol;Acc:HGNC:5343] 

eadb ICA1 rs10952097 1.07 (1.05-1.1) 6.81E-09 LOF+REVEL>=25 (110), 
LOF+REVEL>=50 (33), 
LOF+REVEL>=75 (19) 

ENSG00000134243 SORT1 sortilin 1 [Source:HGNC 
Symbol;Acc:HGNC:11186] 

eadb SORT1 rs141749679 1.38 (1.24-1.54) 7.54E-09 LOF+REVEL>=25 (42), 
LOF+REVEL>=50 (17) 

ENSG00000145901 TNIP1 TNFAIP3 interacting protein 1 
[Source:HGNC 
Symbol;Acc:HGNC:16903] 

eadb TNIP1 rs871269 0.96 (0.95-0.97) 8.67E-09 LOF+REVEL>=25 (33) 

ENSG00000153814 JAZF1 JAZF zinc finger 1 
[Source:HGNC 
Symbol;Acc:HGNC:28917] 

eadb JAZF1 rs1160871 0.95 (0.93-0.97) 9.83E-09 
 

ENSG00000163596 ICA1L islet cell autoantigen 1 like 
[Source:HGNC 
Symbol;Acc:HGNC:14442] 

eadb WDR12 rs139643391 0.94 (0.92-0.96) 1.08E-08 LOF+REVEL>=25 (61), 
LOF (52), 
LOF+REVEL>=50 (29), 
LOF+REVEL>=75 (17) 

ENSG00000103241 FOXF1 forkhead box F1 
[Source:HGNC 
Symbol;Acc:HGNC:3809] 

nearest FOXF1 rs16941239 1.13 (1.08-1.17) 1.29E-08 LOF+REVEL>=25 (26) 

ENSG00000138600 SPPL2A signal peptide peptidase like 
2A [Source:HGNC 
Symbol;Acc:HGNC:30227] 

schwarzentruber SPPL2A rs8025980 0.96 (0.94-0.97) 1.32E-08 LOF+REVEL>=25 (226), 
LOF+REVEL>=50 (213) 

ENSG00000125826 RBCK1 RANBP2-type and C3HC4-
type zinc finger containing 1 
[Source:HGNC 
Symbol;Acc:HGNC:15864] 

eadb RBCK1 rs1358782 0.95 (0.94-0.97) 1.55E-08 LOF+REVEL>=25 (52), 
LOF+REVEL>=50 (18) 

ENSG00000151694 ADAM17 ADAM metallopeptidase 
domain 17 [Source:HGNC 
Symbol;Acc:HGNC:195] 

eadb ADAM17 rs72777026 1.06 (1.04-1.08) 2.72E-08 LOF+REVEL>=25 (75), 
LOF+REVEL>=50 (15) 

ENSG00000178573 MAF MAF bZIP transcription factor 
[Source:HGNC 
Symbol;Acc:HGNC:6776] 

eadb MAF rs450674 0.96 (0.95-0.98) 3.16E-08 LOF+REVEL>=25 (21) 

 
Gene prioritization for different loci were obtained as described in the methods. The gene prioritization source is indicated for each gene. Only variant 
deleteriousness thresholds for which there were at least >= 10 damaging alleles in the dataset were considered for burden testing (column ‘performed 
burden tests’). bold=passed significance threshold; italic=not enough damaging alleles to perform burden testing. Note that for the CLU/PTK2B loci and the 
APP/ADAMTS1 loci, which are each near each other, the same genes were prioritized.  
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3.2.8 Supplementary Table 8: Burden testing of prioritized genes in GWAS loci. 

GWAS-targeted analysis Burden test (variant MAF <1%) Burden test (variant MAF < 0.1%) 

locus 

sentinel  
GWAS 
SNPs 

locus prio 
source gene group pvalue FDR 

#variant /  
#carriers 

case / control 
OR (95% CI) pvalue 

#variant /  
#carriers 

fraction  
very 
rare 

case / control 
OR (95% CI) 

SORL1 rs74685827 
rs11218343 schwarzentruber SORL1 

LOF+REVEL≥25 2.5E-09 <<0.01% 298 / 1265 1.4 (1.2-1.5) 1.4E-18 293 / 582 47% 1.9 (1.7-2.3) 
LOF+REVEL≥50 2.5E-25 <<0.01% 201 / 356 2.7 (2.2-3.3) 2.3E-25 200 / 354 99% 2.6 (2.2-3.2) 
LOF+REVEL≥75 5.3E-22 <<0.01% 117 / 204 4.0 (3.0-5.4) 4.3E-22 117 / 204 100% 4.0 (3.0-5.4) 
LOF 7.9E-21 <<0.01% 49 / 63 20.0 (11.8-34.0) 8.2E-21 49 / 63 100% 20.0 (11.8-34.0) 

TREM2 

rs10947943 
rs60755019 
rs143332484 
rs75932628 

schwarzentruber TREM2 LOF+REVEL≥25 7.9E-20 <<0.01% 20 / 379 3.0 (2.4-3.7) 3.6E-04 19 / 77 20% 2.2 (1.4-3.6) 

ABCA7 rs12151021 schwarzentruber ABCA7 

LOF+REVEL≥25 3.4E-10 <<0.01% 338 / 1319 1.4 (1.3-1.6) 1.1E-07 316 / 762 57% 1.5 (1.3-1.8) 
LOF+REVEL≥50 8.2E-07 <<0.01% 216 / 1016 1.4 (1.2-1.5) 2.9E-04 202 / 493 48% 1.5 (1.2-1.8) 
LOF+REVEL≥75 1.7E-05 0.03% 104 / 395 1.5 (1.2-1.8) 1.6E-02 98 / 234 59% 1.4 (1.0-1.8) 
LOF 1.9E-03 1.5% 50 / 112 1.6 (1.1-2.4) 9.2E-03 48 / 92 82% 1.6 (1.0-2.4) 

SLC24A4/ 
RIN3 

rs7401792 
rs12590654 schwarzentruber RIN3 

LOF+REVEL≥25 1.6E-05 0.03% 44 / 622 1.4 (1.2-1.6) 3.4E-02 42 / 129 21% 1.4 (1.0-2.1) 
LOF+REVEL≥50 1.0E-05 0.02% 23 / 583 1.4 (1.2-1.7) 1.5E-02 21 / 89 15% 1.8 (1.2-2.8) 

MINDY2 rs602602 schwarzentruber ADAM10 

LOF+REVEL≥25 4.1E-04 0.48% 34 / 44 2.0 (1.1-3.7) 4.5E-04 34 / 44 100% 2.0 (1.1-3.7) 
LOF+REVEL≥50 2.3E-05 0.04% 20 / 22 3.3 (1.4-7.6) 2.3E-05 20 / 22 100% 3.3 (1.4-7.6) 
LOF+REVEL≥75 3.6E-05 0.06% 13 / 14 3.6 (1.3-9.9) 3.6E-05 13 / 14 100% 3.6 (1.3-9.9) 
LOF 3.8E-04 0.47% 9 / 9 3.6 (0.9-21.8) 3.8E-04 9 / 9 100% 3.6 (0.9-23.5) 

ABCA1 rs1800978 eadb ABCA1 

LOF+REVEL≥25 1.6E-03 1.3% 274 / 796 1.3 (1.1-1.5) 6.2E-07 268 / 509 62% 1.6 (1.4-1.9) 
LOF+REVEL≥50 6.8E-03 4.5% 187 / 607 1.3 (1.1-1.5) 6.8E-07 184 / 337 55% 1.9 (1.5-2.4) 
LOF+REVEL≥75 5.6E-05 0.08% 115 / 352 1.5 (1.2-1.9) 1.4E-08 113 / 202 58% 2.4 (1.8-3.3) 
LOF 3.7E-04 0.47% 24 / 29 5.0 (2.3-10.9) 3.7E-04 24 / 29 100% 5.0 (2.3-10.9) 

PTK2B/ 
CLU 

rs73223431 
rs11787077 schwarzentruber CLU 

LOF+REVEL≥25 5.0E-04 0.52% 24 / 26 3.6 (1.6-8.3) 5.0E-04 24 / 26 100% 3.6 (1.6-8.3) 
LOF+REVEL≥50 1.1E-03 0.97% 14 / 15 5.4 (1.6-28.6) 1.1E-03 14 / 15 100% 5.3 (1.6-30.1) 
LOF+REVEL≥75 5.0E-04 0.52% 12 / 12 9.9 (1.6-44.0) 5.0E-04 12 / 12 100% 9.8 (1.6-43.0) 
LOF 2.6E-03 2.0% 10 / 10 7.3 (1.3-43.5) 2.6E-03 10 / 10 100% 7.3 (1.3-44.1) 

SPDYE3 rs7384878 schwarzentruber ZCWPW1 

LOF+REVEL≥25 6.1E-03 4.2% 22 / 77 1.8 (1.2-2.9) 5.0E-03 21 / 76 99% 1.8 (1.2-2.9) 
LOF+REVEL≥50 3.1E-03 2.2% 16 / 70 1.9 (1.2-3.1) 3.1E-03 16 / 70 100% 1.9 (1.2-3.1) 
LOF+REVEL≥75 1.1E-03 0.97% 11 / 15 5.0 (1.7-30.3) 7.7E-04 11 / 15 100% 5.0 (1.7-29.8) 
LOF 7.8E-04 0.76% 11 / 15 5.0 (1.7-28.7) 7.9E-04 11 / 15 100% 5.0 (1.7-30.5) 

ACE rs4277405 schwarzentruber ACE LOF+REVEL≥75 9.0E-04 0.84% 38 / 99 2.0 (1.3-2.9) 9.3E-04 38 / 99 100% 2.0 (1.3-2.9) 
Burden test on genes that were prioritized based GWAS analyses (see methods for details, and Supplementary Table 7 for a complete list of performed tests). 

Burden tests were performed on the mega-analysis dataset (excluding exome-extracts, n=29,727), and p-values were calculated using an ordinal logistic burden 

test (see methods). The False Discovery Rate (FDR, n=187 tests) was  used to correct for multiple testing. Next to a burden test on rare variants (MAF <1%), we 

also  performed a burden test on very rare variants (MAF < 0.1%). Gray=no difference between the burden tests.
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3.2.9 Supplementary Table 9 Age burden trends in cases and controls separately 

 
 for reference Case age-at-onset trends (i.e. ordinal logistic burden test without controls, by age-at-onset) Control age trend (i.e. ordinal logistic burden test without cases, by 

age-last-seen) 

gene group 
Case/control  
OR (95% CI) 

AD-age  
(ord-OR, 95%CI) 

pvalue AD-
age 
65-,65-
75,75-
85,85+ 

LOAD-age  
(ord-OR, 95%CI) 

pvalue 
LOAD-age 
65-75,75-
85,85+ 

Carrier frequency by age-at-onset 
65- / 65-75 / 75-85 / 85+ [controls] 

pvalue 
65-,65-75,75-
85,85+ 

 
(ord-OR, 95% CI) 

Carrier frequency by age-last-seen 
65- / 65-75 / 75-85 / 85+ 

SORL1 
LOF+REVEL≥50 2.1 (1.7-2.5) 1.8 (1.4-2.2) 1.9E-08* 1.6 (1.2-2.1) 2.5E-03* 2.75% / 1.98% / 1.23% / 1.18% [0.68%] 9.9E-01 1.0 (0.7-1.4) 0.62% / 0.80% / 0.59% / 0.66% 

LOF 19.8 (11.9-32.7) 3.9 (2.3-6.4) 2.8E-08* 2.8 (1.2-6.7) 1.5E-02 0.78% / 0.33% / 0.14% / 0.11% [0.02%] 1.6E-01 5.4 (0.5-60.9) 0.03% / 0.06% / 0.00% / 0.00% 

TREM2 
LOF+REVEL≥25 2.8 (2.3-3.5) 1.5 (1.2-1.8) 8.2E-05* 1.9 (1.5-2.5) 1.6E-06* 2.27% / 2.70% / 1.62% / 1.11% [0.75%] 3.3E-04* 1.9 (1.3-2.7) 0.92% / 1.14% / 0.62% / 0.51% 

LOF 2.1 (1.2-3.4) 0.9 (0.5-1.5) 6.4E-01 1.1 (0.6-2.3) 7.3E-01 0.21% / 0.36% / 0.14% / 0.37% [0.16%] 3.3E-01 0.6 (0.2-1.6) 0.14% / 0.00% / 0.10% / 
0.15% 

ABCA7 
LOF+REVEL≥25 1.4 (1.3-1.6) 1.2 (1.1-1.4) 7.4E-04* 1.1 (1.0-1.3) 7.9E-02 6.18% / 5.33% / 4.95% / 4.73% [3.90%] 3.4E-01 0.9 (0.8-1.1) 3.79% / 3.88% / 3.77% / 4.05% 

LOF 1.7 (1.1-2.4) 1.9 (1.3-2.8) 1.4E-03* 2.4 (1.3-4.3) 2.4E-03 0.62% / 0.59% / 0.39% / 0.11% [0.27%] 8.4E-01 0.9 (0.6-1.6) 0.16% / 0.46% / 0.34% / 0.31% 

ATP8B4 
LOF+REVEL≥25 1.4 (1.2-1.6) 1.4 (1.0-1.8) 2.8E-02 1.4 (0.9-2.0) 1.0E-01 3.56% / 3.22% / 3.47% / 2.36% [2.09%] 6.4E-01 1.1 (0.9-1.3) 1.79% / 2.23% / 2.29% / 1.92% 

LOF 1.1 (0.6-1.9) 1.0 (0.5-2.1) 9.3E-01 0.7 (0.3-1.6) 3.8E-01 0.21% / 0.10% / 0.20% / 0.18% [0.16%] 9.8E-01 1.0 (0.4-2.3) 0.14% / 0.11% / 0.15% / 0.11% 

ABCA1 
LOF+REVEL≥75 1.6 (1.3-2.0) 1.4 (1.2-1.8) 9.9E-04* 1.7 (1.2-2.3) 6.9E-04* 1.91% / 2.01% / 1.26% / 1.07% [1.13%] 2.2E-01 1.2 (0.9-1.6) 1.30% / 1.14% / 1.16% / 0.97% 

LOF 3.5 (1.9-6.4) 1.7 (0.9-3.2) 8.0E-02 1.5 (0.7-3.6) 3.3E-01 0.28% / 0.21% / 0.20% / 0.11% [0.08%] 5.0E-01 1.4 (0.5-4.3) 0.14% / 0.11% / 0.07% / 0.04% 

ADAM10 LOF+REVEL≥50 4.7 (2.0-10.8) 4.0 (1.5-11.0) 2.6E-03* 1.6 (0.4-7.2) 5.3E-01 0.23% / 0.05% / 0.06% / 0.04% [0.02%] 6.6E-01 0.7 (0.1-4.3) 0.03% / 0.06% / 0.00% / 0.04% 

RIN3 
LOF+REVEL≥50 1.4 (1.2-1.7) 1.2 (1.0-1.4) 1.2E-01 0.9 (0.7-1.2) 5.1E-01 2.67% / 1.84% / 2.36% / 2.11% [1.62%] 9.6E-01 1.0 (0.8-1.3) 1.47% / 2.15% / 1.69% / 1.66% 

LOF 2.1 (0.5-9.3) 1.2 (0.2-5.9) 8.3E-01 0.3 (0.0-3.2) 2.8E-01 0.06% / 0.03% / 0.00% / 0.08% [0.01%] 2.2E-01 4.5 (0.4-54.5) 0.03% / 0.00% / 0.03% / 0.00% 

CLU 
LOF+REVEL≥25 3.6 (1.6-8.3) 2.2 (1.0-5.1) 5.5E-02 1.2 (0.4-4.1) 7.4E-01 0.23% / 0.11% / 0.09% / 0.08% [0.03%] 2.7E-01 0.4 (0.1-2.3) 0.00% / 0.00% / 0.05% / 0.04% 

LOF 7.3 (1.9-27.2) 3.9 (1.0-15.0) 3.2E-02 3.0 (0.3-31.2) 3.3E-01 0.12% / 0.05% / 0.03% / 0.00% [0.01%] 5.0E-01  -- / -- / -- / -- 

ZCWPW1 LOF 5.0 (1.9-13.5) 2.6 (0.9-7.7) 6.0E-02 0.7 (0.1-3.2) 6.2E-01 0.15% / 0.03% / 0.09% / 0.04% [0.01%] 3.3E-01 3.7 (0.3-54.5) 0.03% / 0.00% / 0.03% / 0.00% 

ACE 
LOF+REVEL≥75 2.0 (1.3-2.9) 1.4 (0.9-2.2) 1.0E-01 1.1 (0.6-2.0) 6.7E-01 0.60% / 0.49% / 0.32% / 0.34% [0.20%] 2.0E-03* 3.0 (1.5-6.0) 0.39% / 0.18% / 0.23% / 0.07% 

LOF 1.4 (0.8-2.4) 1.4 (0.7-2.6) 3.5E-01 0.8 (0.4-1.9) 6.5E-01 0.27% / 0.16% / 0.17% / 0.15% [0.14%] 1.6E-03* 3.9 (1.6-9.3) 0.33% / 0.09% / 0.16% / 0.02% 

 
ord-OR: OR based on ordinal logistic regression. Effect sizes (odds ratios, ORs) indicate the increased enrichment of carriers in the direction of the younger 
categories. Bold: p < 0.05; *: significant after holm-bonferoni multiple testing correction. Note that the trend test 65-,65-75,75-85,85+ incorporates a difference 
between EOAD and LOAD samples. This difference was also used in our primary test to select these genes. In column F and G we therefore include an analysis 
which only considers the trend 65-75,75-85,85+.  All performed tests were two-sided. Spearman rank correlation between case/control OR and AD-age ordinal-OR: 
cor=0.78, p=0.0001
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3.2.10 Supplementary Table 10 Contribution of extremely rare variants to the 

burden test 

 

Burden tests were performed on the mega dataset for the categories shown in Table 3, both for a MAF > 0.01 and 
a MAF > 0.0001 threshold.  Test categories with p>0.05 in Table 3 were excluded. Numbers of variants and carriers 
are shown for both burden tests. P-values (two-sided) for both tests were compared by calculating a z-score ratio.  
Z-scores above 0.75 are shown in bold. SORL1 and ABCA1 increased in significance due to the strict MAF 
threshold for the variant category that includes missense variants, scoring a z-score ratio above 1. To determine if 
associations with high odds ratios can be linked to a higher contribution of  extremely rare variants to the burden 
significance, the spearman rank correlation was calculated between z-score ratios and the case/control odds ratio 
of the Burden MAF < 0.01 test. This gave a positive spearman rank correlation of 0.56, p=0.03 (two-sided). 
. 

  

  Burden MAF < 0.01 Burden MAF < 0.0001 
z-score 
ratio 
p-values 

Case/control 
OR 
(MAF < 0.01) gene group variants /  

carriers 
carriers 
per 
variant 

p-value variants /  
carriers 

carriers 
per 
variant 

p-value 

SORL1 
LOF+REVEL≥50 212 / 418 1.97 2.0E-25 187 / 274 0.46 6.2E-31 1.11 2.1 

LOF 51 / 68 1.33 8.8E-22 51 / 68 1.34 8.9E-22 1.00 19.8 

TREM2 
LOF+REVEL≥25 26 / 441 16.96 1.4E-21 18 / 26 1.47 1.7E-03 0.31 2.8 

LOF 12 / 66 5.50 2.4E-02 10 / 15 1.54 8.7E-02 0.69 2.1 

ABCA7 
LOF+REVEL≥25 351 / 1489 4.24 6.0E-13 257 / 428 1.66 6.1E-05 0.54 1.4 

LOF 49 / 119 2.43 8.8E-04 43 / 77 1.79 1.7E-02 0.67 1.7 

ATP8B4 LOF+REVEL≥25 94 / 850 9.04 7.4E-07 73 / 99 1.36 6.8E-01 -0.10 1.4 

ABCA1 
LOF+REVEL≥75 122 / 442 3.62 5.1E-07 108 / 165 1.53 1.2E-09 1.22 1.6 

LOF 27 / 47 1.74 5.5E-05 25 / 32 1.28 5.6E-04 0.84 3.5 

ADAM10 LOF+REVEL≥50 19 / 22 1.16 5.1E-06 19 / 22 1.16 5.2E-06 1.00 4.7 

RIN3 LOF+REVEL≥50 23 / 583 25.35 1.0E-05 17 / 23 1.36 5.9E-01 -0.06 1.4 

CLU 
LOF+REVEL≥25 24 / 26 1.08 5.0E-04 23 / 25 1.09 9.2E-04 0.95 3.6 

LOF 10 / 10 1.00 2.7E-03 10 / 10 1.00 2.7E-03 1.00 7.3 

ZCWPW1 LOF 11 / 15 1.36 7.8E-04 11 / 15 1.44 7.8E-04 1.00 5 

ACE LOF+REVEL≥75 38 / 99 2.61 9.0E-04 33 / 55 1.68 1.4E-01 0.35 2 
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3.2.11 Supplementary Table 11 Variant features 

Gene Test 

P 
effect size ~ rareness 

(ordinal logistic) 

P 
LOF ≥ missense 

(ordinal OR) 

P 
LOF ≥ missense 

(case/control OR) 

SORL1 LOF+REVEL≥50 <5.0e-06* <5.0e-09* <5.0e-09* 

TREM2 LOF+REVEL≥25 5.5E-01 9.5E-01 9.2E-01 

TREM2 LOF+REVEL≥25 [refined] 5.4E-01 4.1E-01 6.8E-02 

ABCA7 LOF+REVEL≥25 1.0E+00 8.3E-02 2.0E-01 

ATP8B4 LOF+REVEL≥25 1.0E+00 8.1E-01 8.3E-01 

ABCA1 LOF+REVEL≥75  1.3e-04* 5.6e-03* 5.3e-03* 

ABCA1 LOF+REVEL≥75 [refined] 3.2E-01 7.8E-02 1.2E-01 

ADAM10 LOF+REVEL≥50 -  1.7E-01 6.5E-01 

RIN3 LOF+REVEL≥50 1.0E+00 2.7E-01 2.8E-01 

CLU LOF+REVEL≥25 - 1.3E-01 1.1E-01 

ZCWPW1 LOF 4.5E-02 NA NA 

ACE LOF+REVEL≥75 1.0E+00 9.2E-01 9.7E-01 

Bold=p < 0.05. *:significant after Holm-Bonferoni multiple testing correction.   
Effect size ~ variant rareness: association between variant effect size and variant rareness (allele count 1, 
2, 3-5, 6-10, 10+) based on a test using (constrained) ordinal logistic regression (see Supplement, section 
1.10.5 for details). LOF ≥ missense: indicates if the burden of LOF variants has a larger effect size as the 
burden of missense variants. Estimated by performing respectively ordinal logistic or logistic burden tests on 
LOF variants and missense variants separately. P indicates the probability that a random sample obtained 
from the LOF effect size distribution was smaller than a random sample from the missense effect size 
distribution. Note that in Figure 2C we report only the results for the refined burden (Supplementary Table 
16, Online Methods), such that only SORL1 has a significant association after multiple testing correction. 
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3.2.12 Supplementary Table 12 Carriers of multiple variants in identified genes 

 

Carrier type All Controls Cases EOAD LOAD 

≥1 affected gene 
11.9% 8.8% 15.0% 17.7% 13.5% 

≥1 affected gene (incl. APOE with ε4/ε4) 
16.9% 9.7% 22.0% 30.2% 17.6% 

≥1 affected gene (incl. APOE with ε4) 
45.0% 27.5% 57.3% 64.6% 53.4% 

 

     

≥2 affected genes 
0.59% 0.31% 0.87% 1.17% 0.71% 

- expected 
0.59% (0.53%-0.66%) 0.30% (0.22%-0.37%) 0.95% (0.81%-1.09%) 1.35% (1.08%-1.58%) 0.77% (0.62%-0.93%) 

≥2 affected genes (incl. APOE with ε4/ε4) 
1.34% 0.42% 1.99% 3.42% 1.24% 

- expected 
1.25% (1.12%-1.38%) 0.36% (0.27%-0.53%) 2.07% (1.90%-2.23%) 3.61% (3.26%-3.96%) 1.34% (1.14%-1.53%) 

≥2 affected genes (incl. APOE with ε4) 
5.31% 1.99% 7.66% 10.06% 6.39% 

- expected 
4.90% (4.71%-5.10%) 2.03% (1.84%-2.26%) 7.55% (7.28%-7.82%) 9.92% (9.43%-10.42%) 6.40% (6.06%-6.75%) 

 

Analysis of the percentage of carriers carrying at least one or at least two damaging variants, for different groups of samples in the mega dataset. 
Genes considered: SORL1, TREM2, ABCA7, ATP8B4, ABCA1, ADAM10, RIN3, CLU, ZCWPW1, ACE. Affected gene: Carries at least one variant 
in the gene with an impact above the most significant variant threshold for that gene (Table 3). Expected: under a model in which affected gene 
alleles in the dataset are randomly distributed across all/Control/Case/EOAD/LOAD samples respectively. Values and confidence intervals are 
generated by sampling 1000 times. "≥2 affected genes (incl. APOE with ε4/ε4)" means that a person has a total of at least 2 affected genes, e.g. 
SORL1 and TREM2, or ABCA7 and APOE (only ε4/ε4 considered damaging).
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3.2.13 Supplementary Table 13: Testing for interaction with APOE - E4 

genotype 

Gene Test 
APOE-interaction  

pvalue 
SORL1 LOF+REVEL≥50 6.0E-01 

TREM2 LOF+REVEL≥25 5.9E-01 

ABCA7 LOF+REVEL≥25 4.8E-01 

ATP8B4 LOF+REVEL≥25 7.5E-01 

ABCA1 LOF+REVEL≥75 4.4E-01 

ADAM10 LOF+REVEL≥50 4.0E-01 

RIN3 LOF+REVEL≥50 8.5E-01 

CLU LOF+REVEL≥25 2.3E-01 

ZCWPW1 LOF 6.4E-02 

ACE LOF+REVEL≥75 3.3E-01 

 
APOE - E4 dosage was used to test for an interaction effect, based on the following ordinal 
logistic regression model: status ~ burden_score + apoe_e4_dosage + burden_score * 
apoe_e4_dosage. A p-value (two-sided) was calculated based on a likelihood ratio test between 
a model with the interaction effect, and one without. Studies in which the APOE genotype was 
used as part of the sample selection (ADSP, Barcelona, StEP-AD) were excluded. 
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3.2.14 Supplementary Table 14 Somatic Mutation Check 

Gene Test 
Average  

allele balance 
SORL1 LOF+REVEL≥50 0.514 
TREM2 LOF+REVEL≥25 0.505 
ABCA7 LOF+REVEL≥25 0.520 
ATP8B4 LOF+REVEL≥25 0.530 
ABCA1 LOF+REVEL≥75 0.522 

ADAM10 LOF+REVEL≥50 0.529 
RIN3 LOF+REVEL≥50 0.529 
CLU LOF+REVEL≥25 0.518 

ZCWPW1 LOF 0.521 
ACE LOF+REVEL≥75 0.514 

Reference 
All genes (cMAC >= 10) 0.524 

(IQR: 0.512-0.538) 
(95% CI: 0.482-0.581) 

TET2 LOF 0.669 
DNTM3A LOF 0.664 

 
Average allele balance of damaging heterozygous genotypes in the burden analysis (mega-analysis 
dataset). An allele balance of 0.5 indicates a similar number of reads covering the reference and 
alternate allele, while an allele balance of 1.0 indicates that only the reference allele is covered. A value 
slightly above 0.5 is normal in exomes due to a slight reference read bias. TET2 and DNTM3A LOF 
variants are known to be involved in age-related clonal hematopoiesis (ARCH)60. 
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3.2.15 Supplementary Table 15: P values mega analysis 

 
 
 
 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 
 

 

 

 

 

 

 
 

 

Next to the results reported based on the meta-analysis (Table 1), we calculated as a sensitivity 

analysis also burden tests (ordinal logistic regression) on the mega-analysis dataset, for the 

associations shown in Table 3. Reported p-values are two-sided. Bold: genes are significant in this 

study (Tables 1 and 2).  

 Mega-analysis  

 gene group pvalue 
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SORL1 
LOF+REVEL≥50 2.0E-25 
- REVEL 50-100 1.0E-13 
- LOF 8.8E-22 

TREM2 

LOF+REVEL≥25 1.4E-21 
LOF+REVEL≥25 [refined] NA 
- REVEL 25-100 4.4E-21 
- LOF 2.4E-02 
- LOF [refined] NA 

ABCA7 
LOF+REVEL≥25 6.0E-13 
- REVEL 25-100 7.3E-11 
- LOF 8.8E-04 

ATP8B4 
LOF+REVEL≥25 7.4E-07 
- REVEL 25-100 4.9E-07 
- LOF 7.3E-01 

ABCA1 

LOF+REVEL≥75 5.1E-07 
LOF+REVEL≥75 [refined] NA 
- REVEL 75-100 9.7E-05 
- REVEL 75-100 [refined] NA 
- LOF 5.5E-05 

ADAM10 LOF+REVEL≥50 5.1E-06 
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RIN3 
LOF+REVEL≥50 1.0E-05 
- REVEL 50-100 1.5E-05 
- LOF 2.7E-01 

CLU 
LOF+REVEL≥25 5.0E-04 
- REVEL 25-100 3.7E-02 
- LOF 2.7E-03 

ZCWPW1 LOF 7.8E-04 

ACE 
LOF+REVEL≥75 9.0E-04 
- REVEL 75-100 7.5E-04 
- LOF 1.8E-01 
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3.2.16 Supplementary Table 16: Validation of variant selection 

Gene + transcripts 
(canonical=bold)  Stage 1 OR (95% CI) 

Protein change (per 
transcript) 
(bold: name in text) Impact prediction MAF 

Gnomad 
non-neuro 
(max. freq. 
pop)  

Stage 2 
(dir. S1) OR (95% CI)  

SNP Type FDR Stage 1  REVEL CADD Clinvar Mega Freq. 
Po
p. h-bonf Stage 2 Mega 

SORL1 A: ENST00000260197; B: ENST00000525532; C: ENST00000534286; D: ENST00000532694; E: ENST00000527934  

rs140384365 addition 3.8% 2.49 (1.22-5.07) 

A: V1459I, B: V403I, C: 
V369I, 
D: V305I, E: V74I 0.09 12.3 

Lik.  
benign 0.10% 0.05% nfe 6.3E-01 0.86 (0.37-2.01) 1.33 (0.79-2.23) 

rs143536682 outlier 3.8% 0.53 (0.19-1.47) 

A: S2175R, B: S1119R, 
C: S1085R,  
D: S1021R, E: S790R 0.81 25.0  0.03% 0.03% nfe <=5 car. <=5 car. 0.73 (0.29-1.85) 

TREM2 A: ENST00000373113; B: ENST00000373122; C: ENST00000338469 

rs142232675 addition 0.05% 2.63 (1.56-4.45) A,B,C: D87N 0.20 19.8 
Conflict. int.  
of path. 0.14% 0.18% nfe 7.4E-01 0.74 (0.30-1.83) 1.71 (1.09-2.66) 

rs538447052 outlier 4.1% 1.91 (0.71-5.08) B: splice acceptor variant LOF 5.1  0.06% 0.03% nfe 1.0E-03 0.53 (0.18-1.57) 1.23 (0.62-2.43) 
ABCA7 A: ENST00000263094; B: ENST00000433129; C: ENST00000435683 
rs546173555 outlier 1.1% 1.09 (0.37-3.20) A,B: R19W 0.54 23.9  0.02% 0.01% nfe <=5 car. <=5 car. 1.49 (0.51-4.36) 
rs117187003 outlier 0.1% 0.84 (0.61-1.15) A,B: V1599M, C: V1461M 0.58 25.5 Lik. Benign 0.40% 0.43% nfe 2.9E-01 1.62 (0.99-2.67) 1.00 (0.77-1.30) 
rs143614132 outlier 20% 0.67 (0.28-1.60) A,B: G1820S, C: G1682S 0.91 32.0  0.07% 0.06% nfe 2.9E-01 1.01 (0.35-2.87) 0.71 (0.37-1.35) 
ATP8B4 A: ENST00000284509, B: ENST00000559829 
rs201949459 outlier 19% 0.81 (0.28-2.38) A,B: P83A 0.84 25.2  0.03% 0.09% sas 6.3E-01 0.85 (0.10-6.98) 0.84 (0.33-2.19) 
rs74811880 addition 0.3% 3.14 (1.55-6.34) A,B: H987R 0.26 15.0  0.08% 0.08% nfe 4.8E-01 1.58 (0.45-5.53) 2.30 (1.26-4.19) 
ABCA1 A: ENST00000374736; B: ENST00000423487; C: ENST00003074733 
rs145183203 outlier 1.9% 0.92 (0.56-1.51) A,B: P85L, C: P25L 0.84 24.7 Lik. benign 0.20% 0.14% nfe 4.1E-02 0.85 (0.46-1.56) 0.84 (0.58-1.21) 

rs140365800 outlier 13% 0.81 (0.29-2.22) A: D1018G 0.84 32.0 
Conflict. int.  
of path. 0.05% 0.11% amr 4.8E-02 0.42 (0.13-1.34) 0.85 (0.41-1.77) 

The variant-selection approach was validated (Online methods) for variants that i) were a missense or LOF variant without QC issues, ii) had at least 15 carriers 
and iii) a MAF <1% both in our dataset and in the gnomAD non-neuro populations. Variants were evaluated differently based on if they contributed to the most 
significant burden test (Table 3) or not. i) Variants that were in the most significant burden test were considered for removal when their effect size significantly 
deviated from other LOF variants or missense variants in this burden test (fisher exact test, one-sided p-value) (Referred to as ‘outlier ‘ in the Type column). ii) 
Variants that were not in the most significant burden test were considered for addition if they significantly associated with AD in the same direction as this burden 
test (logistic regression, one-sided p-value) (Referred to as ‘addition’ in the Type column). Multiple testing correction was performed per gene, with FDR used for 
Stage-1 and Holm-Bonferoni for Stage-2. Variants reported in this table achieved an FDR < 0.2 in Stage 1. For a full list of considered variants, see Supplementary 
Data 1-10 (refinement statistics are shown in columns AP-AU). Variants indicated in green were also significant in Stage-2 after Holm-Bonferoni multiple testing 
correction (corrected p: < 0.05). These 3 variants were all ‘outliers’. In the results of this study: burden tests that exclude the 3 variants are reported for reference, 
these burden tests are referred to as ‘refined’ burden tests.  Bold: canonic transcript (Ensembl transcript id), and the associated protein change.  
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3.2.17 Supplementary Data  

The list of variants considered in the burden-analysis are available for download as 

spreadsheets in the Supplementary Data file. 
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The four LSACs are: the Human Genome Sequencing Center at the Baylor College of 
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Biological samples and associated phenotypic data used in primary data analyses were 

stored at Study Investigators institutions, and at the National Cell Repository for 

Alzheimer’s Disease (NCRAD, U24AG021886) at Indiana University funded by NIA. 

Associated Phenotypic Data used in primary and secondary data analyses were provided 

by Study Investigators, the NIA funded Alzheimer’s Disease Centers (ADCs), and the 

National Alzheimer’s Coordinating Center (NACC, U01AG016976) and the National 

Institute on Aging Genetics of Alzheimer’s Disease Data Storage Site (NIAGADS, 

U24AG041689) at the University of Pennsylvania, funded by NIA This research was 

supported in part by the Intramural Research Program of the National Institutes of health, 

National Library of Medicine. Contributors to the Genetic Analysis Data included Study 

Investigators on projects that were individually funded by NIA, and other NIH institutes, 

and by private U.S. organizations, or foreign governmental or nongovernmental 

organizations. 

Data collection and sharing for this project was funded by the Alzheimer's Disease 

Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and 

DOD ADNI (Department of Defense award number W81XWH-12-2-0012). ADNI is funded 

by the National Institute on Aging, the National Institute of Biomedical Imaging and 

Bioengineering, and through generous contributions from the following: AbbVie, 

Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; Araclon Biotech; 

BioClinica, Inc.; Biogen; Bristol-Myers Squibb Company; CereSpir, Inc.; Cogstate; Eisai 

Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La 

Roche Ltd and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO 

Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & 

Johnson Pharmaceutical Research & Development LLC.; Lumosity; Lundbeck; Merck & 

Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; 

Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda 

Pharmaceutical Company; and Transition Therapeutics. The Canadian Institutes of Health 
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contributions are facilitated by the Foundation for the National Institutes of Health 

(www.fnih.org). The grantee organization is the Northern California Institute for Research 

and Education, and the study is coordinated by the Alzheimer’s Therapeutic Research 

Institute at the University of Southern California. ADNI data are disseminated by the 

Laboratory for Neuro Imaging at the University of Southern California. 
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Neuroscience, Psychology, Drug Research and Child Health , University of Florence, Italy; (9) Memory Disorders Unit, 

Department of Neurology, Hospital Universitari Mutua de Terrassa, Terrassa, Barcelona, Spain; (10) Department of 

Psychiatry, Medical Sciences Division, University of Oxford, Oxford, UK.; (11) Kings College London, Institute of 
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Clifton L. Dalgard, PhD1, William J. Jagust, MD2, Sterling C. Johnson, PhD 3, David A. 

Wolk, MD4, Joel H. Kramer, PsyD5, Bradford C. Dickerson, MD6, David A. Bennett, MD7,  
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Einstein College of Medicine; 9Brain and Spine Institute (ICM), France; 10Stanford University  
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5.1.3 Knight ADRC investigators 

Achal Neupane1,3,4, John P Budde1,3,4, Fengxian Wang1,3,4, Joanne Norton1,3,4, Gen 
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5.1.4 ADNI database 

A subset of the data used in this article was obtained from the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). A complete listing of ADNI 

investigators can be found at:  
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf 
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