
Supplementary Material

SUPPLEMENTARY NOTE 1: DETAILS ON THE EXTENDED SIR-X MODEL

The SIR-X model [1] was originally devised to model the transition from exponential

to sub-exponential growth due to the implementation of non-pharmaceutical interventions

(NPIs). To also account for the taking back of NPIs, a couple of modifications are therefore

needed to the original model. In the following we give a description of how we extended

the baseline SIR-X model in order to implement such processes. We also discuss addi-

tional extensions to the model, such as introducing age-structured populations and multiple

calibration periods. Note that this document only discusses aspects of the model implemen-

tation not described or treated different than in the original model description. The model

has been individually calibrated to each of the nine federal states of Austria.

A. Compartments for quarantined infected and susceptibles

The baseline model includes two different types of NPI. First, there are NPIs that act on

the susceptible population (social distancing, home office, etc.). Second, there are NPIs that

act on the infected population, in particular an accelerated detection of cases (e.g., testing

and contact tracing). Clearly, easing of NPIs affects primarily the first type of NPIs, while

it might be reasonable to expect that NPIs targeting the infected population might even

increase in effectiveness.

The baseline SIR-X model is of the following form,

∂tS = −αSI − κ0S (1)

∂tI = αSI − βI − κ0I − κI (2)

∂tR = βI + κ0S (3)

∂tX = (κ+ κ0)I . (4)

We now introduce the following extensions, namely (i) having two compartments of contact-

reduced individuals (susceptibles, XS, and infected, i.e. isolated, XI) (ii) introducing an

easing of NPIs affecting susceptibles encapsulated in the rate κ1 ≥ 0, (iii) waning immunity

(parameter γ) as well as (iv) an age structure by labelling the age strata with index a. The
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extended SIR-X model is then of the following form,

∂tSa = −αcaa′SaIa′ − κ0Sa + κ1X
S
a + γRa (5)

∂tIa = αcaa′SaIa′ − βIa − κ0Ia − κIa (6)

∂tRa = βIa − γR (7)

∂tX
I
a = κIa (8)

∂tX
S
a = κ0Sa − κ1X

S
a . (9)

The compartment XI is the cumulative number of confirmed cases; it will be used to calibrate

the model. It is imperative to note that the model was explicitly designed to make statements

concerning XI . The compartment XS is now an explicit model representation of locked down

or socially distanced susceptibles. The parameter κ0 gives the inflow to this compartment

from the susceptibles (strength of corresponding NPIs), κ1 gives the outflow (how fast people

increase their levels of social contacts back to normal).

The matrix caa′ describes social mixing across age groups and gives the probability that

a contact (that is relevant for disease transmission) of a potential infectee of age a will be

with an infector of age a′, i.e. we have
∑

a′ caa′ = 1. In the model we worked with four age

groups covering the population between 0y and 99y in intervals of 25y.

B. Calibration

Calibration of the model parameters requires almost real-time information on social be-

haviour. We therefore used aggregate measures obtained from telecommunications data

from which we continuously derived indicators for the level of mobility in specific regions

and population groups; see [2, 3] for a technical description on how the telecommunication

data we processed. In particular, we monitored the median radius of gyration as a mobility

indicator and published results for these indicators periodically on our institute’s website[4].

Furthermore, information on social mixing by age, the matrix caa′ , has been obtained from

aggregated call detail records in which the entry caa′ is the probability that when someone

from age group a receives a call, the caller is a person from age group a′.

We acknowledge the limitation that phone calls are only a crude proxy for the measure-

ment of face-to-face contacts but work with the assumption that two persons are much more
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likely to have close physical contact with each other if they regularly call each other com-

pared to two individuals that never exchange phone calls. Further, this procedure allows

us to measure social mixing near real-time (typically, the mobility indicators and the age

matrix caa′ were available with a lag of two to three days), as particularly in the early phases

of the pandemic it was not clear how representative social mixing data obtained via surveys

from before the pandemic was for the current mixing behaviour in the society varying NPI

regimes.

Calibration for all model parameters except α and β takes place in different time windows

that roughly represent the different phases of the epidemic in Austria. The first phase

lasts from t = 0 to end of March and encompasses the “first wave”. With beginning of

April, Austria moved into a containment phase characterized by less than hundred new

confirmed cases per day. The second calibration phase ends mid-June where the daily cases

started to increase again with most days showing more than hundred new cases. The third

calibration phase lasts until the end August, when infection numbers started to increase

again, after which the fourth calibration phase commenced. The exact points upon which

new calibration time windows should be started were corroborated with the time-series of

the radius of gyration. Whenever this indicator showed a clear turning point signalling a

substantial change in how people react relative to the current NPI regime, we started a

new calibration window. In almost all cases this tracked closely with implementations and

easings of lockdowns, as previously described [2, 3].

Calibration is finally performed via the timeseries of the cumulative number of confirmed

cases XI =
∑

aX
I
a in each federal state of Austria and each time window. The basic

calibration procedure follows [1] alongside with the values for α and β, i.e. we solve the

model for solutions to the model parameters δ, κ, κ0 and κ1, as well as the initial condition

I(t = 0) via a trust region reflective algorithm (MatLab’s lsqnonlin function), where we seek

to minimize the mean squared error between the model and observed confirmed cases.
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SUPPLEMENTARY NOTE 2: DETAILS ON THE EPIDEMIOLOGICAL STATE

SPACE MODEL

The key idea of the model is to identify the trend in the Austrian Coronavirus case

numbers by isolating exogenous shocks, exogenous covariates and weekday effects from the

reported case numbers.

The model is implemented as a state-space model with exogenous data that takes log-

arithmized case numbers (yt) as observations and links them to a state vector of length 8,

which represents true level (x1t ), trend (x2t ), and weekday effects x3−8t of yt. Additionally,

exogenous variables that may affect the observations or the states are included.

The value of interest is (x2t ) the trend state in the state space model, i.e. the parameter

that describes the growth of the (true) case numbers and quantifies the local transmission

activity. The current trend and the effects from the covariates determine the forecast. This

annex gives details on how the model is specified and how external factors are identified and

represented in the model.

C. Specification and fitting of the model

The model is specified and fitted using the R-package MARSS [5, 6]. This package allows

fitting multivariate auto-regressive state space models with exogenous variables.

The basic structure of a MARSS is given by the following set of equations.

xt = Bxt−1 + Cct + wt, where wt ∼MVN(0, Q) and xt = x1t . . . x
8
t (10)

yt = Zxt + at + vt, where vt ∼MVN(0, R) (11)

x0 ∼MVN(π,Λ) (12)

where yt are observations; xt are states; ct and at are exogenous inputs; B, C, Z are

parameter matrices; π and Λ represent starting values and variance of the states that are

estimated in the model; and Q and R are diagonal matrices of variances that are estimated

in the model.

In the model, the observations yt are the logarithmic newly reported cases. The state

vector is of length 8. The first state (x1t ) represents the true “level” of daily new infections, i.e.

after controlling for weekday effects x3−8t , idiosyncratic measurement error vt and systematic
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measurement error at. The second state x2t represents the trend in daily infections and is

the primary variable of interest. States 3 to 8 represent weekday effects. Matrix B links xt

to xt−1 and given by a combination of a random walk (RW) of order 2 for x1−2 as well as

the sequence of weekday effects x3−8 and is given by:

B =



1 1 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 −1 −1 −1 −1 −1 −1

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0



(13)

Matrix Z links states xt to observations yt and is thus given by:

Z =
(

1 0 1 0 0 0 0 0
)

(14)

In our model, the data is transformed to represent changes in the relevant state or ob-

servation vector. The matrix C links the column of the data matrix to the relevant state

vector, which is the “trend” state for changes in immunization rates, NPIs, seasonality and

regional convergence and the level state for changes in the share of imported cases.

Since each regional model only has one observation vector, and there is only one exogenous

variable affecting the link between observations and the level state (i.e. the detection rate),

we encode changes in the detection rate in the model parameter at.

The R-package MARSS is used to fit the model using the Broyden-Fletcher-Goldberg-

Shannon (BFGS) Quasi-Newton algorithm.

D. Exogenous shocks

We define exogenous shocks as events which affect the reported case numbers but do not

represent a corresponding change in transmission activity. For example, the introduction of

a mass screening program is expected to increase detection rates and lead to higher reported

case numbers but this increase in the number of identified cases does not signal immediate

epidemiological changes. Likewise, import of a large number of cases that have acquired

5



the infection abroad following periods of increased travel activity increases reported case

numbers.

In both examples, the trend in new cases is inflated above what can be attributed to

reproduction of the Virus by local transmission; and forecasts based on the trend in new

cases are biased upwards. In correction of that phenomenon, we distinguish three cases:

1. Temporary or permanent changes in the detection rate are modelled as temporary or

constant effects on the relationship between the level state and the observations. For

example, an increase in the detection rate would result in an increase in at.

2. An increase in active cases imported from abroad increases the observed daily case

numbers but not does not necessarily change the transmission rates. A temporary

change in the rate of imported cases is modelled by an exogenous variable that adds

a certain number of cases to the level state.

3. Artificial shocks may also be created due to poor reporting. To anticipate reporting

delays we apply the following nowcasting approach: for each federal state, weekday

and lag (1 to 4 days) a nowcasting factor is calculated by taking the group-specific

mean of the ratio of the revised (i.e., after reported cases have been back-filled) and

the initial daily case number of the previous four weeks. The adjusted time series is

used for the model.

Isolation of exogenous shocks works best if case numbers are low and information from

contact tracing is available in a timely manner. We extract this information from cluster

analyses of the Austrian Agency for Health and Food Safety [7].

E. Weekday effects

We model weekend effects as a set of 6 states that affect the “level” state. Weekend

effects may vary over time in a first order random-walk (RW1) model, the variance of which

is identical for all weekend effects in a region and estimated in the model. The specification

of the weekend effects in the state space model follows the dynamic linear model dlmModSeas

in the dlm R-package [8, 9]; with the exception that weekend effects’ state noise is not set

to zero.
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F. Changes in NPI

Known changes in NPI explain both regional and temporal differences in transmission

activity. We model the effect of NPI on the trend state via an exogenous variable that

increments or decrements the trend state of a region by a specified amount. The extent of

that effect is estimated based on literature regarding the effect of NPIs (e.g. [10]). This

effect is spread over a period of 10 days.

G. Changes in immunization

Both vaccination and recovery reduce the share of population susceptible for infection

with SARS-CoV-2, albeit to a varying degree. We model the effect of immunization by calcu-

lating the percentage of people who are effectively protected from infection in a region. This

figure is generated from the number of vaccinated multiplied by vaccine effectiveness plus the

number of recovered multiplied by recovery effectiveness. Effectiveness of vaccination and

recovery with regard to infection probability is extracted from ratios of grouped incidence

rates (“screening method”). These effectiveness figures are updated for every forecast and

thus reflect both waning vaccine effectiveness and loss of natural immunity after recovery

as evident in the Austrian incidence data. The share of people effectively vaccinated can be

easily determined for the time frame of the forecast, since immunization is considered to be

in effect starting two weeks after the second dose.

We assume that a 1% increase in the share of people effectively protected cases approx-

imately a 1% decrease in the effective reproduction number. We compute a corresponding

effect on the trend state and code it an external variable.

H. Seasonal effects

Our model includes seasonality by including average UV index over time as an exogenous

factor, which is lowest in beginning of January, highest in beginning of July and has a

sinusoidal shape. [citation needed] Following the literature, we assume an effect of ±15%

on the effective reproduction number due to seasonality. We therefore construct a covariate

that adjusts the trend state by the daily difference (∆seas,t) for each day of the year (yd) as

follows:
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∆seas,t = 0.15 (cos(2πydt/365) − cos(2πydt−1/365)) (15)

The effect of this seasonal component has its largest effect on the trend state in mid-

October and mid-March but can be considered rather small in a given forecast that only

spans several days.

I. Regional convergence

Regional interdependence is modelled by assuming a degree of regional convergence in

the model. Due to computational efficiency, we fit the model separately for all regions as

well as for the whole country in a first step. We compute expected differences in trends due

to regional differences (NPIs, share of immunized population, ...) and assume that regional

trends converge to the national trend (adjusted by the aforementioned expected differences).

Convergence is implemented by taking the average of the regional and national trend state,

controlling for region-specific NPI.

J. Strengths and limitations

The Epidemiological State Space Model tries to identify and perpetuate the current trend

of local transmission activity by isolating the effects of factors such as seasonality, NPI,

weekday effects and immunization. The model however does not determine the individual

effects of these contributing factors.

The advantage of the model lies in its comparable small set of assumptions in the model

specification and parsimonious nature of time series smoothing and trend extrapolation.

Drawing from the rapidly growing literature on effect sizes of NPI and seasonality, researchers

do not need to make their own assumptions on these factors. However, the mapping of

current and planned NPI in Austria to effect sizes drawn from literature is challenging

and relies on subjective assessments based on qualitative data such as adherence of the

population to NPI. Thus, such assessments are crucial for the prediction of turning points

based on NPIs.
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Supplementary Figure 1. Distribution of length of stay of COVID-19 patients admitted to ICU

and normal wards based on Austrian hospital billing data [12] (Admissions from January to May

2021).

Sex Age group normal ward ICU

Male 0–39 0.92 0.10

Male 40–59 5.17 1.03

Male 60–79 20.62 5.00

Male 80+ 42.06 4.75

Female 0–39 0.83 0.06

Female 40–59 2.90 0.37

Female 60–79 15.42 2.54

Female 80+ 29.46 1.89

Supplementary Table I. COVID-19 hospitalisation rate for ICU and normal wards as percentage

of detected cases, by age and sex based on Austrian hospital billing data [12] (Admissions from

January to May 2021).
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Parameter Value

Share of normal ward patients with positive test and admissions on the same day 80%

Share of ICU patients with positive test and admissions on the same day 30%

Maximum Time from positive test to hospitalisation 4 days

Maximum Time from positive test to ICU admission 7 days

Share of ICU patients with subsequent normal ward stay 75%

Length of normal ward stay after ICU stay 7 days

Supplementary Table II. Model parameters for the hospital bed usage model
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