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S1. Derivation of Eq. (1)  

We consider an optical system composed of two layer metasurfaces that are separated 

by a distance z (Figure S1). The distributions of the Jones matrix values are denoted as 
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  for metasurfaces 1 

and 2, respectively, where (x1, y1) and (x2, y2) are the xy coordinates. As the single 

metasurface layer has mirror symmetry with respect to the transverse plane, the off-

diagonal elements of the Jones matrix should be identical, i.e, 1 1
12 1 1 21 1 1( , ) ( , )J x y J x y

and 2 2
12 2 2 21 2 2( , ) ( , )J x y J x y .  

 

Figure S1. Schematic view of a two layer metasurface system separated by a vertical distance z. The 

Jones matrixes of the two single layers are denoted as 1
1 1( , )J x y  and 2

2 2( , )J x y , respectively. 

The light is incident from the bottom of metasurface 1, with the electric fields at the incident and 

output planes of metasurface 1 denoted by 1
1 1( , )inE x y  and 1

1 1( , )outE x y , the electric fields at the 

incident and output planes of metasurface 2 denoted by 2
2 2( , )inE x y   and 2

2 2( , )outE x y  , 

respectively. J represents the equivalent Jones matrix of the whole structure. MS: metasurface. 
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We then derive the equivalent Jones matrix expression 2 2( , )J x y  of the whole two-

layer optical system. Considering the light is firstly incident on the metasurface 1 with 

polarization along x direction 1 [1 0]T
inE   , the electric field distributions passing 

through metasurface 1 is    

1 1 1
11 1 1 12 1 1 11 1 11

1 1 1 1 1
21 1 1 22 1 1 21 1 1

( , ) ( , ) ( , )1
( , )

0( , ) ( , ) ( , )
out

J x y J x y J x y
E x y

J x y J x y J x y

    
     
       

       (S1.1) 

After propagating a distance z, the electric field distributions 2
2 2( , )inE x y  at the 

bottom surface of metasurface 2 is  

1 1

1 1

1
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( , ) ( , , )

( , )
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       (S1.2)  

where we have used the Rayleigh–Sommerfeld diffraction formula to calculate the light 

propagation, 
2 1 2 1

1 exp( ) 1 2
( , , )

2

ikr z
f x x y y z i

r r r


 

     
 

  is the Rayleigh–

Sommerfeld impulse response, 2 2 2
1 2 1 2( ) ( )r x x y y z      , i is the imaginary 

unit,   is the wavelength and z is the distance between the two layers. 

The electric field passing through metasurface 2 at the output plane is  
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       (S1.3) 

Similarly, we can obtain the electric fields at the output plane of metasurface 2 with 

y-polarized incidence 1 [0 1]T
inE   as  
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     (S1.4) 

Based on Eqs. S1.3 and 1.4, we can obtain the equivalent Jones matrix of the two 

layer system with its mn (m, n=1, 2) component as  

1 1

2 1
2 2 2 2 1 1 2 1 2 1 1 1

1,2 ,

( , ) ( , ) ( , ) ( , , )mn mq qn
q x y

J x y J x y J x y f x x y y z dx dy


          (S1.5) 

This is the derivation of Eq. 1 in the main text.  

Alternatively, one can use the angular spectrum method to calculate the field 

propagation between the two layers. For this case, Equation S1.5 becomes  

2 1
2 2 2 2 2 2

1,2 ,

( , ) ( , ) ( , , ) exp( 2 ( ))mn mq qn
q u v

J x y J x y A u v z i ux vy dudv


        (S1.6) 

where 
1 1( , , ) ( , ,0) ( , , )qn qnA u v z A u v G u v z  , 2 2 2 1/2( , , ) exp( 2 ( ) )G u v z i z u v     

and 
1 1

1 1
1 1 1 1 1 1

,

( , , 0) ( , ) exp( 2 ( ))qn qn

x y

A u v J x y i ux vy dx dy    . 

The two methods are equivalent. However, for numerical calculation, errors are 

introduced due to the discretization of the functions. The two methods are applicable to 

in different scenes. For example, for the same sampling intervals, the Rayleigh–

Sommerfeld diffraction is suitable for long distance propagation[1] while the angular 

spectrum method is suitable for near field regions[2]. For our structures, the metasurface 

has a length size of hundred micrometers and sampled interval of 0.8 m. If we want 

to calculate the light propagation between the two layers (with a gap distance of 150 

micrometers), the angular spectrum method is more suitable. For the calculation of the 
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holography which is designed at a distance of few thousand of micrometers above the 

metasurface 2, the Rayleigh–Sommerfeld diffraction method is more suitable. As the 

expression of the Rayleigh–Sommerfeld diffraction is more concise, we use it in the 

main text and the following derivations.   

 

S2. The detail of the gradient descent optimization  

In this section, we provide the detail of the gradient descent optimization method to 

obtain the Jones matrix distributions of the two layer metasurfaces 1
1 1( , )J x y   and 

2
2 2( , )J x y   to design a target equivalent Jones matrix distribution 2 2( , )tJ x y  . For 

numerical calculations, all the planes are sampled to N N   equidistant grids with 

sampling intervals of x y P    . We define a loss of  

2 2 2

2 2 2 22
1 1 1 1

1
( , ) ( , )

4

N N
t

mase mn i j mn i j
m n i j

L J x y J x y
N    

           (S2.1) 

which is the mean of the absolute squared error between the target t
mnJ   and the 

calculated Jones matrixes mnJ  of all the four components. Here, mnJ  is a function 

of the Jones matrix components of the two single layers (see Eq. S1.5 or Eq. S1.6). 

The core step of the gradient descent optimization method is to calculate the gradient 

of the defined loss with respect to the input variables, i.e., the Jones matrix components 

of the two single layers. Note that all the Jones matrix components are complex values 

and therefore have two independent variables. Take the 11th component of the Jones 

matrix of the first layer metasurface for example, it is written as 

1 1 1
11 1 1 11 1 1 11 1 1( , ) ( , ) ( , )p q p q p qJ x y u x y iv x y   and the gradient of maseL  with respect to 
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1
11 1 1( , )i ju x y  and 1

11 1 1( , )i jv x y can be calculated as  
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where p, q are the coordinate indexes of first layer and i, j are the coordinate indexes of 

the second layer. 

As 1 1
12 1 1 21 1 1( , ) ( , )J x y J x y , the gradient of F with respect to 1

12J (or 1
21J ) should be 

the sum of the gradients with respect to 1
12J  and 1

21J , that is  
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Similarly, we have  
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The gradients of maseL  with respect to the components of the Jones matrix of the 

second layer 2
2 2( , )J x y  can be calculated directly as  
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Besides the mean of the absolute squared error maseL  , we also add a boundary 

constraint loss bndL  into the total loss, i.e., mase bndL L L  . The definition and the 

gradient of the boundary loss are provided in the next supplementary section. Then we 

use an optimization algorithm L-BFGS method to minimize the total loss. For our case, 

this algorithm starts with an initial estimate of the input variables, i.e., all the 

components Jones matrixes of the two single layer metasurfaces, and proceeds 

iteratively to refine the input variables with a sequence of better estimates. The 

derivatives of the total loss are used as a key driver of the algorithm to identify the 

direction of steepest descent. 
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S3. Precondition of Eq. 2 and boundary constraint in gradient descent 

optimization 

The Jones matrixes of the two single layer metasurfaces are all symmetric. We 

consider a 2 2  complex symmetric matrix J, and figure out the preconditions that it 

can be decomposed into the summation of two symmetric unitary matrixes as the 

following form:  

31

2 4
1 1 2 2

  0  0
( ) ( )+ ( ) ( )

0  0  

ii

i i

a b e e
J R R R R

b c e e



 
   

   
       

      
        S3.1 

where 
cos sin

( )
sin cos

R
 


 

 
  
 

 is the rotation matrix. It should be noted that the main 

results have been presented in the supplementary materials of reference[3], but missing 

some specific details, which will be discussed here.  

 

Theorem 1. A 2 2   symmetric unitary matrix J   can be factorized in the form 

1

2

1  0

0   

i

i

e
J W W

e




 

  
 

, where W is unitary and can be chosen as real orthogonal matrix, 

i.e, 
cos sin

sin cos
W

 
 

 
  
 

. 

Proof:  It is known that a unitary matrix is unitarily diagonalizable and its eigenvalues 

are unimodular, therefore 1J W W   , 
1

2

 0

0   

i

i

e

e





 
   

 
 and †WW I . Here  †W  is 

the conjugate transpose of W.  

Since J  is also symmetric, there exist real symmetric matrices A and B such that 
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J A iB   . Then   †J J A iB A iB     2 2A B  ( )i AB BA I    , which imply 

that A and B commute AB BA . As real symmetric matrix can have real eigenvectors, 

a pair of real commuting symmetric matrices can be simultaneously diagonalized by 

the same set of real eigenvectors, which are also the eigenvectors of J. Therefore, W

can be real matrix. Also, a general expression of a 2 × 2 unitary matrix can be written 

in the form: 

 
1 2

2 1

/2 cos sin

sin cos

i i
i

i i

e e
W e

e e

 


 

 

  

 
  

 
          S3.2 

When it is real, it becomes 
cos sin

sin cos
W

 
 

 
  
 

. 

 

Theorem 2.  A 2 2  symmetric matrix J can be decomposed into the summation of 

two symmetric unitary matrix if the singular values of J are all less than or equal to 2. 

Proof: With singular value decomposition, one can factorize any arbitrary 2 2  

matrices J in the form 

†J W V              S3.3 

where W and V are both unitary matrix, and   is a real diagonal matrix, 1

2

  0

0  

r

r

 
   

 
, 

r1 and r2 are nonnegative real numbers and called as the singular values of J. 

The columns of W (left-singular vectors) and V (right-singular vectors) are the 

eigenvectors of †JJ   and †J J  , respectively. Assume that †
1 1J J x x   and 

†
2 2JJ x x . If J is symmetric, we have † TJ J J  , where TJ  denotes the matrix 

transpose of J and J  is the conjugate of J, then †
1 1 1J J JJ  x x x   and 
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†
2 2 2JJ JJ  x x x . So 2 2JJ x x . Therefore, we can choose 1 2x x , then W V . 

Indeed, for symmetric matrices, Takagi decomposition is a special case of the singular 

value decomposition. Takagi tell us there is a unitary W such that TJ W W   if J  

is a symmetric matrix, Again, we have † TV W ，i.e., V W . 

It can be proved that any complex number r can be decomposed as two complex 

numbers with unit amplitude when 2r  . Therefore, if the singular values of J are all 

less or equal to 2, i.e., 1 2, 2r r  , we have 

† TJ W V W W   
31

2 4

      0

0             

ii
T

i i

e e
W W

e e



 

 
  

  
 

31

2 4

  0   0

0   0   

ii
T T

i i

e e
W W W W

e e



 

  
    

    
      S3.4 

As W  is unitary, the two terms 
1

2

  0

0   

i
T

i

e
W W

e





 
 
 

  and 
3

4

  0

0   

i
T

i

e
W W

e





 
 
  

 are both 

symmetric unitary matrixes, too. According to Theorem 1, they must can be factorized 

in the form 
1

2
1 1

 0
( ) ( )

0  

i

i

e
R R

e




 

 
  

 
. 

 

According to Theorems 1 and 2, the precondition for the validity of Eq. S3.1 (i.e., 

Eq. 2 in the main text) is that the singular values of the symmetric Jones matrix J are 

both no more than 2. The singular values (r1 and r2) of J are the square roots of 

eigenvalues () from †J J , which can be solved by  

    22 2 2† 2 2det - 2 0J J I a b c ac b             S3.5 

To ensure 1 2, 2r r  , both the two eigenvalues 1 2, 4   . Then we have  
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 
 

22 2 22 2

2 2 2

4 4 2 0 S3.6.1

2 / 2 4 S3.6.2

a b c ac b

a b c

      

   


 

We define   22 2 22 2( , , ) 4 4 2f a b c a b c ac b      , and its minimum value is  

   22 2 2 22
min( , , ) 4 4 2f a b c a b c a c b       

   
2 22

4 4b a c a c      

       2 2
2 2 2 2 0b a c b a c                 S3.7 

According to Eq. S3.6.2,    2
2 2 0b a c    , then we have 

   
 

2

2 2 2

2 2 0 S3.8.1

2 / 2 4 S3.8.2

b a c

a b c

    


  


 

One simple sufficient condition for the above two inequations is  

2

2

a b

b c

  


 
               S3.9 

Note that the Jones matrix Eq. S3.1 is not normalized for simplicity of expression. 

Therefore, the singular values of Jones matrix must be no more than 2, corresponding 

to a unity transmission. For our designed two layer metasurfaces, their Jones matrix 

components are confined by defining the following boundary loss: 

   1 1 1 1
11 12 22 12Re 2 Re 2bndL LU J J LU J J       

   2 2 2 2
11 12 22 12Re 2 Re 2LU J J LU J J            S3.10 

where ReLU is the rectified linear unit. For numerical calculation, the metasurface layer 

is divided into pixels and the loss is then averaged over all pixels. The gradients of this 

boundary loss with respect to the Jones matrix components of the two single layers can 

be readily obtained.  
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S4. Design of the target equivalent Jones matrix and comparison with 

optimized results 

The designed target equivalent Jones matrix has four components with each having 

two degrees of freedoms (DOFs), amplitude and phase. Four nanoprinting images 

(weather symbol images, three intensity levels) and four holographic images (letter 

strings “XX”, “XY”, “YX” and “YY”) are encoded into the four components of the 

equivalent Jones matrix to serve as the targets. The four channels are independent, and 

for each of them, we use a modified Gerchberg-Saxton algorithm to obtain its amplitude 

and phase distributions as the same as our previous work[4]. The amplitude distribution 

of the equivalent Jones matrix is chosen as that of the input nanoprinting image. Then 

a random phase distribution is added to it and propagated to the holographic image 

plane using Rayleigh–Sommerfeld diffraction method that propagates in silicon dioxide 

substrate with refractive index of 1.45. The amplitude of the holographic image is then 

substituted with the designed one, and propagated backward to the nanoprinting plane. 

At the nanoprinting plane, the amplitude constraint is also taken. After several iterations, 

when the computed holographic amplitude at the far-field holographic plane is close to 

the target ones, we can obtain the phase distribution of the equivalent Jones matrix.  

The operating wavelength is designed at 808 nm and the sampling period is chosen 

as 800 nm to avoid high order diffractions. The design nanoprintings have 320 320  

pixels with a total size of 256 256m m  . The holographic images are designed at 
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2500 m above the nanoprinting in glass substrate, corresponding to a maximal 

numerical aperture about sin 1.45 0.1 0.145n      . Usually, a smaller numerical 

aperture indicates a slower fluctuation of the phase distribution, i.e., smaller phase 

difference between adjacent pixels. We choose such a long nanoprinting-holography 

distance to ensure that the small phase fluctuation do not strongly affect the observation 

of nanoprinting images. 

Considering the convenience in the experimental measurement, we set the vertical 

distance between the two single layer metasurfaces as 150 m. The material between 

the two layers is air with refractive index 1.0. The targets of the amplitude and phase 

distributions of the four components of the equivalent Jones matrix are shown in Figure 

S2, where the optimized results based on the gradient descent optimization method are 

also shown. It can be observed that the phase distributions between the target and 

optimized results are almost identical, while the amplitude distributions differ a little 

bit around the boundaries. The reason is that the amplitude at the boundary has a sharp 

fluctuation including high angular spectrum frequencies which is beyond our design 

(Note that our design has a numerical aperture of 0.145). From this aspect, we can see 

that the optimized results agree very well with the target ones, demonstrating the 

feasibility of the gradient descent optimization to obtain the arbitrary equivalent Jones 

matrix.  

When a complex field is imaged, the phase distribution can cause a highly speckly 

image due to the destructive interference of adjacent pixels. Therefore, the imaged 
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amplitude fields may differ from the calculated amplitude distributions. The bottom 

row in Figure S2 shows the simulated amplitude distributions with N.A.=0.25, where 

some artifacts can be observed due to the phase singularities that generally vary across 

2 around a contour circling.  

The optimal input values, i.e., the Jones matrixes of the two single layers are provided 

in Figure S3. The amplitudes of all components do not exceed over 2 due to the 

introducing of the boundary constraint loss.  

 

Figure S2. The designed targets, the optimized results and the imaged images (N.A.=0.25) of 
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the four components of the equivalent Jones matrix.  

 

Figure S3. Optimized input variables of the Jones matrix of the two single layers from the 

gradient descent algorithm. The non-diagonal entries of the Jones matrix are the same due to 

the symmetry of single layer and therefore we only present the 12th component here.  

 

S5. Metasurface unit design 

As outlined in the main text, the symmetric Jones matrix of the single layer with six 

DOFs can be constructed by two nano pillars in one unit. The nano pillars are made of 

crystal-silicon with a fixed height of 600 nm on glass substrate. A schematic view of 
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such nano pillar is shown in Figure S4 (a). Due to the symmetry, the unit cell support 

two propagation modes along its x and y axis. The transmission magnitude and phase 

shift introduced by the nano pillar with x-polarized and y polarized incidences, as a 

function of the transverse dimensions of the nano pillars dx and dy, are shown in Figure 

S4 (b-e). The results are obtained numerically via FDTD simulations. Note that the two 

layer metasurfaces are arranged front-to-front to maintain a homogeneous air 

environment between them. The transmission properties of nanopillars of the two layers 

(one is from substrate to air and the other is opposite) are the same due to reciprocity 

principle and can be extracted from the same database. 

 

 

Figure S4. Metasurface unit design. (a) Schematic of the metasurface unit cell composed of a 

rectangle nanopillar made of silicon (Si) standing on a glass substrate. The period along x and 

y direction is 400 nm, and the height is fixed of 600 nm. (b-c) Normalized transmission (b) and 

phase response (b, in radians) of the nanopillar at incident wavelength 808 nm as a function of 
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the transverse dimensions, dx and dy, for incident x-polarization. (d-e) Normalized transmission 

(d) and phase response (e, in radians) of the nanopillar at incident wavelength 808 nm as a 

function of the transverse dimensions, dx and dy, for incident y-polarization. The optical 

response for y-polarization response is obtained by swapping x and y of x-polarization response 

due to the nature of symmetry.  

 

For a given Jones matrix with six DOFs, we can extract the rotational angles and the 

phase shifts along x and y directions of both nano pillars, according to Eq. S3.1. For 

each individual nano pillar, the transverse dimensions are chosen as follows[5]: (1) first 

set a pre-defined average transmission magnitude avgt  . This value is basically 

determined by the overall transmissions of the nano pillar (Figure S4b) with different 

transverse dimensions and should not be small. In our work, we choose 0.98avgt  . (2) 

calculate the complex-valued errors , ,x desired x simulatedi i
x avg simulatedt e t e     and 

, ,x desired x simulatedi i
x avg simulatedt e t e      , and choose the large one max max( , )x y    . (c) 

determine the configuration that minimizes max  for all possible dimensions.  

The results in Figure S4 are simulated at normal incidence. We choose several 

nanopillars with different dimensions and perform their optical responses under 

different incident angles. The results in Figure S5 show that the optical response 

remains almost unchanged with the incident angle, therefore can be used for cases with 

oblique incidences. 
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Figure S5. Amplitude and phase shift of nanopillars with different dimensions as a function as 

incident angles. The red dashed line indicates the position of incident angle of 0.3xk k . The 

optical response of the nanopillar remains almost unchanged with the incident angle. 

 

S6. FDTD simulation of the realistic structures with different optical 

setups 

The numerical calculations based on the diffraction theory in Figure S2 show good 

results. However, for realistic structures, many factors, such as the errors between the 

designed phase shifts and real ones of the nano pillars, the residual zero order 

diffractions and the coupling between nano pillars may all affect the optical 

performances. Therefore, it is necessary to perform full wave electromagnetic 

simulations (FDTD simulations) with the realistic structures, which can also provide a 

guidance for design and measurement. The structure in our work consists of two layer 

metasurfaces, with a side length of 256 m and a vertical distance of 150 m. Obviously, 

it is unrealistic to simulate the whole structure and thus we turn to a scaled-down 

version with 120 120   pixels (96 m   96 m) and gap distance of 100 m. The 

holographic images are designed at a shorter distance of 400 m above the second layer.  
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It is still impossible to simulate the whole structure as the dimensions along the three 

directions are all around hundreds of micrometers. As the Jones matrix of each 

metasurface layer varies spatially and cannot reaching unity transmission, some light 

energy must be reflected as the period is smaller than the operation wavelength. We 

simulate the reflections of the two metasurface layers, which are 50% and 20%, 

respectively. Therefore, the light impinging on the second layer from the twice 

reflection between the two layers is 10% of that of the transmission of the first layer. 

For each component of the Jones matrix, this ratio is reduced by half to 5%. The value 

is relatively small, and it is reasonable to neglect the reflections between the two layers. 

Then, the simulation of the whole structure can be divided into three steps: (1) perform 

the simulation with only the first layer and obtain the near fields at the output plane of 

the first layer; (2) The equivalent electric and magnetic currents obtained from above 

near fields are used to calculate the far fields at the incident plane of the second layer, 

which are then imported as source to excite the second layer. (3) perform the simulation 

of the second layer with the imported source and obtain the near fields at the output 

plane of the second layer. With the above treatment, we decompose the simulation of 

the whole structure into two simulations with a shorter size along the z direction. Each 

simulation can be performed within an acceptable time (about 10 hours on a workstation 

with CPU AMD 3990x and RAM 256G). 

The obtained near fields at the output plane of the second layer are used to extract 

the nanoprinting images and holographic images with different numerical aperture 
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centers and sizes. Assuming that the far fields in the angular spectrum domain are

( , ,0)A u v , the images at distance h above the second layer with numerical aperture size 

NA at center  0 0,u v  can be calculated as 

2 2 2 2

,

( , ) ( , , 0) ( , , ) ( , ) exp( 2 ( ))
u v

H x y A u v G u v h F u v i ux vy dudv         (S6.1) 

where 2 2 2 1/2( , , ) exp( 2 ( ) )G u v h i h u v      and ( , )F u v   is the filter in Fourier 

plane, as 

2 2
0 01 ( ) ( )

( , )
0

NA
if u u v v

F u v
else


     


           (S6.2) 

The nanoprinting and holographic images can be obtained by set h=0 and h=400 m. 

We implement different optical setups: normal incidence-normal detection, oblique 

incidence-normal detection, and oblique incidence-oblique detection. The observation 

numerical aperture is chosen NA=0.2 and the center of the oblique detection is set 

 0 0

0.3
, ( ,0)u v


 . The full simulated results of the three cases are shown in Figure S6.  

It can be observed that the nanoprinting images are strongly affected by the different 

optical setups. This is because the designed nanoprintings and zeros orders are on the 

same order of magnitude. When applying the normal incidence normal detection setup, 

both the zero order diffractions from two layers are detected, which results in a very 

poor image quality of nanoprinting. By applying the oblique incidence normal detection, 

only the zero order diffraction from the second layer are detected. The nanoprinting for 

the oblique incidence oblique detection setup has the highest image quality among the 
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three setups since the zero order diffractions from both layers are filtered.  

On the other hand, the holographic images for all cases can be observed clearly and 

have similar image fidelities. This is because the magnitudes of the holographic images 

in design are much higher than that of zero orders, which thus do not strongly affect the 

holographic images. Due to the limit of computing capacity, the input images in the 

simulation have a small size and a low resolution. We anticipate that the image qualities 

can be increased for practical structures that have much larger number of pixels.  

As mentioned above, when a complex field is imaged, the phase distribution can 

cause a highly speckly nanoprinting image due to the destructive interference of 

adjacent pixels. Therefore, we only choose a three intensity level images as the 

nanoprinting for demonstration. If the phase distribution is set as uniform, grayscale 

nanoprinting image can be perfectly constructed (Fig. S7). The fringes arise due to the 

oblique detection.    

Similarly, if we set the phase of the holographic images to be uniform, the fidelity of 

image can be enhanced. In this case, the four Jones matrix now can be directly 

calculated by a reverse Rayleigh–Sommerfeld transformation of the input holographic 

images. Fig. S8 shows a comparison between the uniform-phase holographic images 

and the previously calculated nanoprinting-holography. The much lower speckles and 

the calculated phase distributions (almost uniform) show good reconstruction of 

complex amplitude in the diffraction field with our bilayer metasurface.  
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Figure S6. FDTD simulated results of the nanoprintings and holographic images with 

different optical setups. The schematic views of different optical setups are shown in 

the left column. The incident and analyzed polarizations are indicated at the top two 

rows.  
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Figure S7. Designed and simulated grayscale nanoprintings. In the design of bilayer 

metasurface, the phases of the Jones matrix are set as to be uniform.  

 

 

Figure S8. Comparison of the nanoprinting-holography and complex holography. These 

images are simulated under oblique-incidence oblique-detection strategy. The phase has 

been subtracted by a term of kxx (kx=0.3k0) induced by oblique detection. In the design 

of complex holography, the phase is set as uniform, and the simulated phase shows 

good agreements with design.  
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S7. Effects of detour phase in multi-element unit design 

Figure S9a presents a metasurface unit cell with one element, which imposes 

amplitude modulation A and phase shift  on the incident light. If one expects to realize 

the same optical response by two-element unit design (Figure S9b), a simple way is to 

use the same two elements as that in Figure S9a. However, this is not always the best 

choose. For oblique incidence and oblique scattering, the lateral displacements of the 

two elements introduce detour phases within this unit cell. Assuming that the two 

elements are evenly distributed that are located at x coordinates of -P/4 and P/4, where 

P is the period, the summation of the scatterings from the two elements are 

( ) 2 cosi i i iAe e e A e        , where 1 2

2
(sin sin )

4

P  


   , 1  is the incident 

angle and 2  is the scattering angle.  

 

Figure S9. Schematics of the metasurface unit cell with one element and two elements.  

 

It is shown that the duplication of the element in the unit cell do not alter the phase 
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shift (must be evenly distributed) but impose an amplitude modulation of 2 cosA  . 

To satisfy the Shannon–Nyquist sampling theorem, the scattering angle is limited by 

2sin / 2P  . At the limit scattering angle, / 4    and the efficiency decreases 

to 2cos 50%   . It is also obvious that the efficiency will decrease for oblique 

incidence. If we consider the detour phase and individually design the two elements, 

the total scattering becomes 1 2( (i iAe Ae    ） ）, where  1  and 2  are the phase 

shifts of the two elements. The best optical performance occurs when 1= -    and 

2 =    , and the total optical field is 2 iAe  . 

As for the unit design in Figure 2c of main text, the above two elements correspond 

to the nano pillars AB and A’B’. For each pixel of the single layer, a special amplitude 

modulation and phase shift is designed for each component of its Jones matrix. In our 

work, the Jones matrix of the nano pillars AB and A’B’ are individually designed for 

oblique incidence (metasurface 1, Figure 2d) or oblique scattering (metasurface 2, 

Figure 2d) according to the above analysis. A comparison of the FDTD simulations 

between considering the detour phase (individually designing nano pillars AB and A’B’) 

and without (A’B’ is a duplication of AB) is shown in Figure S10. Clearly, the 

nanoprinting images with the consideration of the detour phase have much higher 

fidelities than that without the consideration of the detour phase.  
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Figure S10. FDTD simulations of the nanoprinting and holographic images with the 

consideration of the detour phase in the unit pixel (first and second rows) and without 

(third and fourth rows).  

 

S8. Alignment sensitivity of the two layer metasurfaces  

The optical performance of nanoprinting and holographic images are dependent on 

the alignment of the two layer metasurfaces. Figure S11 shows the simulated results of 

the images with different translational in-plane x-shift values. Basically, the images can 

be distinctly observed within a shift value of 5 m. We define a figure-of-merit, the 

mean square error (MSE) to characterize the difference between the simulated images 
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and the targets. The simulated image is multiplied by a varying constant factor to 

minimize the MSE value. The minimal MSE values under different alignment shifts are 

shown in Figure S12. One can observe that the MSE reaches to minimum when there 

is no shift. Due to the non-uniform phase distribution (destructive interference of 

adjacent pixels) and oblique observation, the nanoprintings present speckles and fringes, 

making the MSE value relatively high. The MSE of the holography is smaller than 

nanoprinting images, demonstrating the fidelity of holography is higher than that of 

nanoprinting. In experiment, the two metasurfaces are mounted on two 3D translational 

stages (Thorlabs, MBT616D/M), which can provide a resolution about 100~200 nm, 

thus satisfying our alignment requirement.  

 

 

Figure S11. Simulated nanoprinting and holographic images with x-polarized incidence 
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and y-polarized analyzation for different translational shift values. 

 

 

Figure S12. Calculated mean square error (MSE) between the reconstruction images 

and the targets with different alignment shifts. 

 

S9. Optical setup for measurement 

A schematic view of our optical setup with detailed parameters is shown in Figure 

S13. The focal lengths of the objective (RMS20X-PF, 20X, N.A.=0.5, Thorlabs Inc.), 

Lens 1, Lens 2 and Lens 3 are fo=9 mm, f1=100 mm, f2=200 mm and f3=200 mm, 

respectively. A beam with diffraction angle  firstly focuses at position of d=fosin away 

from the center axis at the back Fourier plane of the objective. After passing through 

Lens 1 and Lens 2, it focuses at the back focal plane of Lens 2 with a distance of D= f2 

/ f1*d = f2 fo sin / f1 away from the center axis.   

For optical measurement, we apply a phase shift gradient of kx/k=0.3 on the second 

layer, corresponding to sin=0.3. Therefore, the center of the filter is located at D=5.4 

mm away from the center axis. The aperture size a of the filter is chosen to have a 
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numerical aperture of N. A.= 0.2, corresponding to a diameter of a=2 f2 fo N.A. / f1 =7.2 

mm. In measurement, a continuously variable iris is used for the filter.  

To measure the efficiency, we place a power meter (S120C, Thorlabs, Inc.) behind 

the filter, so that only the light contributing to the holography can be detected. The 

incident laser is collimated with uniform intensity in the center with a beam expander 

to measure the energy density per area. The incident power is then calculated as the 

product of the energy density per area and the metasurface areas. The efficiency is 

defined as the ratio between the measured holographic power and the incident power. 

Additionally, the effects of the light absorptions through the substrate, objective and the 

lenses in the optical setup are taken into consideration in the final calculated efficiency. 
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Figure S13. a, Schematic of the optical setup for measurements; b, Schematic of the 

propagation of a plane wave at oblique incidence, showing the detailed parameters for 

spatial filtering. 

 

S10. Calculation of optical responses with rotation between the two 

layer metasurfaces 

Here, we investigate the optical responses of the two layer system with different 

rotation angle. The first layer is assumed to be fixed, and the second layer is rotated 

anticlockwise with an angle . The Jones matrix components of the second layer after 

rotation are given by: 
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2 2 2 2
11 2 2 12 2 2 11 2 2 12 2 2

2 2 2 2
21 2 2 22 2 2 21 2 2 22 2 2

( , ), ( , ) ( , ), ( , )

( , ), ( , ) ( , ), ( , )

J x y J x y J x y J x y

J x y J x y J x y J x y

 

 

   
   

      
       (S10.1) 

for 0°, 

2 2 2 2
11 2 2 12 2 2 22 2 2 21 2 2

2 2 2 2
21 2 2 22 2 2 12 2 2 11 2 2

( , ), ( , ) ( , ), ( , )

( , ), ( , ) ( , ), ( , )

J x y J x y J y x J y x

J x y J x y J y x J y x

 

 

     
   

        
      (S10.2) 

for 90°, 

2 2 2 2
11 2 2 12 2 2 11 2 2 12 2 2

2 2 2 2
21 2 2 22 2 2 21 2 2 22 2 2

( , ), ( , ) ( , ), ( , )

( , ), ( , ) ( , ), ( , )

J x y J x y J x y J x y

J x y J x y J x y J x y

 

 

      
   

         
      (S10.3) 

for 180°, 

2 2 2 2
11 2 2 12 2 2 22 2 2 21 2 2

2 2 2 2
21 2 2 22 2 2 12 2 2 11 2 2

( , ), ( , ) ( , ), ( , )

( , ), ( , ) ( , ), ( , )

J x y J x y J y x J y x

J x y J x y J y x J y x

 

 

     
   

        
      (S10.4) 

for  270°, where the superscript  indicates the rotation case, and the Jones matrix 

components at the right hand side of the above formulas are the ones without rotation, 

i.e., the initial input variables in the gradient descent optimization algorithm. Note that 

both the Jones matrix component values and the coordinates are changed after rotation. 

According to Eq. S1.5, the equivalent Jones matrix after rotation is given by  

1 1

2 1
2 2 2 2 1 1 2 1 2 1 1 1

1,2 ,

( , ) ( , ) ( , ) ( , , )mn mq qn
q x y

J x y J x y J x y f x x y y z dx dy 



          (S10.5) 

The holographic image with a distance h above the second layer is  

2 2

3 3 2 2 3 2 3 2 2 2

,

( , ) ( , ) ( , , )mn mn

x y

H x y J x y f x x y y h dx dy
         (S10.6) 

where m, n=1 indicates the x-polarized incidence or analyzation, m, n=2 indicates y-

polarized incidence or analyzation. Therefore, there are 16 cases by combining the four 

rotation angles and the four incidence-analyzation polarizations.  
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For numerical calculation, all the planes are sampled to N N   equidistant grids 

with sampling intervals of x y P    . We define a loss of   

 
4 2 2 2

3 3 3 32
1 1 1 1 1

1
( , ) ( , )

16

N N
t

mn i j mn i j
m n i j

L H x y H x y
N  

    

     (S10.7) 

where we use the index 1,2,3,4   to represent the cases with rotational angle of  

0°,90°, 180°, 270°, 
t
mnH   indicates the designed target holographic images under mn 

incidence-analyzation polarizations and rotational angle  . Such definition of the loss 

does not impose any constraints on the phases of the predicted holographic images. The 

boundary constraint loss is also added in the total loss. The gradient calculations of this 

loss are more complicated than that of the EQJM, but the basic ideas are the same, the 

details of which are not present here anymore. Note that there is a freedom of the 

magnitude ratio for the target images, and we set the maximal amplitude value as 2 for 

the balance consideration of the astringency and the efficiency. 

We input 16 holographic images as the targets, and the optimized results of the 

gradient descent optimization are shown in Figure S14, which agrees well with our 

targets. 
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Figure S14. Optimized holographic images with the combinations of different rotation 

angles, incident polarizations and analyzed polarizations. The incident and analyzed 

polarizations are indicated at left side and right side, respectively.  

 

S11. Optical performance of the two layer metasurfaces designed with 

different gap distance 

To show the performance of our design strategy with smaller gap distance, we choose 

several cases with smaller gap distance of z=5 m, 10 m , 20 m and 100 m, and the 

corresponding Jones matrixes of each single layer are calculated with gradient descent 
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algorithm. The results are then simulated by FDTD, with the same procedures as that 

in supplementary section 6. Figure S15 shows the simulated nanoprintings and 

holographic images of the four cases. The qualities of holographic images are almost 

not influenced by the gap distance. Note that the design principle of the bilayer 

metasurface is based on the far field situation, e.g., the calculation of transmission and 

phase of single nanopillar (zero order), the Rayleigh–Sommerfeld diffraction between 

two layer metasurfaces. When the distance between the two layers is decreased to 10 

microns or less, it is not far enough to be considered as far field, but the intermediate 

field. In this situation, the design principle may not be accuracy and introduce errors. 

Therefore, the fidelities of nanoprintings decrease as the gap distance reduces. Despite 

of that, for the smallest distance of 5 m, the simulated results still show distinct 

nanoprintings as the designed ones, demonstrating the generality of our design strategy.  
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Figure S15. Simulated results of the nanoprinting and holographic images designed 

with different gap distances. The other geometric parameters are the same as that in 

supplementary section 6. 
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Figure S16. Simulated nanoprinting and holographic images with y-polarized incidence 

and x-polarized analyzation for different incident wavelengths. The bilayer metasurface 

is designed at 808 nm.  
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