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Supplementary Methods 

Stable cell line construction 

Cell lines stably expressing 3xFLAG-HaloTag-YY1 and YY1-HaloTag-3xFLAG were generated 

using PiggyBac transposition and drug selection. Full details in Supplementary Methods. The 

coding sequences of YY1 and 3xFLAG-HaloTag or HaloTag-3xFLAG were cloned by Gibson 

Assembly into a PiggyBac vector co-expressing a puromycin resistance gene. For each construct, 

YY1 and HaloTag were connected by a short peptide linker sequence (GDGAGLING). 1.3 μg of 

PiggyBac vector was co-transfected with 0.5 μg of SuperPiggyBac transposase vector into JM8.N4 

cells by nucleofection using the Lonza Mouse Embryonic Stem Cell Nucleofector Kit reagents and 

the Amaxa Nucleofector II device. After 24 hr, antibiotic selection was begun with 500 ng/mL of 

puromycin. Once cells reached ~80% confluence, 5000 cells were seeded onto a 15 cm plate and 

allowed to grow into colonies. After 4-6 days, single clones were isolated and seeded onto a 96-

well plate. Cells were allowed to expand for 4-5 days, and successfully integrated PiggyBac 

constructs were validated by PCR genotyping. We selected clone PBYN2 for 3xFLAG-HaloTag-

YY1 and clone PBYC3 for YY1-HaloTag-3xFLAG. We carried out the same approach to generate 

cell lines stably expressing 3xFLAG-HaloTag-SOX2 and 3xFLAG-HaloTag-KLF4 in RAD21-

AID cells, and selected clones SHT22 (SOX2) and KHT26 (KLF4) for the downstream analysis. 

For all single-molecule experiments, cells were grown overnight on Matrigel-coated 25-mm 

circular no 1.5H cover glasses (High-Precision 0117650). Prior to all experiments, the cover 

glasses were plasma-cleaned and then stored in isopropanol until use. Cells were labeled with 50 

nM PA-JFX646 (fast SPT) or 25 pM JFX549 (slow SPT) HaloTag ligand for 30 min and washed 

twice with PBS. After the final washes, cells were replenished with phenol-free medium prior to 

imaging. 

 

Generation of CRISPR/Cas9-mediated knock-in cell lines 

Endogenously tagged mESC lines were generated by CRISPR/Cas9-mediated genome editing as 

previously described1 with modifications. mESCs were seeded to 6-well plates and each well was 

transfected with Lipofectamine 3000 (ThermoFisher #L3000015) or nucleofection (Lonza #VPH-

1001) using 1 μg of a construct encoding Cas9, Venus yellow fluorescent protein, and a sgRNA 

and 2 μg of a homology repair plasmid with the DNA insert of interest flanked by left and right 

homology arms (~500 bp each). For each insertion we designed 2-4 individual sgRNAs with the 

CRISPOR tool2 to be transfected separately into mESCs and pooled before sorting Venus-positive 

cells by FACS. Sorted cells were plated at a density of ~5,000-10,000 cells per P15 plate and media 

replaced every other day. Single colonies were transferred to 96-well plates to be expanded and 

genotyped by PCR after crude DNA extraction with the DirectPCR Lysis Reagent (Viagen Biotech 

#302-C). Clones with a correct insert were further verified by Sanger sequencing and Western blot. 

The parental cell line of CTCF, Rad21 and WAPL auxin-inducible degron (AID) mESCs was 

clone C59 from Hansen et al.3 further modified to visualize DNA looping (Clone C36 osTir1: see 

Gabriele et al.4 for full details on the generation of C36). 



To endogenously tag 1) CTCF, RAD21, or WAPL with mAID5 in the C36 osTir mESC line; 2) 

YY1 with miniIAA76 in the parental JM8.N4 with osTIR1 expression; 3) YY1 with HaloTag in 

the parental JM8.N4; and 4) CTCF and RAD21 with mAID in the YY1-HaloTag cell lines, we 

designed homology repair plasmids encoding 1) 3xFLAG-BFP-mAID-CTCF, RAD21-BFP-

mAID-V5, HA-BFP-mAID-WAPL; 2) miniIAA7-mScarletI-YY1; 3) 3xFLAG-HaloTag-YY1; 4) 

3xFLAG-mNeonGreen-mAID-CTCF and RAD21-mNeonGreen-mAID-V5 (plasmids, sgRNAs 

and primer sequences in Supplementary Table 1). Homozygous clones with the correct genotype 

were further verified by Sanger sequencing and Western blot after IAA-mediated depletion. 

Among the several clones generated for each AID line, we picked clone C58 for 3xFLAG-BFP-

mAID-CTCF; clone F1 for RAD21-BFP-mAID-V5; clone C40 for HA-BFP-mAID-WAPL; clone 

YD39 for miniIAA7-mScarletI-YY1; clone YN11 for 3xFLAG-HaloTag-YY1; clone CD1 for 

3xFLAG-mNeonGreen-mAID-CTCF and clone RD35 for RAD21-mNeonGreen-mAID-V5.  

 

Western Blotting 

For Western blot analysis, cells were seeded to 6-well plates, washed with ice-cold PBS and 

scraped in 300 l of low-salt lysis buffer (0.1 M NaCl, 25 mM HEPES, 1 mM MgCl2, 0.2 mM 

EDTA, 0.5% NP-40 and protease inhibitors), with 125 U/mL of benzonase (Novagen, EMD 

Millipore), rocked at 4 °C for 1 hr and then NaCl was added to a 0.2-M final concentration. Lysates 

were then rocked at 4 °C for 30 min and centrifuged at maximum speed at 4 °C. Supernatants were 

quantified by Bradford. Alternatively, cells were lysed directly on plates with 300 l of high-salt 

lysis buffer (0.5 M NaCl, 25 mM HEPES, 1 mM MgCl2, 0.2 mM EDTA, 0.5% NP-40 and protease 

inhibitors) and transferred to low-stick tubes with 100 μl of 4x SDS-loading buffer. Proteins were 

loaded onto a 9% Bis-Tris SDS-PAGE gel, transferred onto a nitrocellulose membrane (Amershan 

Protran 0.45 um NC, GE Healthcare) for 1 hr at 100V, blocked in TBS-Tween with 10% milk for 

at least 1 hr at room temperature and blotted overnight at 4 °C with primary antibodies in TBS-T 

with 5% milk (antibodies listed in Supplementary Table 1). HRP-conjugated secondary 

antibodies were diluted 1:5000 in TBS-T with 5% milk and incubated with the membrane at room 

temperature for an hour before performing the chemiluminescence reaction (Western Lightning 

Plus-ECL, Enhanced Chemiluminescence Substrate, Perkin Elmer NEL105001EA). Signal was 

captured with either X-ray films (CL-XPosure™ Film, ThermoScientific 34091) or with a Bio-

Rad ChemiDoc imaging system. 

 

Chromatin immunoprecipitation (ChIP) and ChIP-seq 

ChIP was performed as described with the few modifications described here7. Cells were treated 

with either ethanol or 500 mM of ethanol-dissolved auxin for 3 hrs and cross-linked for 7 min at 

room temperature with 1% formaldehyde-containing medium; cross-linking was stopped by PBS-

glycine (0.125 M final). Cells were washed twice with ice-cold PBS, scraped, centrifuged for 10 

min and pellets were flash-frozen. Cell pellets were thawed and resuspended in cell lysis buffer (5 

mM PIPES, pH 8.0, 85 mM KCl, and 0.5% NP-40, 1 ml/15 cm plate) with protease inhibitors and 

incubated for 10 min on ice. Lysates were centrifuged for 10 min at 1250 x g and nuclear pellets 



were resuspended in 6 volumes of sonication buffer (50 mM Tris-HCl, pH 8.1, 10 mM EDTA, 

0.1% SDS) with protease inhibitors, incubated on ice for 10 min, and sonicated to obtain DNA 

fragments below 2000 bp in length (Covaris S220 sonicator, 20% Duty factor, 200 cycles/burst, 

150 peak incident power, 10-20 cycles 50 sec on and 30 sec off). Sonicated lysates were cleared 

by centrifugation and chromatin (400 g per antibody) was diluted in RIPA buffer (10 mM Tris-

HCl, pH 8.0, 1 mM EDTA, 0.5 mM EGTA, 1% Triton X-100, 0.1% SDS, 0.1% Na-deoxycholate, 

140 mM NaCl) with protease inhibitors to a final concentration of 0.8 g/l, precleared with 

Protein G sepharose (GE Healthcare) for 2 hrs at 4°C and immunoprecipitated overnight with 4 

g of specific antibodies (antibodies listed in Supplementary Table 1). About 4% of the 

precleared chromatin was saved as input. Immunoprecipitated DNA was purified with the Qiagen 

QIAquick PCR Purification Kit, eluted in 36 l of 0.1X TE (1 mM Tris-HCl pH 8.0, 0.01 mM 

EDTA) and analyzed by qPCR together with 2% of the input chromatin prior to ChIP-seq library 

preparation (SYBR® Select Master Mix for CFX, ThermoFisher; ChIP-qPCR primer sequences 

in Supplementary Table 1). 

 

ChIP-seq libraries were prepared using the NEBNext® Ultra™ II DNA Library Prep Kit for 

Illumina® (NEB E7645) according to manufacturer instructions with a few modifications. 20 ng 

of ChIP input DNA (as measured by Nanodrop) and 25 l of the immunoprecipitated DNA were 

used as a starting material and the recommended reagent volumes were cut in half. Some of the 

YY1 ChIP-seq libraries in the YY1 degron line (Clone YD39) were prepared adding 50 pg of 

MNase digested yeast DNA as a spike-in control to both inputs and ChIP samples. The NEBNext 

Adaptor for Illumina was diluted 1:10 in Tris/NaCl, pH 8.0 (10 mM Tris-HCl pH 8.0, 10 mM 

NaCl) and the ligation step extended to 30 min. After ligation, a single purification step with 0.9X 

volumes of Agencourt AMPure XP PCR purification beads (Beckman Coulter A63880) was 

performed, eluting DNA in 22 l of 10 mM Tris-HCl pH 8.0. 20 l of the eluted DNA was used 

for the library enrichment step, performed with the KAPA HotStart PCR kit (Roche Diagnostics 

KK2502) in 50 l of total reaction volume (10 l 5X KAPA buffer, 1.5 l 10 mM dNTPs, 0.5 l 

10 M NEB Universal PCR primer, 0.5 l 10 M NEB index primer, 1 l KAPA polymerase, 

16.5 l nuclease-free water and 20 l sample). Samples were enriched with 9 PCR cycles (98 C, 

45 sec; [98 C, 15 sec; 60 C, 10 sec] x 9; 72 C, 1 min; 4 C, hold), purified with 0.9 volumes of 

AMPure XP PCR purification beads and eluted with 33 l of 10 mM Tris-HCl pH 8.0. 

 

ChIP-seq raw reads from ethanol (UT)- or auxin (IAA)-treated CTCF, RAD21, WAPL and 

YY1 mESCs (96 libraries total, 2 biological replicates per condition plus 12 spiked-in libraries 

for YY1 ChIP in YY1 clone YD39) were quality-checked with FastQC 0.10.1 and aligned onto 

the mouse genome (mm10 assembly) using Bowtie 2.3.08, allowing for two mismatches (-n 2) and 

no multiple alignments (-m 1). For spiked-in libraries, ChIP-seq raw reads were also aligned onto 

the yeast genome (sacCer3 assembly) using the same Bowtie parameters. Biological replicates 

were pooled and peaks were called with MACS2 2.1.0.20140616 (--nomodel --extsize 



250)9 using input DNA as a control. To create heatmaps we used deepTools 2.4.110. We first ran 

bamCoverage function (--binSize 50 --normalizeTo1x 2150570000 --

extendReads 300 --ignoreDuplicates -of bigwig) and normalized read numbers 

to 1x sequencing depth, obtaining read coverage per 50-bp bins across the whole genome (bigWig 

files). For spiked-in libraries, the number of deduplicated, unique reads aligning to the yeast 

genome in each sample was used to compute the bamCoverage scale factor to perform spike-in 

normalization. We then used the bigWig files to compute read numbers across 6 kb centered on 

either CTCF, RAD21, or YY1 peak summits as called by MACS2 in UT cells (computeMatrix 

reference-point --referencePoint=TSS --upstream 3000 --downstream 

3000 --missingDataAsZero --sortRegions=no). We sorted the output matrices by 

decreasing UT enrichment, calculated as the total number of reads within a MACS2 called ChIP-

seq peak. Finally, heatmaps were created with the plotHeatmap function (--

averageTypeSummaryPlot=mean --colorMap='Blues' --sortRegions=no). 

To identify the differential peaks between UT- and IAA-treated cells, we used MAnorm211, which 

employs a hierarchical strategy for normalization of ChIP-seq data and assesses within-group 

variability of ChIP-seq signals based on an empirical Bayes framework. We note that the total 

ChIP-seq peak numbers in MAnorm2 are combined from UT- and IAA-treated cells and may differ 

from the number of MACS2 calling. 

 

Micro-C assay for mammalian cells 

We briefly summarize the Micro-C experiment here. The detailed protocol and technical 

discussion are available in our previous study12. Mouse embryonic stem cells (JM8.N4) and the 

derivative genome-edited lines were cultured in the recommended conditions13. When cells grew 

to ~70% confluency, we resuspended them in 0.05% of trypsin, inactivated with cell culture media, 

and resuspended in 1% formaldehyde crosslinking media (without FBS). Cells were crosslinked 

for 10 min at room temperature (RT) while nutating. We then added 1 M Tris-HCl pH 7.5 (final 

concentration 375 mM) and incubated for 5 min at RT to quench the crosslinking reaction. Cells 

were spun down and washed twice with cold PBS. Cell pellets were crosslinked again with the 

freshly prepared 3 mM DSG crosslinking solution (in base media without FBS) for 45 min at RT 

while nutating. The crosslinking reaction was quenched and washed following the same steps as 

above. We routinely split cells into 1 million cells per vial after fixation and perform MNase 

titration and Micro-C with 1 million cells. Crosslinked cell pellets can be snap frozen in liquid 

nitrogen and stored at -80 °C for months or used immediately for the next step. We note that 1) 

cells directly crosslinked on the dish typically yield a similar result; 2) using freshly made 

formaldehyde and DSG solution is critical to obtain high-quality Micro-C data; and 3) to avoid 

loss of cells, low-retention tubes and tips are strongly recommended. 

Crosslinked cell pellets were resuspended in MB1 (50 mM NaCl, 10 mM Tris-HCl pH 7.5, 5 mM 

MgCl2, 1 mM CaCl2, 0.2% NP-40) at a concentration of 1x106 cells/100 µL and were incubated 

for 20 min on ice. Cells were spun down and washed once with MB1. We then added the 

appropriate amount of Micrococcal nuclease (MNase) and incubated the tube for 10 min at 37 °C 



while shaking in a thermomixer at ~850 rpm. The optimal digestion condition results in ~90% of 

mono-nucleosome and ~10% of di-nucleosome. The MNase reaction was inactivated by adding 4 

mM EGTA and incubated for 10 min at 65 °C. Digested chromatin was spun down and washed 

twice with 1 mL of cold MB2 (50 mM NaCl, 10 mM Tris-HCl pH 7.5, 10 mM MgCl2). We note 

that and MNase titration that yields 90% monomer/10% dimers substantially reduces 

contamination with un-digested (un-ligated) dimers in Micro-C data. 

MNased-fragmented chromatin was then subjected to the three-step end-repair protocol to generate 

ligatable ends filled with biotin-dNTPs. First, the pellet was resuspended in the end-repair buffer 

(50 mM NaCl, 10 mM Tris-HCl pH 7.5, 10 mM MgCl2, 100 µg/mL BSA, 2 mM ATP, 5 mM 

DTT) and the 5’-ends were phosphorylated with 25 units of T4 Polynucleotide Kinase (NEB 

#M0201) for 15 min at 37 °C while shaking in a thermomixer at 1000 rpm for an interval of 15 

sec every 3 min. Second, to convert the mixed types of nucleosomal ends to cohesive ends, we 

added 25 units of DNA Polymerase I, Large (Klenow) Fragment (NEB #M0210) directly to the 

reaction and incubated the tube for an additional 15 min at 37 °C while shaking in a thermomixer 

at 1000 rpm for an interval of 15 sec every 3 min. Third, to repair the nucleosomal DNA ends to 

the blunt and ligatable ends, we supplemented 66 µM of dNTPs (dTTP, dGTP (NEB #N0446), 

biotin-dATP (Jena Bioscience #NU-835-BIO14), biotin-dCTP (Jena Bioscience #NU-809-BIOX), 

and 1X T4 DNA ligase reaction buffer (NEB #B0202) directly into the reaction and incubated for 

45 min at 25 °C while shaking in a thermomixer at 1000 rpm for an interval of 15 sec every 3 min. 

The end-repair reaction was then inactivated with 30 mM EDTA for 20 min at 65°C without 

shaking. Next, chromatin was pelleted by centrifugation for 5 min at ~10,000xg at 4 °C and washed 

once with cold MB3 (50 mM Tris-HCl pH 7.5, 10 mM MgCl2). 

End-repaired nucleosomes were then subjected to proximity ligation with ~5000 cohesive end 

units (CEU) of T4 DNA ligase (NEB #M0202) in 1X T4 DNA ligase reaction buffer (NEB 

#B0202) for at least 2 hrs at room temperature with slow rotation on an orbital shaker. Biotin-

dNTPs at the unligated DNA termini were removed by ~500 units of Exonuclease III (NEB 

#M0206) in 1X NEBuffer 1 (NEB #B7001) for 15 min at 37°C while shaking in a thermomixer at 

1000 rpm for an interval of 15 sec every 3 min. Samples were then reverse crosslinked with 1X 

proteinase K solution (500 ug/uL Proteinase K (ThermoFisher #AM2542), 1% SDS, 0.1 µg/µL 

RNaseA) at 65°C overnight. DNA was extracted by the standard phenol:chloroform:isoamyl 

alcohol (25:24:1) and ethanol precipitation procedure. DNA was then purified again with the 

ZymoClean DNA Clean & Concentrator-5 Kit (Zymo #D4013). Purified DNA was separated on 

a 3% NuSieve GTG agarose gel (Lonza #50081). The gel band corresponding to the size of 

dinucleosomal DNA (~250 to 350 bp) was cut and purified with the Zymoclean Gel DNA 

Recovery Kit (Zymo #D4008). We note that size selection for DNA larger than 200 bp greatly 

reduces the ratio of unligated monomers in Micro-C data. 

Micro-C sequencing libraries were generated by using the NEBNext Ultra II DNA Library Prep 

Kit for Illumina (NEB #E7645) with the following modifications. We first repaired the purified 

DNA again using the End-it DNA End-Repair Kit (Lucigen #ER0720) following the 

manufacturer’s suggested conditions. The mix was incubated for 45 min at 25 °C and then 



inactivated the enzyme reaction for 10 min at 70 °C. This step is optional, but we find it increases 

the library yield. Biotinylated DNA was captured by Dynabeads MyOne Streptavidin C1 beads 

(ThermoFisher #65001) in 1X BW buffer (5 mM Tris-HCl pH 7.5, 0.5 mM EDTA, 1 M NaCl) on 

a nutator for 20 min at room temperature. Beads were washed twice with 1X TBW buffer (0.1% 

Tween20, 5 mM Tris-HCl pH 7.5, 0.5 mM EDTA, 1 M NaCl) for 5 min at 55 °C while shaking in 

a thermomixer at 1200 rpm, rinsed once with Tris buffer (10 mM Tris-HCl pH 7.5), and then 

resuspended in Tris buffer. 

We then performed ‘on-bead’ end-repair/A tailing and adapter ligation following the NEB 

protocol. After adapter ligation, beads were washed once with 1X TBW and rinsed once with Tris 

buffer. The Micro-C library was generated by using the KAPA HiFi HotStart ReadyMix (Roche 

#KK2601) or the Q5 High-Fidelity 2X Master Mix (NEB #E7645) with the manufacturer’s 

suggested conditions. We recommend using a minimal PCR cycle to reduce PCR duplicates, 

typically 8 to 12 cycles, which can generate high-quality Micro-C data. Prior to sequencing, 

purifying the library twice with 0.85X AMPure XP beads (Beckman #A63880) can eliminate 

primer dimers and adapters. We used Illumina 100 bp paired-end sequencing (PE100) to obtain 

~400M reads for each replicate in this study. 

 

 

Micro-C data processing and analyses 

Valid Micro-C contact read pairs were obtained from the HiC-Pro analysis pipeline (v2.11.3)14, 

and the detailed description and code can be found at https://github.com/nservant/HiC-Pro. In 

brief, paired fastq files were mapped to the mouse mm10 genome independently using Bowtie 

2.3.0 with ‘very-sensitive-local’ mode8. Aligned reads were paired by the read names. Pairs with 

multiple hits, low MAPQ, singleton, dangling end, self-circle, and PCR duplicates were discarded 

using Samtools (v.1.9). Paired reads with distances shorter than 100 bp (e.g., unligated mono-

nucleosome) were also removed. Output files containing all valid pairs were used in downstream 

analyses. We recommend running a pilot sequencing run (~10M reads) and checking the following 

quality control statistics before moving forward to a high-coverage sequencing: (1) bowtie 

mapping rate; (2) reads pairing percentage; (3) ratio of sequencing artifacts; (4) ratio of cis/trans 

contacts; (5) unligated monomer percentage. If any of the above statistics is not optimal, one might 

consider checking mapping and filtering parameters or further optimizing the Micro-C experiment. 

The summary of Micro-C interactions in this manuscript is available in Supplemental Table 2. 

 

We evaluated the reproducibility and data quality for the Micro-C replicates using two published 

methods independently (https://github.com/kundajelab/3DChromatin_ReplicateQC)15. In brief, 

QuASAR-QC (v1.5.7) calculates the correlation of values in two distance-based transformed 

matrices. GenomeDISCO (v1.0.0) measures the difference in two graph diffusion-smoothed 

contact maps. We computed the matrix similarity scores between the biological replicates or 

between the untreated and IAA-treated cells for the 10-kb, 25-kb, 50-kb, and 250-kb Micro-C data. 

https://github.com/nservant/HiC-Pro
https://github.com/kundajelab/3DChromatin_ReplicateQC
https://github.com/nservant/HiC-Pro
https://github.com/kundajelab/3DChromatin_ReplicateQC


The detailed descriptions can be found in Sauria et al. for QuASAR-QC16 and Ursu et al. for 

GenomeDISCO17.  

 

To identify chromatin domains (TADs) along the diagonal, we used insulation score analysis from 

the Cooltools package (v0.8.10) (https://github.com/mirnylab/cooltools) or arrowhead 

transformation analysis from the JUICER package (v1.22.01)  

(https://github.com/aidenlab/juicer)18. The detailed methods were described in Crane et al. for the 

insulation score analysis19 or Rao et al. for the arrowhead transformation analysis20. Briefly, we 

analyzed the insulation profile by using a 1-Mb sliding window that scans across Micro-C contact 

matrices at 20-kb resolution and assigns an insulation intensity to its corresponding bin. The 

insulation scores were obtained and normalized as the log2 ratio of the individual score to the mean 

of the genome-wide averaged insulation score. Chromatin boundaries can be identified by finding 

the local minima along with the normalized insulation score. Boundaries overlapping with low 

mappability regions were removed from the downstream analysis. The arrowhead analysis defines 

Ai,i+d = (M*i,i-d–M*i,i+d)/(M*i,i-d+ M*i,i+d), where M* is the normalized contact matrix. Ai,i+d can be 

thought of as the measurement of the directionality preference of locus i, restricted to contacts at 

a linear distance of d. Ai,i+d will be strongly positive/negative if either i,i-d or i,i+d is inside the 

domain and the other is not, but Ai,i+d will be close to zero if both loci are inside or outside the 

domain. By assigning this query across the genome, the edges of a domain will be sharpened and 

TADs can be detected. For aggregate domain analysis (ADA), each domain was rescaled to a 

pseudo-size by Ni,j=((Ci-Dstart)/(Dend-Dstart), (Cj-Dstart)/(Dend-Dstart)), where Ci,j is a pair of contact 

loci within domain D that is flanked by Dstart and Dend, and Ni,j is a pair of the rescaled coordinates. 

The rescaled domains can be aggregated at the center of the plot with ICE or distance 

normalization. Coolpup (v0.9.5) (https://github.com/open2c/coolpuppy)21 has implemented a 

handy function to perform ADA with the COOL file. The lists of TAD called by the insulation 

score analysis or Arrowhead are available in Supplemental Table 3 or 4. 

 

To identify loops/dots, we tested two novel algorithms, Mustache (v1.0.1) (https://github.com/ay-

lab/mustache)22 and Chromosight (v0.9.8) (https://github.com/koszullab/chromosight)23, for the 

high-resolution Micro-C data. We found that both approaches outperform the HICCUPS algorithm 

in the JUICER package18 and the ‘Call-dots’ function in the Cooltools package in sensitivity and 

specificity to discover focal contact enrichment. In Mustache analysis, we called loops with 

balanced contact matrices at resolutions of 400 bp, 600 bp, 800 bp, 1 kb, 2 kb, 4 kb, 10 kb, and 20 

kb using the calling options --pThreshold 0.1 -–sparsityThreshold 0.88 -–

octaves 2. We then combined all loops at different resolutions. If an interaction was detected 

as a loop at different resolutions, we retained the precise coordinates in finer resolutions and 

discarded the coarser resolution. In Chromosight analysis, we used the ‘detect’ function to call 

loops with balanced contact matrices at resolutions of 400 bp, 600 bp, 800 bp, 1 kb, 2 kb, 4 kb, 10 

kb, and 20 kb using calling options listed in Supplemental Table 5. We then combined all loops 

at different resolutions by the same approach as described above. We applied the lists of loop 

https://github.com/mirnylab/cooltools
https://github.com/aidenlab/juicer
https://github.com/open2c/coolpuppy
https://github.com/ay-lab/mustache
https://github.com/ay-lab/mustache
https://github.com/koszullab/chromosight
https://github.com/mirnylab/cooltools
https://github.com/aidenlab/juicer
https://github.com/open2c/coolpuppy
https://github.com/ay-lab/mustache
https://github.com/ay-lab/mustache
https://github.com/koszullab/chromosight


anchor to many downstream analyses by using Bedtools (v2.30.0)24, R (v4.0), Python (v3.8), or 

MATLAB (v2021a), including (1) comparison of loop anchors between Micro-C and Hi-C or 

between different chromatin states; (2) distribution of loop strength or length; (3) cross-correlation 

with ChIP-seq, RNA-seq, and mNET-seq data; (4) ratio of boundary crossing, etc. For analysis of 

paired genomic loci (e.g., paired ChIP-seq peaks, genetic features, etc.) within a distance ranging 

from 2 kb to 2 Mb, we used Chromosight’s ‘quantify’ function to measure the probability of loop 

pattern for all intersections quantitatively. The loops were filtered by the following parameters: 

loop score >0.35 for 10-kb resolution, loop score >0.3 for 4-kb resolution, loop score >0.2 for 2-

kb resolution, and the q-value lower than 10-5 for all resolutions (Supplemental Table 5). For 

aggregate peak analysis (APA) to assess genome-wide loop intensity, loops were centered and 

piled up on a 20-kb x 20-kb matrix with 400-bp resolution balanced data or 50-kb x 50-kb matrix 

with 1-kb resolution balanced data. Contacts close to the diagonal were excluded and normalized 

by a random shift matrix to avoid distance decay effects. The ratio of loop enrichment was 

calculated by dividing normalized center contacts in a searching window by the normalized corner 

submatrices. We used the same approach and normalization method to analyze the genome-wide 

target-centered loop intensity. Instead of aggregating at the intersection of loop anchors, the matrix 

is centered at the paired ChIP-seq peaks or genomic features. Coolpup (v0.9.5) 

(https://github.com/open2c/coolpuppy)21 has implemented the APA function for the COOL file. 

The lists of loops called by Mustache or Chromosight are available in Supplemental Table 6 or 

7. The lists of loop quantification for cohesin, E-P, and P-P loops are available in Supplemental 

Table 8 – 10. 

 

Nascent RNA-seq experiment and analysis 

We used the nascent RNA-seq (mNET-seq) protocol described in Nojima et al25 with the following 

minor changes. In brief, the chromatin fraction was purified from 1x107 mES cells by the following 

procedure: 1) Wash cells with cold PBS twice; 2) Resuspend cells with 4 mL cold HLB+N (10mM 

Tris-HCl (pH 7.5), 10 mM NaCl, 2.5 mM MgCl2 and 0.5 % NP-40) and incubate for 5 min on ice; 

3) Add 1 ml cold HLB+NS (10 mM Tris-HCl (pH 7.5), 10 mM NaCl, 2.5 mM MgCl2, 0.5 % NP-

40 and 10 % Sucrose) under the layer of cell lysate; 4) Spin down cells and collect the nuclear 

pellet; 5) Add 120 µL cold NUN1 (20 mM Tris-HCl (pH 7.9), 75 mM NaCl, 0.5 mM EDTA and 

50 % Glycerol) and transfer sample to a new tube; 6) Add 1.2 mL cold NUN2 (20 mM HEPES-

KOH (pH 7.6), 300 mM NaCl, 0.2 mM EDTA, 7.5 mM MgCl2, 1 % NP-40 and 1 M Urea) and 

incubate for 15 min on ice while vortexing every 3 min; 7) Spin down the chromatin pellet and 

wash with cold PBS once. Next, chromatin and RNA were digested in 100 µL MNase digestion 

solution (1x micrococcal nuclease (MNase) buffer and 40 units/µl MNase (NEB, #M0247)) for 5 

min at 37 °C while shaking at 1,400 rpm in a thermomixer. 25 mM EGTA was then added to 

inactivate the reaction. Digested/solubilized chromatin was then collected by centrifugation at 

16,000xg for 5 min at 4 °C. The chromatin bound-Pol II complex was purified by the following 

steps: 1) Dilute 100 µL of sample with 400 µL cold NET-2 (50 mM Tris-HCl (pH 7.4), 150 mM 

NaCl, 0.05 % NP-40 and 1% Empigen BB (Sigma, cat no. 30326)); 2) Add 100 µL Pol II antibody-

https://github.com/open2c/coolpuppy
https://github.com/open2c/coolpuppy


conjugated beads (10 µg Pol II 8WG16 antibody conjugated with Dynabeads™ Protein G for 

Immunoprecipitation (ThermoFisher, #1004D)) and incubate on a tube rotator for 1 hour in the 4 

°C room; 3) Wash beads with 1 mL cold NET-2 for a total of 6 washes. RNA was then 

phosphorylated with T4 polynucleotide kinase (T4 PNK) with the following steps: 1) Wash beads 

with 50 µL cold 1X PNKT buffer (1X T4 PNK buffer and 0.1 % Tween); 2) Resuspend beads with 

50 µL PNK reaction mixture (1X T4 PNKT, 1 unit/µL PNK and 1 mM ATP) for 5 min at 37 °C 

while shaking at 1,200 rpm in a thermomixer; 3) Wash beads with 1 mL cold NET-2. RNA was 

isolated by the standard TRIzol RNA extraction protocol with isopropanol RNA precipitation. 

Purified RNA was then dissolved in 10 µL of Urea dye (7 M Urea, 0.05 % Xylene cyanol, 0.05 % 

Bromophenol blue) and resolved on a 6% TBE-Urea gel at 200 V for 5 min. To size select 30-160 

nt RNAs, we cut the gel between the Bromophenol blue and the Xylene cyanol dye markers. A 

0.5-mL tube was punctured with 3-4 small holes by 26G needle and inserted in a 1.5-mL tube. Gel 

fragments were placed in the 0.5-mL tube and broken down by centrifugation at 16,000xg for 1 

min. RNA was eluted by RNA elution buffer (1 M NaOAc and 1 mM EDTA) for 1 hr at 25°C in 

a Thermomixer shaking at 900 rpm in a thermomixer. Eluted RNA was purified with SpinX 

column (Coster, #8160) with a glass filter (Whatman, #1823-010). The eluted RNA was purified 

again with ethanol precipitation. 

 

Single-particle imaging experiments  

All single-molecule imaging experiments were performed with a similar setting as described in 

our previous studies3,26 and detailed below. In brief, the experiments were performed with a 

custom-built Nikon TI microscope equipped with a 100X/NA 1.49 oil-immersion TIRF objective 

(Nikon apochromat CFI Apo TIRF 100X Oil), an EMCCD camera (Andor iXon Ultra897), a 

perfect focus system to correct for axial drift and motorized laser illumination (Ti-TIRF, Nikon), 

and an incubation chamber maintaining a humidified 37 °C atmosphere with 5% CO2 for the 

sample and the objective. Excitation was achieved using the following laser lines: 561 nm (1 W, 

Genesis Coherent) for JF549/PA-JF549 and TMR dyes; 633 nm (1 W, Genesis Coherent) for 

JF646/PA-JF646 dyes; 405 nm (140 mW, OBIS, Coherent) for all photo-activation experiments. 

Laser intensities were controlled by an acousto-optic Tunable Filter (AA Opto-Electronic, 

AOTFnC-VIS-TN) and triggered with the camera TTL exposure output signal. Lasers were 

directed to the microscope by an optical fiber, reflected using a multi-band dichroic (405 nm/488 

nm/561 nm/633 nm quad-band, Semrock) and focused in the back focal plane of the objective. 

Emission light was filtered using single band-pass filters placed in front of the camera (Semrock 

593/40 nm for TMR and JF549/PA-JF549 and Semrock 676/37 nm for JF646/PA-JF646). The 

angle of incident laser was adjusted for highly inclined laminated optical sheet (HiLo) conditions27. 

The microscope, cameras, and hardware were controlled through the NIS-Elements software 

(Nikon). 

For ‘fast-tracking’ stroboscopic illumination (spaSPT) at ~133 Hz, the excitation laser (633 nm 

for PA-JF646 or 561 nm for PA-JF549) was pulsed for 1 ms at maximum (1 W) power at the 

beginning of the frame interval, while the photoactivation laser (405 nm) was pulsed during the 



∼447 µs camera transition time. Each frame consisted of a 7-ms camera exposure time followed 

by a ~447-μs camera inactive time. The camera was set for frame transfer mode and vertical shift 

speed at 0.9 μs. With this setup, the pixel size after magnification is 160 nm and the photon-to-

grayscale gain is 109. Typically, 30000 frames with this sequence were collected per nucleus, 

during which the 405-nm intensity was manually tuned to maintain an average molecule density 

of ~0.5 localizations per frame, corresponding to ~15,000 localizations per cell per movie. 

Maintaining a very low density of molecules is necessary to avoid tracking errors. 

For ‘slow-tracking’ (slow-SPT) experiments, long exposure times (50 ms, 100 ms, and 250 ms) 

and low constant illumination laser intensities (0.5% - 2% of 0.5 W power) were used to measure 

residence time. The camera was set for normal mode and vertical shift speed at 3.3 μs. We 

generally recorded each cell with 1200 frames for a 250 ms exposure time, 3000 frames for a 100 

ms exposure time, or 6000 frames for a 50 ms exposure time. We included H2B-HaloTag cells for 

the photobleaching correction for each experiment. 

 

spaSPT analysis  

To estimate the likelihood of diffusion coefficients for each trajectory we used the SASPT package 

(v1.0) (https://github.com/alecheckert/saspt)28. The detailed discussion is available in Heckert et 

al28. In brief, we applied “State Array (SA)”, a grid of state parameters that span a range of 

diffusion coefficients (0 to 100 μm2/s), to calculate the posterior occupations of each point in the 

grid. The SA method conceptually produces a similar result as the Dirichlet process mixture 

models (DPMM) and retains its ability to model complex diffusive mixtures, while mitigating the 

issue of expensive likelihood functions. Instead of allowing infinite number of states (K→∞), the 

method fixes the number of states at a large but finite value. For each state j = 1, …, K, the 

algorithm chooses a fixed set of state parameters θj. The model simplifies to: 

          τ  ~ Direichlet (
α

K
, … ,

α

K
) 

𝑍𝑖 | τ ~ Multinomial (τ, 1) 

𝑋𝑖 | (𝑍𝑖𝑗 = 1) ~ 𝑓𝑋(𝑥 | 𝜃𝑗)                                  

As a result, the SA method can compute more complex likelihood functions that incorporate 

localization error. Next, the algorithm infers the posterior p (Z, τ | X) with the Dirichlet prior p(τ) 

and corrects the systematic overestimation for the occupations of slow states due to defocalization. 

By marginalizing the posterior distribution on localization error, the method naturally incorporates 

uncertainty about the localization error of different states. 

Alternatively, we analyzed the spaSPT data with the kinetic modeling framework implemented in 

the Spot-On package (v.1.0.4)26. Briefly, the model infers the diffusion constant and relative 

fractions of two or three subpopulations from the distribution of displacements computed at 

increasing lag times (1∆τ, 2∆τ,…). This is performed by fitting a semi-analytical model to the 

empirical histogram of displacements using non-linear least squares fitting. Defocalization is 

explicitly accounted for by modeling the fraction of particles that remain in focus over time as a 

function of their diffusion constant. We used the following setting for Spot-On analysis in the 

manuscript: TimePoints = 8; BinWidth = 0.010; JumpsToConsider = 4; MaxJump = 5.05; 

https://github.com/alecheckert/saspt
https://github.com/alecheckert/saspt


ModelFit = CDF-fitting; NumberOfStates = 3; FitIterations = 3; FitLocErrorRange 

= 0.010-0.075; LocError = 0.035; Dbound range = 0.0001-0.05; Dfree range =0.5-

25. 

 

Slow-SPT analysis 

To extract residence times from slow-SPT data, we used long exposure times (50 ms, 100 ms, or 

250 ms) to motion-blur freely diffusing molecules into the background3,29–31. We then recorded 

the trajectory length of each ‘bound’ molecule and used these to generate a survival curve (1-

CDF), and performed double-exponential fitting to estimate the unbinding rates for non-specific 

binding (Kns) and specific binding (Ks). We note that localization errors can cause both false-

positive and false-negative detections. The Kns is likely to be contaminated by localization errors 

(e.g., from molecules close to being out-of-focus) and experimental noise. To filter out 

contributions from tracking errors and slow-diffusing molecules, we applied an objective threshold 

as previously described to consider only particles tracked for at least Nmin frames. To determine 

Nmin, we plotted the inferred residence time as a function of Nmin and observed convergence to a 

single value after ~2.5 s. We thus used this threshold to determine the value of Ks. To correct the 

biases from photobleaching, cell drifting, and background fluctuating, we assume that all these 

factors should affect H2B-HaloTag to the same extent as those affecting YY1-HaloTag. We can 

use an apparent unbinding rate for H2B-HaloTag as Kbias, consistent with our FRAP analysis. Thus, 

we performed the slow-SPT experiments for YY1-HaloTag and H2B-HaloTag with the same 

camera and laser settings on the same day. We then obtained the residence time as: 

𝜏s =
1

𝑘𝑠 − 𝑘𝑏𝑖𝑎𝑠
=

1

𝑘s, true 
 

FRAP image analysis 

To quantify FRAP movies, we wrote a pipeline in MATLAB (v2021a). Briefly, our algorithm 

automatically detects the bleached spot, the background spot, and the nucleus segments by 

Gaussian smoothing, hole-filling, and segmenting a nucleus in a FRAP movie. Cell drift is also 

automatically corrected by the optimal linear translation in x and y. Next, we quantify the bleach 

spot signal as the mean intensity of a slightly smaller region, which is more robust to lateral drift. 

The FRAP signal is corrected for photobleaching using the measured reduction in total nuclear 

fluorescence and internally normalized to its mean value during the 20 frames before bleaching. 

Finally, corrected FRAP curves from each single cell were averaged to generate a mean FRAP 

recovery. We used the mean FRAP recovery in all figures and for model-fitting. 

Model selection is critical to infer the parameters from FRAP experiments. Sprague et al.32 

suggested that when: 

𝑘ON
∗ 𝑤2

𝐷FREE
≪ 1 and 

kOFF

kON
∗ ≲ 1 

Then a ‘reaction dominant’ FRAP model is most appropriate. For YY1: 

kON
∗ w2

DFREE
= 0.00256 ≪ 1 



Thus, a reaction-dominant FRAP model is the most suitable choice for YY1’s FRAP modeling. 

Sprague et al.32 demonstrated that the FRAP recovery depends only on kOFF in the reaction-

dominant regime. We thus fit the FRAP curves to the model and applied the slower off rate to 

estimate the residence time according to τs =
1

koff
. 

 

Inferring parameters related to YY1’s target search mechanism 

We used the parameters inferred from our spaSPT and the residence time measurements from our 

FRAP or slow-SPT analysis. The detailed discussion is available in Hansen et al3. Briefly, from 

the Spagl State Array analysis, we determined that the total bound fraction for YY1 is ~31%. 

However, the total bound fraction (0 – 0.1 μm2/s) contains both YY1 molecules bound specifically 

to their target sites and non-specific interactions (e.g., sliding or jumping on DNA). We previously 

estimated the fraction that is non-specifically bound using a mutant CTCF with a His-to-Arg 

mutation in each of the 11 zinc-finger domains3. This CTCF mutant is virtually unable to interact 

specifically with its binding sites. The Spagl analysis estimated the bound fraction to be ~8.1% for 

this mutant in mESCs. Since we did not perform the spaSPT experiments for YY1’s DNA binding 

domain mutants, we thus inferred the FBOUND,specifc ~= FBOUND,total in this manuscript. 

We next determined the average time for YY1 to find its cognate site after dissociating from the 

previous site. We will use ‘s’ and ‘ns’, as abbreviations for specific and non-specific binding, 

respectively, in the following discussion. The pseudo-first-order rate constant for specific binding 

sites, k∗ON,s, is related to the fraction bound by: 

𝐹BOUND,S =
𝑘ON,s

∗

𝑘ON,s
∗ + 𝑘OFF,s

∗ ⟺ 𝑘ON,s
∗ =

𝐹BOUND,s𝑘OFF,s

1 − 𝐹BOUND,s
 

We determined the off-rate for a specific interaction in our residence time measurements. Thus, 

we can calculate k∗ON,s, which is directly related to the average search time for a specific YY1-

binding site: 

𝜏search ,𝑠 =
1

𝑘ON,s
∗ =

1 − 𝐹BOUND,s

𝐹BOUND,s𝑘OFF,s
 

After plugging in these determined parameters of FBOUND,s and kOFF,s, we obtained total search 

times for YY1 of ~28.3 s in wild type mES cells, ~31.6 s in CTCF-depleted cells, ~61.4 s in 

RAD21-depleted cells. We inferred the residence time estimated from the slow-SPT data with 100 

ms exposure time or the FRAP analysis in this manuscript. 

 

 

Supplementary Methods References 

 

1. Ran, F. A. et al. Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8, 2281–2308 

(2013). 

2. Concordet, J.-P. & Haeussler, M. CRISPOR: intuitive guide selection for CRISPR/Cas9 genome 

editing experiments and screens. Nucleic Acids Res 46, gky354- (2018). 



3. Hansen, A. S., Pustova, I., Cattoglio, C., Tjian, R. & Darzacq, X. CTCF and cohesin regulate 

chromatin loop stability with distinct dynamics. Elife 6, e25776 (2017). 

4. Gabriele, M. et al. Dynamics of CTCF- and cohesin-mediated chromatin looping revealed by live-cell 

imaging. Science 376, 496–501 (2022). 

5. Natsume, T., Kiyomitsu, T., Saga, Y. & Kanemaki, M. T. Rapid Protein Depletion in Human Cells by 

Auxin-Inducible Degron Tagging with Short Homology Donors. Cell Reports 15, 210–218 (2016). 

6. Li, S., Prasanna, X., Salo, V. T., Vattulainen, I. & Ikonen, E. An efficient auxin-inducible degron 

system with low basal degradation in human cells. Nat Methods 16, 866–869 (2019). 

7. Testa, A. et al. Chromatin Immunoprecipitation (ChIP) on Chip Experiments Uncover a Widespread 

Distribution of NF-Y Binding CCAAT Sites Outside of Core Promoters*. J Biol Chem 280, 13606–13615 

(2005). 

8. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat Methods 9, 357–359 

(2012). 

9. Zhang, Y. et al. Model-based Analysis of ChIP-Seq (MACS). Genome Biol 9, R137 (2008). 

10. Ramírez, F. et al. deepTools2: a next generation web server for deep-sequencing data analysis. 

Nucleic Acids Res 44, W160–W165 (2016). 

11. Tu, S. et al. MAnorm2 for quantitatively comparing groups of ChIP-seq samples. Genome Res 31, 

131–145 (2020). 

12. Hsieh, T.-H. S. et al. Resolving the 3D Landscape of Transcription-Linked Mammalian Chromatin 

Folding. Mol Cell 78, 539-553.e8 (2020). 

13. Pettitt, S. J. et al. Agouti C57BL/6N embryonic stem cells for mouse genetic resources. Nat Methods 

6, 493–495 (2009). 

14. Servant, N. et al. HiC-Pro: an optimized and flexible pipeline for Hi-C data processing. Genome Biol 

16, 259 (2015). 

15. Yardımcı, G. G. et al. Measuring the reproducibility and quality of Hi-C data. Genome Biol 20, 57 

(2019). 

16. Sauria, M. E. & Taylor, J. QuASAR: Quality Assessment of Spatial Arrangement Reproducibility in 

Hi-C Data. Biorxiv 204438 (2017) doi:10.1101/204438. 

17. Ursu, O. et al. GenomeDISCO: a concordance score for chromosome conformation capture 

experiments using random walks on contact map graphs. Bioinformatics 34, 2701–2707 (2018). 

18. Durand, N. C. et al. Juicer Provides a One-Click System for Analyzing Loop-Resolution Hi-C 

Experiments. Cell Syst 3, 95–98 (2016). 



19. Crane, E. et al. Condensin-driven remodelling of X chromosome topology during dosage 

compensation. Nature 523, 240–4 (2015). 

20. Rao, S. S. P. et al. A 3D Map of the Human Genome at Kilobase Resolution Reveals Principles of 

Chromatin Looping. Cell 159, 1665–1680 (2014). 

21. Flyamer, I. M., Illingworth, R. S. & Bickmore, W. A. Coolpup.py: versatile pile-up analysis of Hi-C 

data. Bioinformatics 36, 2980–2985 (2020). 

22. Ardakany, A. R., Gezer, H. T., Lonardi, S. & Ay, F. Mustache: multi-scale detection of chromatin 

loops from Hi-C and Micro-C maps using scale-space representation. Genome Biol 21, 256 (2020). 

23. Matthey-Doret, C. et al. Computer vision for pattern detection in chromosome contact maps. Nat 

Commun 11, 5795 (2020). 

24. Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. 

Bioinformatics 26, 841–842 (2010). 

25. Nojima, T., Gomes, T., Carmo-Fonseca, M. & Proudfoot, N. J. Mammalian NET-seq analysis defines 

nascent RNA profiles and associated RNA processing genome-wide. Nat Protoc 11, 413–428 (2016). 

26. Hansen, A. S. et al. Robust model-based analysis of single-particle tracking experiments with Spot-

On. Elife 7, e33125 (2018). 

27. Tokunaga, M., Imamoto, N. & Sakata-Sogawa, K. Highly inclined thin illumination enables clear 

single-molecule imaging in cells. Nat Methods 5, 159–161 (2008). 

28. Heckert, A., Dahal, L., Tjian, R. & Darzacq, X. Recovering mixtures of fast diffusing states from 

short single particle trajectories. Biorxiv 2021.05.03.442482 (2021) doi:10.1101/2021.05.03.442482. 

29. Sergé, A., Bertaux, N., Rigneault, H. & Marguet, D. Dynamic multiple-target tracing to probe 

spatiotemporal cartography of cell membranes. Nat Methods 5, 687–694 (2008). 

30. Chen, J. et al. Single-molecule dynamics of enhanceosome assembly in embryonic stem cells. Cell 

156, 1274–85 (2014). 

31. Mazza, D., Abernathy, A., Golob, N., Morisaki, T. & McNally, J. G. A benchmark for chromatin 

binding measurements in live cells. Nucleic Acids Res 40, e119–e119 (2012). 

32. Sprague, B. L., Pego, R. L., Stavreva, D. A. & McNally, J. G. Analysis of Binding Reactions by 

Fluorescence Recovery after Photobleaching. Biophys J 86, 3473–3495 (2004). 

  

 



Supplementary Notes 
 

I. Technical controls of Micro-C assay 
To address if the fine-scale chromatin loops/dots detected in Micro-C are due to higher accessibility of 

micrococcal nuclease (MNase) to promoters and enhancers, we here cite other studies and present results 

of additional analyses on our Micro-C data that demonstrate accessibility biases are largely negligible. 

 

1. Micro-C data normalization 

The 3C-based assays involve a series of biochemical reactions that may introduce noise to the data 

analysis and the final results. Such noise must be eliminated before interpreting the data. Early 

normalization methods for Hi-C data focused on explicit factors causing noise. Factors like 

sequence uniqueness, GC content, uneven distribution of restriction sites across the genome may 

introduce biases into the 3C-based analysis1. As a solution to these issues, the Mirny and Aiden 

labs proposed using matrix balancing methods to handle all noise sources “implicitly”2,3. Two 

fundamental assumptions underlie the methods: 1) visibility across all genomic regions should be 

equal, and 2) all Hi-C biases are one-dimensional and factorizable. A balanced matrix should allow 

equal visibility to any genomic locus regardless of system biases, that is, a normalized matrix 

whose rows and columns sum to the same amount. In Micro-C/Hi-C analysis, three primary matrix 

balancing algorithms are commonly used, including "the square root of vanilla coverage (VC)", 

"Knight-Ruiz (KR)", and "Iterative Correction and Eigenvector decomposition (ICE)". The idea 

of VC is similar to coverage normalization as it divides each matrix element by its row sum and 

column sum to eliminate different sequencing coverage of each locus. ICE and KR repeat the VC 

process until all rows and cols sum to the same value and converge. Results from KR and ICE are 

typically nearly identical and highly reproducible. Additionally, we often performed distance 

normalization (e.g., observed/expected) to remove the bias caused by 1D distance-dependent 

interactions in 3C-based data. 

 

2. MNase digests chromatin uniformly 

Recent studies from the Henikoff and Längst labs have experimentally and computationally 

addressed this issue4,5, indicating that MNase equally accesses DNaseI-hypersensitive and non-

hypersensitive sites, sites of active and inactive transcription, and euchromatin as well as 

heterochromatin (see Fig.9 in Chereji et al, Fig.4 in Schwartz et al, and a snapshot from Chereji et 

al in Supplementary Fig. 1 below). They also state that “although heterochromatin and 

euchromatin appear different when observed cytologically at low resolution, at the molecular 

level, MNase and other proteins can access heterochromatin regions at rates similar to those of 

accessing euchromatin”. We thus conclude that MNase can digest chromatin uniformly across the 

genome regardless of its accessibility level. 

 



 

 
 

3. Micro-C is not biased toward chromatin accessible regions 

Previously, we and others have independently demonstrated that Micro-C contacts are not biased 

toward highly accessible chromatin regions6–8. Notably, a recent Micro-C-based technique, Micro-

Capture-C (MCC), that focuses on the interactions around promoter regions also did not find 

substantial bias toward DNaseI hypersensitive sites8. To further support this point, we provide key 

results below demonstrating that Micro-C data is not affected by chromatin accessibility levels. 

We thus conclude that the E-P interactions captured by Micro-C represent bona fide proximal 

chromatin contacts. 

• When we analyzed Micro-C reads as single-end data like ChIP-seq or MNase-seq, we do 

not observe any apparent correlation with chromatin accessibility. In Supplementary Fig. 

2, panel i, we show that neither raw (r2 = 0.12) nor balanced (r2 << 0.1) Micro-C data show 

substantial correlation with ATAC-seq signal. While the raw Micro-C data shows an anti-

correlation to ATAC-seq around ATAC-seq peaks, this trend disappears after matrix 

balance (Supplementary Fig. 2, panel ii). We note that all the Micro-C data in this 

manuscript were normalized either by matrix balancing (detailed in the Methods section).  

• If contacts at accessible promoters/enhancers were artifactually amplified by Micro-C, we 

should expect them to be far more prevalent than contacts at polycomb/heterochromatin 

regions. However, genome-wide P(s) analysis shows no evidence of significant differences 

in contact probability for different types of chromatin regions, including accessible 

promoters and enhancers, Polycomb-bound and heterochromatic domains, within a 500-kb 

range (Supplementary Fig. 2, panel iii). 

• As we showed in our previous work6, very deeply sequenced Hi-C data9 can recapitulate 

some E-P loops detected by Micro-C (Supplementary Fig. 2, panel iv). While these dots 

in Hi-C are much fuzzier and their precise locations are often indiscernible, the example 

below clearly indicates that they are present in both data. It is widely accepted in the 3D-

genome field that Hi-C has minimal bias towards highly accessible chromatin, so contact 

enrichment around E-P interactions present in both methods cannot be an artifact of Micro-

C. Critically, Micro-C can further resolve what appears as a large blurry dot in Hi-C into 

multiple finer-scale dots and pinpoint the precise location of their interactions 

(Supplementary Fig. 2, panel iv, zoomed-in box), indicating that Micro-C is a superior 

method to Hi-C in identifying fine-scale interactions.  

Supplementary Fig. 1. Nucleosome occupancy mapped in Drosophila S2 cells by MNase-seq. 

Rightmost panel: green (HP1-bound), yellow (active), red (active), blue (Polycomb-bound) and black 

(repressive) chromatin states defined in78 



 

 
 

4. 1D coverage does not explicitly affect loop calling in the high-resolution data 

To test whether loop calling is affected by coverage in our data, we analyzed “1D coverage vs. the 

number of significant loops per locus”. Supplementary Fig. 3 below shows a similar trend across 

all resolutions, suggesting that 1D coverage does not explicitly affect dot calling in the high-

resolution data (Wilcoxon Rank Sum and Signed Rank Tests). We also included the balanced data 

that demonstrates the number of loops is not dependent on the coverage. 

 

 

Supplementary Fig. 2. Quality control of Micro-C analysis. i) Scatter plots with density heatmap compare the 

correlation between Micro-C reads coverage per kb (x-axis) and ATAC-seq signal per kb (y-axis). Neither raw 

Micro-C data (r2 = 0.11) nor the balanced data (r2 << 0.01) show substantial correlation with ATAC-seq signal. ii) 

Histogram shows the genome-wide averaged signal enrichment of ATAC-seq (left), Micro-C raw signals 

(middle), or Micro-C balanced signals across a ±3-kb region. Data are grouped by the intensity of ATAC-seq from 

high to low. Raw Micro-C signals are slightly higher in regions with low ATAC-seq signals than in regions with 

high ATAC-seq signals. The balanced data shows homogeneous coverage throughout the genome. iii) Genome-

wide contact decaying P(s) analysis across the regions enriched with different chromatin features, including 

promoter, enhancer, polycomb, heterochromatin, and random loci. iv) Snapshots of Micro-C vs. Hi-C around 

Igf1r region. 



 
 

5. Micro-C analysis is not biased by global changes in chromatin interactions 

To test whether these normalization approaches can address global changes in genome 

organization and correct systemic biases, we computationally injected 3x more long-range 

interactions (> 2Mb) and inter-chromosomal interactions into wild-type Micro-C data 

(Supplementary Fig. 4, top panel). In this case, the artificially injected reads generated an extreme 

case of reads being redistributed to longer ranges (Supplementary Fig. 4, top panel). Importantly, 

the results of compartment strength, TADs, cohesin loops, and E-P/P-P loops are not affected by 

the global changes caused by artificial reads (Supplementary Fig. 4, bottom panels). We therefore 

conclude that matrix balancing and distance normalization can reveal the bona fide chromatin 

structures and differential chromatin interactions regardless of systemic biases and global changes. 

 

 
 

 

Supplementary Fig. 3. Quality control of loop calling with Micro-C data (raw and balanced signals) at different resolutions. 

The curves show the relationship between the number of loops being identified per locus (x-axis) and Micro-C reads coverage 

(y-axis; Top group=raw; Bottom group=balanced). A similar trend across all resolutions suggests that 1D coverage does not 

explicitly affect loop calling in the high-resolution data (Wilcoxon Rank Sum and Signed Rank Tests; n=37 biologically 

samples; Data are presented as mean values SD). 

Supplementary Fig. 4. Micro-C analysis is not biased by global changes in chromatin interactions. 



 

 

II. Technical controls of auxin-inducible degradation 

1. The effect of basal degradation due to degron leakiness 

To determine to what extent degron leakiness may affect our “untreated” cells, we quantified 

CTCF, RAD21, WAPL, and YY1 protein levels in each degron clone and compared them to wild-

type cells by Western blot (Extended Data Fig. 2b-c). We also conducted correlation test, 

reproducibility tests and differential analyses of all untreated samples in ChIP-seq (Extended Data 

Fig. 3a-c), Micro-C (Extended Data Fig. 4a-d), and RNA-seq data (Extended Data Fig. 5a). 

Although CTCF-AID, RAD21-AID, and YY1-AID cell lines show some basal degradation (~40%, 

~30%, ~25% reduction of protein levels compared to wild type cells, respectively), we find no 

significant changes in chromatin association, 3D genome organization, or transcriptome in these 

untreated cells. The results of our quality controls are summarized below in Supplementary Fig. 

5a. 

 

Consistent with differential expression analysis identifying only a few significantly altered genes 

after 3-hour depletion, Principal component analysis (PCA) of RNA-seq and mNET-seq revealed 

that all the clonal cell lines  derived from the C59 parental clone (see Methods for details; control 

(C59), ∆CTCF (C58), ∆RAD21 (F1), ∆WAPL (C40) clones) with or without IAA treatment are 

clustered together, except for cells depleted of RAD21 after 12 and 24 hours (DEGs > 1000). 

Additionally, we found that YY1-depleted cells are clustered separately from C59-derived cells 

and are more similar to wild-type JM8.N4 cells. The results of PCA are summarized below in 

Supplementary Fig. 5b. 

 

 
 



 
 

2. The effect of CTCF, cohesin, and WAPL depletion on cell cycle and cell death 

Consistent with previous reports10,11, CTCF or WAPL depletion does not cause cell cycle 

abnormalities and cell death within 24 hours of treatment with indole-3-acetic acid (IAA) 

(Supplementary Fig. 6), while RAD21 depletion leads to substantial cell cycle arrest at G2 and 

cell death within 6 hours of degradation (Supplementary Fig. 6). 

 

 
 

 
 

3. Summary of RNA-seq and nascent RNA-seq from previous studies and this 

study 

Our degradation time course revealed that CTCF depletion leads to immediate transcriptional 

deregulation of ~60 genes (padj < 0.01 & > 2-fold change) (Fig. 3h and Extended Data Fig. 5c-

d). The result is consistent with a PRO-seq analysis 12 that reported ~122 DEGs (padj < 0.05 & > 

2-fold change) after 4 hours of CTCF depletion. While RAD21 depletion for 3 hours did not cause 

significant transcriptional changes, extended cohesin depletion led to drastic transcriptional 

Supplementary Fig. 5. a) The effect of basal degradation due to degron leakiness. b) Principal component analysis of RNA-

seq (left panel) or mNET-seq (right panel) shows the separation of samples. X-axis: the scores of the first component (PC1). 

Y-axis: the scores of the second component (PC2). Cell lines derived from the C59 parental clone (C59, CTCF, RAD21, or 

WAPL cell lines) are clustered together, except for 12- and 24-hour RAD21 cells. We note that YY1 cell lines derived 

from another clone expressing AtAFB2 protein are clustered separately and more similar to the wild-type JM8.N4 cells. 

Supplementary Fig. 6. Cell cycle and death analysis. (Left) Representative cell cycle distribution is shown in the top panel. 

G1 and G2/S phases are separated by FxCycle violet staining. G1/G2 (x-axis) and S phases are separated by EdU Alexa 488 

staining (y-axis). Bar graph shows cell cycle distribution across the degradation time course for parental and target-depleted 

cell lines. (Right) Curves show the cell death rate in wild-type, parental, and target-depleted cells across a degradation time 

course. Statistical test: Two-sided t-test compared to time=0. *: p-value < 0.01  



deregulation (over thousands of DEGs), possibly because of the secondary effects such as cell 

cycle defects (Fig. 3h and Extended Data Fig. 5c-d). While our WAPL depletion clearly increases 

the fraction of cohesin retention on chromatin (~35%) (Extended Data Fig. 2f) and expands the 

grid of cohesin loops in Micro-C maps (Extended Data Fig. 4h), we do not detect a global effect 

on transcription across the time course (~10 DEGs, padj < 0.01 & > 2-fold change) (Extended Data 

Fig. 5c-d), contradicting the previous study that found ~779 DEGs (padj < 0.05) after 6-hour WAPL 

depletion using TT-seq11. We noticed that we have used a more stringent cut-off to call DEGs than 

other studies. By adjusting the threshold to padj < 0.05, we can detect more DEGs in the range 

comparable to previous studies (DEGs=~394).  

 

Together, we conclude that 1) our mNET-seq method is sensitive to massive transcriptional 

alterations; 2) our mNET-seq results largely agree with previous reports; and 3) many of the DEGs 

detected using “padj < 0.05” fail to survive with “padj < 0.01 & 2-fold change”, indicating that these 

changes to gene expression are mild (see Table below). 

 

 
 

 
 

 

III. Additional ChIP-seq analysis compared to previous studies 

1. Proteins that enriched at Enhancer, promoter, Cohesin loop anchors 

We plotted ChIP-seq data for various histone marks, TFs, and chromatin remodelers over the major 

types of loop anchors (Supplementary Fig. 7). Consistent with our previous characterization of 

the subtypes of chromatin structures below the scale of TADs6 as well as a recent imaging study13, 

loop anchors enriched in CTCF and cohesin generally do not colocalize with sites of active 

transcription. In contrast, various TFs, coactivators, and Pol II are associated with E-P and P-P 

anchors.  

* Data in this study are colored with darker shade. 

* This manuscript reports the results obtained with the most stringent cut-off (padj < 0.01 & > 2-fold change after LFC shrinkage). 

 



 

 
 

 

 

2. Cohesin occupancy at active promoters 

It has been reported that cohesin is also positioned by actively transcribing Pol II and by the 

transcription machinery14,15 but the ChIP signal at these putative “CTCF-independent” loci is 

generally quite weak16 (Supplementary Fig. 8a). Specifically, promoter-bound cohesin peaks 

were barely detectable in untreated cells, and though they slightly increased after CTCF depletion, 

we could still only detect a few thousand upregulated cohesin peaks upon CTCF degradation 

(Supplementary Fig. 8a-b)14. We thus suggest that in the absence of CTCF, the transcription 

machinery may halt cohesin extrusion but not as effectively as CTCF does. Whether the promoter-

bound cohesin peaks detected after CTCF depletion are functional remains to be determined.  

 

 

 
 

3. WAPL and cohesin occupancy near SOX2/OCT4 binding sites 

WAPL depletion leads to cohesin retention on chromatin17, appreciable both by ChIP-seq (Fig. 

3c-e, Extended Data Fig. 3e-g) and by salt fractionation, (Extended Data Fig. 2f, orange box). 

A recent study reported that thousands of cohesin peaks are lost near SOX2 and OCT4 binding 

sites after WAPL depletion11. Nonetheless, we did not observe such change (Supplementary Fig. 

9), perhaps due to differences in WAPL degradation levels or the duration of depletion. Taken 

together, our ChIP-seq data confirmed effective degradation of loop extrusion factors within 3 

hours and largely recapitulated previous observations10,16,18. 

 

Supplementary Fig. 7. Heatmaps of mNET-seq and ChIP-seq signal enrichments in a  3-kb window around the four 

primary types of loop anchors. 

Supplementary Fig. 8. a) Snapshot of an example showing the position and level of cohesin at promoters (red shade) after 

CTCF degradation. b) MA plots showing the differential ChIP-seq peaks of RAD21 and SMC3 in the CTCF-depleted cells. 

The differential peaks (adjusted p-value < 0.05) are colored in red. X-axis: mean observations of UT and IAA cells. Y-axis: 

log2 fold-change comparing the UT and IAA-treated cells. 



 
 

 
 

 

IV. Additional notes and analysis of chromatin loops 

1. Loop extrusion model 

Elegant experiments combining acute protein depletion of CTCF, cohesin, and cohesin regulatory 

proteins with Hi-C or imaging approaches have revealed the role of CTCF and cohesin in 

regulating the first two levels, TADs and compartments10,18–21. These studies have shown that 

while CTCF plays only a minor role in compartmentalization, CTCF and cohesin removal largely 

eliminates TADs and chromatin loops anchored by these proteins across the genome. CTCF and 

cohesin are thought to form TADs and loops through DNA loop extrusion22,23. This model posits 

that cohesin extrudes bidirectional loops until it encounters convergent and occupied CTCF 

binding sites. When averaged across cell populations, the extruded chromatin appears to be 

spatially organized into a self-interacting domain (TAD or loop domain), and CTCF binding sites 

constitute the domain boundaries that restrict inter-domain interactions. Halting of cohesin 

extrusion at CTCF sites sometimes gives rise to sharp corner peaks in contact maps, known as 

loops or corner dots. WAPL, a cohesin unloader, releases cohesin from chromatin and WAPL 

depletion therefore increases cohesin residence times as well as the amount of cohesin on 

chromatin19,21.   

 

2. Example of the consequences of perturbing CTCF/Cohesin 

Paradigmatic experiments focusing on mouse development suggested that TAD disruption through 

inversion or deletion of CTCF sites around developmental genes such as Epha4, Kcnj, or Ihh can 

cause severe limb malformation24. Similar studies at the locus encoding the morphogen Sonic 

hedgehog have led to somewhat inconsistent effects on transcription and developmental 

phenotypes, perhaps due to manipulation of different CTCF sites25,26. Furthermore, CTCF and 

cohesin appeared to be crucial to some biological processes such as neuronal maturation27 and 

lipopolysaccharide-induced inflammatory response28, but their presence seemed dispensable in 

other cases such as neuronal activity-dependent transcription27 and immune cell 

transdifferentiation28. 

 

3. E-P/P-P interacts across TAD boundaries 

Our data reporting that ~30% of loops cross a TAD boundary are largely consistent with previous 

studies. First, a recent CRISPRi-based enhancer screening reported that ~30% of E-P interactions 

Supplementary Fig. 9. Profiles of genome-wide averaged ChIP-seq for CTCF, RAD21, SMC1A, and input around the 3-

kb region of SOX2 or OCT4 peaks in WAPL-depleted cells. 



do not fall into the same TAD29. Second, promoter Capture Hi-C experiments30 also observed that 

~24% of promoter-centered interactions are not constrained within the same TAD, which aligns 

with our findings. Third, emerging evidence by single-cell Hi-C and super-resolution imaging 

indicates that TADs are dynamic chromatin structures that constantly form and dissolve31–35. 

Associations between regions in the same TAD are not necessarily pervasive and interactions are 

common between neighboring TADs36,37. Cohesin can traverse across boundaries frequently and 

mediate domain intermingling38,39. Fourth, the latest evidence indicates that the perturbations of 

TAD boundaries around the Sox2 and HoxD regions are mostly harmless to embryo 

development40,41, suggesting that high affinity enhancer-promoter interactions can overcome 

structural barriers. Finally, since the eQTL analysis in Delaneau et al., is based on the correlation 

of a set of ChIP-seq data for histone modifications, the cis-regulatory domains (CRDs) identified 

in this study most likely represent local chromatin domains segregated by chromatin states (e.g., 

active or inactive regions) rather than long-range E-P loops. It is uncertain whether this 

computational structure fully reflects 3D genome structures in situ. A recent study indicates that 

analysis of chromatin loops outperforms eQTL in explaining neurological GWAS results, 

suggesting there may be much ampler information in high-resolution 3D genome maps than in 

eQTL analyses42. Together, our findings of cross-TAD interactions are largely consistent with 

other studies, arguing that communication between enhancers and their cognate genes in another 

domain is not uncommon. 

 

4. What are the 10-20% CTCF/cohesin-sensitive E-P/P-P loops? 

Previous studies reported that CTCF and cohesin appear to mediate the long-range E-P loops but 

have a lesser impact on short-range loops43. Our genome-wide analysis reveals that long-range 

chromatin loops are more susceptible to disruption (Extended Data Fig. 6g), with CTCF/cohesin-

sensitive loops being much larger (median = ~85 kb for E-P and ~102 kb for P-P) than the 

insensitive loops (median = ~41 kb for E-P and ~71 kb for P-P). According to the loop extrusion 

model, cohesin might either directly bridge E-P interactions at TAD boundaries, or the process of 

extrusion might inherently increase the frequency of long-range E-P interactions44. To test this 

possibility, we compared the genomic features of the CTCF/cohesin-sensitive loops relative to 

TAD boundaries. CTCF and cohesin occupancy at the anchors of these loops is much higher than 

at the unaffected loop anchors (Extended Data Fig. 6h), suggesting that these loops may overlap 

with TAD boundaries, where CTCF and cohesin proteins are highly enriched. However, only ~5% 

of the CTCF/cohesin-sensitive loop anchors are located within a 1-kb window surrounding TAD 

boundaries (Fig. 4f-g). In fact, most of them are located even farther away than the unaffected 

loops (Fig. 4f-g and Extended Data Fig. 6i) and tend to interact with another DNA locus within 

the same TAD without crossing the boundary (Fig. 4g). 

 

5. Loop at specific CTCF sites 

Interestingly, in comparison to a recent finding12, our data show only moderate CTCF persistence 

at architectural sites (e.g., loop anchors or TAD borders) upon CTCF degradation (Supplementary 

Fig. 10a). Interactions anchored by CTCF binding sites associated with mitotic bookmarking45 



and frequently occupied sites in single-molecule foot-printing (SMF) data46 also did not persist 

upon CTCF degradation (Supplementary Fig.10b-c). Given the near-complete ablation of 

cohesin loops after CTCF degradation (Fig. 3f-g), we suggest that the persistent residual CTCF 

proteins, if any, are insufficient to halt or position cohesin. 

 

 

 

 

 

V. Additional introduction and analysis of YY1 

1. Probing YY1 as a candidate regulator of E-P and P-P links 

Our finding that E-P and P-P interactions remain largely intact in the absence CTCF, cohesin, and 

WAPL suggests that other proteins are likely responsible for E-P and P-P interactions.  To address 

this, we searched for factors specifically enriched at E-P and P-P loop anchors. BRD2, BRD4, 

P300, ESRRB, SP1, Mediator, YY1, pluripotency TFs, and chromatin remodelers are all broadly 

enriched at enhancer and promoter loop anchors (Supplementary Fig. 7). Among them, Mediator 

has been proposed to function as a structural complex to bridge E-P interactions47 and promote the 

folding of sub-TAD structures48, but two recent studies showed that loss of Mediator does not 

strongly affect E-P interactions49,50.  

We therefore instead focused on YY1, a multifunctional zinc finger-containing TF (Extended 

Data Fig. 7a) that is ubiquitously expressed, highly conserved, and essential for embryonic 

development in mammals51. Heterozygous YY1 mutations cause Gabriele-de Vries syndrome, 

which is characterized by developmental delay and intellectual disability52. YY1 has been 

implicated in chromatin looping, particularly during early neural lineage commitment53, and a 

previous study suggested it to be a master structural regulator of E-P interactions54. However, YY1 

redistribution on chromatin triggers little or no change in H3K27ac and H3K27ac-anchored 

HiChIP interactions upon rapid induction of erythroid differentiation55. These confounding results 

led us to investigate the role, if any, of YY1 in mediating E-P interactions using Micro-C and YY1 

depletion. 

Supplementary Fig. 10 a) Profile of differential ChIP-seq signal for CTCF in a 3-kb window around loop anchors (gray) or 

non-loop anchors (blue). b) APA for loops where CTCF is bound (left) or lost (right) at the anchors during mitosis. c) APA 

for loops with either high (left) or low (right) CTCF occupancy characterized by single-molecular footprinting (SMF) assay at 

their anchors7. 



 

2. Spatial cluster analysis of YY1 

To further link the spatial relationship of YY1 proteins with their different diffusion rates, we 

reconstructed the spatial distributions of trajectories by their likelihood of diffusion coefficients at 

0.02, 0.1, 1, 5, and 20 µm²s-¹. Consistent with the live-cell imaging and PALM results, the 

immobile fraction showed apparent cluster-like structures with ~12 – 30 trajectories per spot (from 

a total of ~15,000 trajectories per cell), while faster moving YY1 subpopulations showed weaker 

propensity to cluster within a constrained area (Supplementary Fig. 11a). Overlays of the 

immobile trajectories with the other fractions showed that the molecules within the bound regime 

had nearly complete overlap, but the faster-diffusing molecules were less likely to co-localize with 

the immobile clusters (Supplementary Fig. 11b). The averaged (Supplementary Fig. 11b, insets) 

and differential cluster signals (Supplementary Fig. 11b, bottom panel) between the immobile 

and the other fractions (Supplementary Fig. 11a) further confirmed that the faster-moving 

molecules more frequently travel to areas in the vicinity of the immobile clusters. These results 

are consistent with chromatin bound YY1 proteins forming clusters, while the diffusing YY1 

molecules appear to search the 3D nuclear space outside of the clusters. We previously made 

similar observations for CTCF56–58. 

 

 

 

 

Supplementary Fig. 11. a) Spatial reconstruction of spaSPT data for YY1’s trajectory densities. YY1 trajectories are binned 

by diffusion coefficients, as indicated (left). Segmentation of YY1 clusters with the reconstructed images from the spaSPT 

data. Individual YY1 clusters are colored (right). b) Spatial reconstruction of spaSPT data for YY1’s trajectory densities. YY1 

trajectories are binned by diffusion coefficients as indicated. The bound trajectories are colored in red. The diffusing 

trajectories are colored in green and overlaid with the bound trajectories. The insets show the averaged signals for all 

identified clusters aggregating at the center of the plot with the same imaging overlays. Differential signals comparing each 

diffusing fraction to the bound fraction are plotted at the bottom. The divergent colormap shows a higher signal than the 

bound in red and lower than the bound in blue. 



 

3. Dynamics of YY1 vs CTCF 

While YY1’s average residence time of ~13-60 seconds is similar to that of many TFs, it is much 

shorter than the residence times of known structural factors such as CTCF (~1-4 min) and cohesin 

in G1 (~20-25 min) in mESCs56. These results may explain why YY1 depletion has a marginal 

effect on chromatin looping compared to CTCF and cohesin depletion. CTCF/cohesin loops are 

generally stronger and almost completely lost upon CTCF/cohesin depletion (Fig. 3f-g), whereas 

YY1 loops tend to be weaker and less affected by YY1 depletion (Fig. 5e&g). Furthermore, the 

chromatin bound fraction of YY1 (~30%) is considerably smaller than that for CTCF (~50-70%)56. 

 

 

VI. Additional discussion 

1. Consideration of phase-separation mechanism for gene regulation 

Phase-separated transcriptional condensates have been proposed to mediate gene activation and E-

P interactions59. Pol II, Mediator, BRD4, and many TFs containing intrinsically disordered regions 

(IDRs) that tend to aggregate into local-high concentration hubs in the nucleus60–62. Hub formation 

is thought to be a general property of TFs used to engage with regulatory elements and keep them 

in the spatial vicinity for gene regulation59–62. While not specifically addressed in this study, recent 

studies employing acute depletion/inhibition of Mediator and BRD4, which are supposed to be 

key players in condensate formation, also found no drastic effects on E-P interactions49,50,63. Thus, 

condensates also do not seem to be generally required for the maintenance of E-P interactions. 

 

2. Evidence of CTCF and cohesin regulates gene expression 

The evidence that CTCF and cohesin can directly or indirectly regulate E-P interactions and affect 

gene expression in many cases is overwhelming. This evidence includes the following: 1) Insertion 

of CTCF sites between an enhancer and a promoter can both reduce E-P interactions and strongly 

reduce gene expression64–66; 2) CTCF binding site silencing67,68 or genetic CTCF binding site 

loss26,69,70 can cause aberrant E-P interactions and gene expression and drive disease; 3) Inversion 

or repositioning of CTCF sites can redirect E-P interactions that cause gene misexpression and 

diseases71,72. Two recent studies have also proposed variants of a time-buffering model based on 

mathematical modeling of E-P interactions and gene expression73,74. In both models, individual E-

P interactions are memorized – either as long-lived promoter states66 or as long-lived “promoter 

tags”73 – such that gene expression can be temporally uncoupled from E-P interactions, yet still be 

causally linked. 

 

3. Consideration of other mechanisms by which cohesin regulates E-P/P-P loops 

We probed the nuclear dynamics of two additional transcription factors, KLF4 and SOX2, by 

spaSPT and found that their bound fractions were reduced by ~20% 3 hours after cohesin 

degradation (Extended Data Fig. 9g). Furthermore, while our paper was under review an 

independent study from Gordon Hager’s group 75 found precisely the same thing: for the TF 



glucocorticoid receptor, cohesin depletion leads to decreased chromatin binding. Thus, while we 

agree with the reviewer that our model was too strong a leap based on a single TF (YY1) in the 

original submission, since we now have evidence for 4 TFs (YY1, KLF4, SOX2, GR) in two 

different cell types (mESCs, human cancer cells) and from two different labs, we now believe that 

the evidence is strong enough to invoke a role for cohesin in facilitating TF binding.  

 

Finally, the question that “How is an alternative model in which the act of loop extrusion acts to 

stir the nucleoplasm, resulting in higher diffusion and faster search times?”. However, loop 

extrusion has the opposite effect – it makes chromatin diffusion slower. Indeed, two recent studies 

(76,77 have both shown that cohesin depletion leads to a ~2-4-fold increase in chromatin diffusion 

dynamics. However, faster chromatin motion is extremely unlikely to noticeable accelerate the TF 

target search.  

 

To understand why consider the Smoluchowski equation (Smoluchowski, Versuch einer 

mathematischen Theorie der Koagulationskinetik kolloider Losungen, 1916) for diffusion-limited 

bi-molecular rate constants: 

𝑘ON = 4𝜋(𝐷TF +𝐷DNA)(𝑅TF + 𝑅DNA)𝑏 

 

Where D is the diffusion coefficient, R is the size of the TF or DNA binding site, and b is the cross 

section. Using typical diffusion coefficients of 𝐷TF = 3
μm2

s
 and 𝐷DNA = 0.01

μm2

s
, we can 

calculate how much TF search would be expected to be speed up by a 4-fold increase in chromatin 

diffusion (as observed during cohesin depletion): 

𝑘ON,ΔRAD21

𝑘ON,UT

=
4𝜋(𝐷TF +𝐷DNA)(𝑅TF + 𝑅DNA)𝑏

4𝜋(𝐷TF +𝐷DNA)(𝑅TF + 𝑅DNA)𝑏
=
𝐷TF + 𝐷DNA

𝐷TF + 𝐷DNA

=
3 + 0.04

μm2

s

3 + 0.01
μm2

s

= 1.01 

In other words, the TF search time would be expected to increase by 1% due to cohesin depletion 

based on chemical kinetics. Instead, we observe the opposite – the 2.2-fold slower TF search for 

YY1. Thus, both the magnitude (1% increase vs. 54% decrease) and the direction (chemical kinetic 

predicts faster search, we observe much slower search) are inconsistent with the model proposed 

by the reviewer. In conclusion, we feel confident in ruling out changes in chromatin diffusion due 

to cohesin depletion as a possible explanation for the reduction in TF search kinetics. 
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