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Supplementary Methods 

 

Genotyping and DNA Methylation Data 

DNA was extracted and isolated from all three brain regions using Qiagen Blood & Cell Culture 

kits. DNA quantification was proceeded with PicoGreen dsDNA fluorescent assays (Invitrogen). DNA 

quality and quantity were assessed by TaqMan® RNase P Detection assay (Applied Biosystems Assay, 

Life Technologies, Carlsbad, CA) with fluorescence detection on a 7900 Fast Real Time PCR System 

(Applied Biosystems, Life Technologies, Carlsbad, CA).  

Genotypes were assessed from the motor cortex samples using Illumina HumanOmni2.5-8 

BeadChips by the Pharmacogenomics Analysis Laboratory at the Central Arkansas Veterans Healthcare 

System (PAL). DNA was whole-genome amplified, fragmented, precipitated, resuspended, hybridized to 

the BeadChips, stained, and imaged by Illumina iScan System. Illumina. GenomeStudio v2011.1 software 

(Genotyping v1.9.4 module) was used for processing the results. The resulting data were cleaned using 

PLINK [1] by filtering missing data, checking sex mismatch between reported sex and X chromosome 

homozygosity, and screening for cryptic relatedness across all samples to detect potentially related or 

duplicated samples and suspicious samples swaps. Genotypes were imputed by Ricopili [2]. Covariates 

for ancestry were computed using Principal Components Analysis (PCA) of 100,000 randomly chosen 

common (minor allele frequency>0.05) single nucleotide polymorphisms (SNPs). 

DNA methylation (DNAm) was assessed using Illumina Infinium EPIC BeadChips (EPIC). DNA 

from each of the three brain regions was bisulfite-modified, whole-genome amplified and hybridized to 

EPIC arrays, single-based extended, and stained by the Automated Protocol for the Illumina Infinium HD 

Methylation Assay. Chip positions were balanced based on brain regions and PTSD diagnosis. 

GenomeStudio projects were generated for each batch. Following the Psychiatric Genomics Consortium 

(PGC)-EWAS quality control pipeline [3], DNAm data was cleaned using the CpGassoc [4] and ChAMP 

[5,6] packages in R by the following steps. First, CpG sites that failed to achieve a detection p-value of 

0.001 were set to missing, and probes that can cross hybridize to sex chromosomes or have more than 
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10% missingness were dropped. Then, samples that had more than 5% missing data or didn’t meet the 

probe intensity threshold (> 50% of the experiment-wide mean or with intensity >2,000 arbitrary units) 

were excluded. Next, the beta mixture quantile dilation (BMIQ) method was used for DNAm data 

normalization via the wateRmelon R package [7]. After that, missing data were imputed using a k-nearest 

neighbor method by the Bioconductor impute package [8]. Finally, batch effects were removed using an 

empirical-Bayes batch-correction method (ComBat) by the Bioconductor package sva [9]. Duplicated 

samples were screened, and one of the duplicates with the lowest missing rate was retained. Horvath 

DNAm age [10] was calculated on the raw beta values using the R script supplied by Dr. Horvath.  The 

script automatically performs normalization and imputation and outputs the DNAm age estimates based 

on methylation levels at 353 450K probes [10]. Choi DNAm age was generated using the normalized and 

imputed DNAm data by computing the product of the corresponding effect size estimates times the beta 

values from 230 brain-specific age-associated probes [11]. Shireby DNAm age was assessed using the R 

script provided by Dr. Shireby at https://github.com/gemmashireby/CorticalClock. Normalized with 

imputed beta values were used as the input; the cortical DNAm age was computed based on methylation 

levels at 347 probes [12]. 

RNA Sequencing Methods and Gene Expression Data 

RNA was extracted from 25mg of tissue from each of the three brain regions using Qiagen 

RNeasy Fibrous Tissue Minikit. Library preparation was conducted using the Illumina TruSeq Stranded 

total RNA kit with globin depletion. The libraries were sequenced by a Hiseq 2500 which produced 

paired-end 75 base pair (bp) reads. To avoid empty lanes, the Hiseq was performed in both the “high 

output” mode (flow cells are run over eight lanes that contain unique library pools) and “rapid” mode 

(single cell run over two lanes). Trimmomatic [13] was used to eliminate adapters and remove short or 

low-quality reads followed by mapping the trimmed reads to the hg38 human reference genome [14] via 

STAR [15] using the two-pass mode. The quality of aligned reads was evaluated using FastQC [16], 

RseQC [17], and MultiQC [18], and samples with <50% uniquely mapped reads were excluded. 

Transcripts were quantified using Kallisto [19], and gene-level counts were assessed by collapsing the 

https://github.com/gemmashireby/CorticalClock
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Kallisto transcript abundance estimates via tximport [20]. Regularized log transformed (rlog) expression 

values were generated based on gene-level counts using DESeq2 [21]. Rlog expression values of X and Y 

chromosome genes were examined to confirm correspondence of the data to reported sex. To detect 

outliers, PCs were computed from the rlog values. Samples were considered as outliers and excluded if 

more than 6 SDs away from the group mean on any of the first 10 PCs. To evaluate RNA degradation, 

quality surrogate variables (qSVs) were computed using quality surrogate variable analysis (qSVA) [22] 

in the Bioconductor package sva [8], and the first three qSVs were used as covariates in downstream 

analyses. The relative balance of seven cell types (astrocytes, endothelial cells, microglia, mural cells, 

neurons, oligodendrocytes, and red blood cells) were estimated from rlog values in each brain region 

using BrainInABlender [23].  

RNA Age Calculation 

 RNAAgeCalc has multiple versions of pre-trained calculators based on training samples from 

different ancestral groups (all races or Caucasians) and tissues, and choices in the candidate gene set used 

to compute RNA age [24]. We used the universal (calculator trained on samples from all race groups) 

brain-specific calculator, and the DESeq2 candidate gene set (n = 472 age-associated genes in the brain 

across all races identified by DESeq2 using GTEx data [24]) to calculate RNA age in our sample. We 

inputted raw read counts of gene expression from dlPFC, vmPFC, and motor cortex to the RNAAgeCalc 

predict_age function. 457 genes were covered in the Brain Bank data for all three brain regions and 15 

genes that were not produced via sequencing were imputed by the RNAAgeCalc algorithm before 

calculating the RNA age. 

Transcriptome-wide Analysis 

 Transcriptome-wide analyses of gene expression vs. psychiatric variables and cell types were 

only conducted in vmPFC, as stated in the main text. The analyses were preformed using DESeq2 

package [21] on genes with more than 1 read count in at least 30 subjects. The number of genes that met 

this threshold was 34,205 in vmPFC, 448 of which were included in the RNAAgeCalc algorithm. For the 

analysis of the psychiatric disorder(s), the following covariates were included: sex, age at the time of 
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death, post-mortem interval (PMI), sequencing run IDs, first three qSVs, and seven cell types. We then 

extracted the results of the vmPFC genes in RNAAgeCalc from the transcriptome-wide analysis (n = 448) 

from the DESeq2 output and generated a corrected p-values across them using a False Discovery Rate 

(FDR) correction [25]. For cell type analysis, sequencing run IDs and first three qSVs were covaried. 

Results of RNA age genes were extracted and multiple testing correction was conducted by adjusting p-

values across the number of cell types and the number of RNA age genes (7 x 448) via FDR.  

Cell Type Enrichment Analysis 

 We used a set of brain cell type marker genes (http://resource.psychencode.org/DER-

21_Single_cell_markergenes_UMI.xlsx) from PsychENCODE [26] to test the enrichment of 25 cell type 

layers from 8 cell types (astrocytes, endothelial cells, microglia, oligodendrocytes, oligodendrocyte 

precursor cells, pericytes, excitatory neurons, and inhibitory neurons) in RNAAgeCalc genes. This was 

achieved by running a hypergeometric test to calculate the probability of a set of cell type marker genes 

being present in RNAAgeCalc algorithm. P-values were adjusted using the FDR correction for the 25 cell 

type layers. 

CIBERSORTx Estimation and Cell Type Association Analysis 

 In addition to the BrainInABlender cell type analysis, we estimated another set of proportions of 

eight cell types (excitatory neurons, inhibitory neurons, astrocytes, endothelial cells, oligodendrocytes, 

microglia, pericytes, and oligodendrocyte progenitor cells) using CIBERSORTx [27]. CIBERSORTx cell 

type estimates are proportions ranging between 0 and 1. We transformed the cell types proportions using 

the logit function into cell type scores for statistical analysis. We used these estimates to test for 

replication of the associations between the BrainInABlender endothelial and mural cell scores with 

PTSD/MDD and RNA age residuals. While CIBERSORTx estimation doesn’t yield mural cell estimates, 

it does yield estimates of pericytes, which are a subtype of mural cells located in blood microvessels. We 

also modeled the associations between CIBERSORTx cell scores and age at death and RNA age. These 

replication analyses were conducted through multiple regression controlling for sex, sequencing run IDs, 

and first three qSVs (results below).  
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Supplementary Results 

Associations between Psychopathology and RNA Age Residuals: Sensitivity Analysis 

The effect for PTSD/MDD was still significant in vmPFC when additionally controlling for body 

mass index (BMI) (pPTSD/MDD = .006, pBMI =.64), PMI (pPTSD/MDD = .004, pPMI =.62), the top three ancestry 

PCs (pPTSD/MDD =  .004, smallest pPC = .12), seven estimated cell types (pPTSD/MDD = .018, smallest pcell-type = 

.022, which was for oligodendrocytes), manner of death (pPTSD/MDD = .018, smallest pmanner-of-death = .27), 

anti-depressant use at time-of-death (pPTSD/MDD = .003,  panti-depressants = .334), and total trauma exposure 

(pPTSD/MDD = .014, ptrauma = .29).  The standardized coefficients (βs) for the PTSD/MDD effects in these 

follow-up models with additional covariates included differed on average by an absolute value of .02 

(absolute value Δ β range: 0 - .06) from the β = .39 effect reported for the PTSD/MDD term in the 

primary model (as listed in Table 2 in the main text). 

RNA Age Residuals and Comorbid Psychiatric Disorders Group 

We examined if the joint PTSD/MDD association with RNA Age residuals in vmPFC was driven 

by PTSD, MDD, or their combination. To do so, we first tested a model that included variables reflecting 

PTSD without MDD, MDD without PTSD, and PTSD + MDD, controlling for AUD, smoking, three 

qSVs, and sex (consistent with the primary analysis). Of these variables, we found significant effects for 

PTSD + MDD (β = .50, p = .003) and MDD without PTSD (β = .41, p = .016).  As reported elsewhere in 

the manuscript, only n = 4 individuals met criteria for PTSD without MDD, making it difficult to observe 

effects specific to PTSD in this cohort and underscoring the preliminary nature of these supplementary 

analyses.  

We examined these models with additional covariates included, analogous to the sensitivity 

analyses described above.  We found that PTSD + MDD and MDD without PTSD remained significantly 

associated with RNA age residuals in vmPFC when additionally adjusting for BMI (pPTSD+MDD = .005, 

pMDDnoPTSD = .019, pBMI = .715), PMI (pPTSD+MDD = .004, pMDDnoPTSD = .015, pPMI = .747), the top three 

ancestry PCs (pPTSD+MDD = .004, pMDDnoPTSD = .012, smallest pPC = .184), seven estimated cell types 

(pPTSD+MDD = .012, pMDDnoPTSD = .040, smallest pcelltype-oligodendrocyte = .021), anti-depressant use at time-of-
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death (pPTSD+MDD = .002, pMDDnoPTSD = .009, panti-depressant = .274), and manner of death (pPTSD+MDD = .013, 

pMDDnoPTSD = .029, smallest pmanner-suicide = .239).  The only covariate which impacted the significance of 

either of these variables was the inclusion of total trauma exposure in the model, which resulted in a 

model with a non-significant association for the PTSD + MDD group (p = .125), though a significant one 

for the MDD no PTSD group (p = .015), with no significant effect for trauma count (p = .237).  Further 

examination of the relationship between the PTSD + MDD variable and total trauma count suggested that 

these variables were multicollinear (r = .72, p < .001), meaning that it was not possible to differentiate the 

effects of one variable from the other due to their overlapping variance. Similar to the primary model, the 

standardized coefficients (βs) for the PTSD + MDD effects in the follow-up models with additional 

covariates included differed on average by an absolute value of .05 from the β = .51 reported above and 

the MDD without PTSD standardized βs differed by a mean absolute value of .02 from the βs = .41 

reported above. 

We also evaluated if the number of psychiatric diagnoses (i.e., ranging from 0 -2) was associated 

with RNA age residuals in vmPFC. This analysis revealed that RNA age residuals increased with each 

additional psychiatric diagnosis (β = .44, p = .006), controlling for sex, cigarette use, and three qSVs. We 

evaluated this model with the additional covariates included and found that the count of psychiatric 

diagnoses continued to be significantly associated with RNA age residuals in each model, including when 

additionally adjusting for BMI (p#dx = .009, pBMI = .694), PMI (p#dx = .007, pPMI = .843), the top three 

ancestry PCs (p#dx = .010, smallest pPC = .181), seven estimated cell types (p#dx = .019, smallest pcelltype-

oligodendrocyte = .023), anti-depressant use at time of death (p#dx = .005, panti-depressant = .351), manner of death 

(p#dx = .030, smallest pmanner-suicide = .317), and total trauma count (p#dx = .038, ptrauma = .804). The mean 

difference in the absolute value of the βs for the count of psychiatric diagnoses effect with these 

covariates included in the model was .02 compared to the magnitude of this effect for the model without 

these covariates. 

Associations with Sample Cell Type Composition in vmPFC 
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The BrainInABlender cell type association analyses revealed significant associations between: (1) 

endothelial cell scores and PTSD/MDD (B=-0.294, p = 0.004, p-adj = 0.017; Table S4); (2) endothelial 

cell scores and RNA age residuals (B = -0.022, p = 0.008, p-adj = 0.028; Table 4); (3) mural cell scores 

and PTSD/MDD (B = -0.234, p = 0.005, p-adj = 0.017; Table S4); and (4) mural cell scores and RNA age 

residuals (B = -0.019, p = 0.005, p-adj = 0.028; Table 4). Follow-up RNA age residual and cell type score 

associations in dlPFC and motor cortex are shown in Table S9. There was a nominally significant 

association between oligodendrocyte scores and raw (not residual) RNA age in vmPFC (B = 0.027, p = 

0.013, p-adj = 0.092; Table S6), but no significant associations between raw RNA age estimates and 

endothelial or mural cell scores. There were no BrainInABlender vmPFC cell score associations with age-

at-death (Table S7). We then tested if the significant associations in vmPFC replicated when examining 

cell type scores estimated using the CIBERSORTx approach. PTSD/MDD was associated with decreased 

endothelial cell scores in vmPFC (B=-1.674, p = 0.018) using this second estimation approach, but was 

not associated with CIBERSORTx pericytes scores (p = 0.925).  RNA age residuals just missed the 

threshold for statistical significance in association with CIBERSORTx endothelial scores (B = -0.111, p = 

0.054), but evidenced no association with pericytes scores (p = 0.250).  Both RNA age and age at death 

were associated with CIBERSORTx vmPFC oligodendrocyte scores (BRNA age = 0.171, pRNA Age = 0.001; 

BAge at death = 0.063, pAge at death = 0.048).  
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Supplementary Tables 

Table S1 

Full result of PTSD/MDD transcriptome-wide analysis in vmPFC – see separately uploaded excel file (SuppTableS1.csv) 

Table S1 note: baseMean = mean of normalized counts of all samples; lfcse = the standard error of the log2 fold change; stat = Wald test statistics; 

padj = adjusted p-values by FDR across the number of RNAAgeCalc genes included in the transcriptome-wide analysis (n = 448); 

RNAAge_EffectSize = weights of RNA age genes contributing to the RNA age.



PTSD, MDD, and Transcriptomic Age 10 

Table S2 

Corrected Significant GO Terms Enrichment for Genes in the RNAAgeCalc Algorithm Associated with PTSD/MDD in vmPFC 

Category Ontology Term numDEInCat numInCat p p-adj Gene 

GO:0008285 BP negative regulation of cell 

proliferation 

10 20 6.844E-05 0.045 CEBPB;PKN1;DLL1;VSIG4;A

TOH8;HSPA1A;GAL;CDKN2;

TGFB1I1;RFPL1 

GO:0045321 BP leukocyte activation 12 32 0.0002 0.045 HYAL2;CEBPB;PKN1;DLL1;U

NG;VSIG4;CCND3;HSPA1A;D

PP7;MT1G;GAL;RPS3 

GO:0002520 BP immune system 

development 

8 17 0.0003 0.045 HYAL2;CEBPB;PKN1;DLL1;U

NG;HSPA1A;MT1G;MKNK2 

GO:0032879 BP regulation of localization 15 50 0.0004 0.045 KCNJ16;HYAL2;CEBPB;PKN1

;DLL1;ATOH8;IL17RC;FXYD

1;HSPA1A;TBC1D1;THADA;G

AL;P2RY2;STX10;PIM3 

GO:0008134 MF transcription factor binding 7 14 0.0004 0.045 CEBPB;PKN1;DLL1;ATOH8;R

PS3;CDKN2A;TGFB1I1 

GO:0008283 BP cell proliferation 13 42 0.001 0.045 CEBPB;PKN1;DLL1;VSIG4;C

CND3;ATOH8;HSPA1A;GAL;

PLCD1;RPS3;CDKN2A;TGFB1

I1;RFPL1 

GO:0042127 BP regulation of cell 

proliferation 

12 36 0.001 0.045 CEBPB;PKN1;DLL1;VSIG4;A

TOH8;HSPA1A;GAL;PLCD1;R

PS3;CDKN2A;TGFB1I1;RFPL1 

GO:0002376 BP immune system process 16 62 0.001 0.045 HYAL2;CEBPB;PKN1;DLL1;U

NG;VSIG4;IFITM3;CCND3;AP

OBEC3C;IL17RC;HSPA1A;DP

P7;MT1G;MKNK2;GAL;RPS3 

GO:0080134 BP regulation of response to 

stress 

9 25 0.001 0.045 HYAL2;CEBPB;PKN1;VSIG4;I

L17RC;HSPA1A;HIC1;RPS3;C

DKN2A 

GO:0006915 BP apoptotic process 14 45 0.001 0.045 HYAL2;CEBPB;PKN1;DLL1;U

NG;HSPA1A;ARHGEF3;MKN

K2;GAL;HIC1;RPS3;CDKN2A;

PIM3;RFPL1 
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GO:0001775 BP cell activation 12 37 0.001 0.045 HYAL2;CEBPB;PKN1;DLL1;U

NG;VSIG4;CCND3;HSPA1A;D

PP7;MT1G;GAL;RPS3 

GO:0012501 BP programmed cell death 14 46 0.001 0.047 HYAL2;CEBPB;PKN1;DLL1;U

NG;HSPA1A;ARHGEF3;MKN

K2;GAL;HIC1;RPS3;CDKN2A;

PIM3;RFPL1 

GO:0048534 BP hematopoietic or lymphoid 

organ development 

7 16 0.001 0.047 HYAL2;CEBPB;PKN1;DLL1;H

SPA1A;MT1G;MKNK2 

Note. The GOSeq analysis tested for enriched GO terms in the nominally significant PTSD/MDD-associated genes in the RNAAgeCalc algorithm 

(n = 43) compared to the background gene list of all the RNAAgeCalc genes (n = 448). BP = biological process; MF = molecular function; CC = 

cellular component; numDEInCat = number of PTSD/MDD associated RNAAgeCalc genes included in the corresponding GO category; numInCat 

= number of RNAAgeCalc genes included in the corresponding GO category; Padj = FDR adjusted p-value across the number of GO categories 

examined.  
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Table S3 

Full result of GO terms analysis for PTSD/MDD associated RNA age genes - see separately uploaded csv file (SuppTableS3.csv) 

Table S3 note: over_represented_pvalue = p-value of overrepresentation; numDEInCat = number of PTSD/MDD associated RNAAgeCalc genes 

included in the corresponding GO category; numInCat = number of RNAAgeCalc genes included in the corresponding GO category; 

over_represented_padj = adjusted p-value of overrepresentation by FDR across the number of GO categories examined; sig.genes.col = 

PTSD/MDD associated RNAAgeCalc genes included in the corresponding GO category. 
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Table S4 

Associations between PTSD/MDD and Cell Type Content Estimates in vmPFC 

Cell type B SE p p-adj 

Astrocytes  0.012 0.102 0.909 0.909 

Endothelial -0.294 0.098 0.004 0.017 

Microglia -0.261 0.154 0.095 0.221 

Mural -0.234 0.081 0.005 0.017 

Neurons  0.109 0.117 0.354 0.619 

Oligodendrocytes -0.109 0.176 0.536 0.626 

RBC  0.087 0.116 0.453 0.626 

Note. Regressions controlled for sex, sequencing run IDs, and first three qSVs. Cell type content scores were estimated via BraininaBlender. 

Significant effects are shown in bold font. B = unstandardized coefficient; SE = standard error; P-adj = FDR adjusted p-value across the number of 

cell types; Endothelial = endothelial cells; Mural = mural cells; RBC = red blood cells. 
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Table S5 

Cell Type Enrichment Analysis of Genes Included in the RNAAgeCalc Algorithm in vmPFC (n=448) 

Cell type N Count Gene ratio 

(%) 

Gene p p-adj 

Ex1 305 2 0.446 PRKCB, PPP2R2C 0.992 1 

Ex2 219 2 0.446 ATXN1, SLC39A10 0.949 1 

Ex3e 372 4 0.893 RPL35, AKAP11, SLC39A10, PRKCB 0.964 1 

Ex4 293 4 0.893 BRINP1, HIVEP2, ZMYND8, PRKCB 0.872 1 

Ex5b 240 4 0.893 SLC39A10, PRKCB, AFF3, PPP2R2C 0.744 1 

Ex6a 233 6 1.339 ROBO3, HIVEP2, STRBP, CADPS, RANBP17, GALNT14 0.342 1 

Ex6b 218 6 1.339 HIVEP2, STRBP, CADPS, PRKCB, AFF3, NLGN4Y 0.267 1 

Ex8 299 7 1.563 RPL35, MGAT5, CADPS, MEF2A, PRKCB, PPP2R2C, GALNT14 0.420 1 

Ex9 200 2 0.446 SLC39A10, WSB2 0.940 1 

In1a 257 6 1.339 IGF1, MGAT5, NRIP3, HMBOX1, GALNTL6, KIAA1211 0.439 1 

In1b 240 3 0.670 GALNTL6, RANBP17, NLGN4Y 0.889 1 

In1c 194 3 0.670 IGF1, GALNTL6, KIAA1211 0.776 1 

In3 195 2 0.446 GALNTL6, RANBP17 0.921 1 

In4a 215 3 0.670 GALNTL6, KIAA1211, PRKCB 0.834 1 

In4b 289 4 0.893 KIT, NRIP3, KIAA1211, RANBP17 0.870 1 

In6a 219 4 0.893 GALNTL6, CADPS, KIAA1211, AFF3 0.665 1 

In6b 231 3 0.670 ESRRG, CADPS, FAR2 0.876 1 

In7 232 4 0.893 ARHGEF3, CADPS, KIAA1211, RCAN2 0.737 1 

In8 197 4 0.893 NRIP3, GALNTL6, CADPS, RCAN2 0.612 1 

Endo 83 8 1.786 IFITM3, HLA-B, HIGD1B, HERC2P3, IGFBP7, SLC39A10, SLC7A5, 

GPCPD1 

0.0002 0.005 

Per 64 2 0.446 HIGD1B, IGFBP7 0.387 1 

Astro 159 1 0.223 LGI4 0.970 1 

Oligo 179 0 0  1.000 1 

OPC 143 0 0  1.000 1 

Microglia 97 2 0.446 MEF2A, FAM49B 0.602 1 

Note. Significant effects are shown in bold font. Ex=excitatory neurons; In=inhibitory neurons; Endo=endothelial cells; Per=pericytes; 

Astro=astrocytes; Oligo=oligodendrocytes; OPC=Oligodendrocyte progenitor cells; N=number of genes annotated by cell type markers. 

Count=number of genes in the RNA age algorithm that are annotated by the respective cell type markers. P-adj= FDR adjusted p-value across 

number of cell type markers examined (n = 25).   



PTSD, MDD, and Transcriptomic Age 15 

Table S6 

Associations between RNA Age and Cell Type Content Estimates in vmPFC 

Cell type B SE p p-adj 

Astrocytes -0.004 0.006 0.579 0.810 

Endothelial -0.010 0.006 0.144 0.352 

Microglia -0.013 0.010 0.197 0.352 

Mural -0.007 0.005 0.201 0.352 

Neurons  0.002 0.007 0.796 0.819 

Oligodendrocytes  0.027 0.011 0.013 0.092 

RBC -0.002 0.007 0.819 0.819 

Note. Regressions controlled for sex, sequencing run IDs, and first three qSVs. Cell type content scores were estimated via BraininaBlender. 

Significant effect is shown in bold font. B = unstandardized coefficient; SE = standard error; P-adj = FDR adjusted p-value across the number of 

cell types; Endothelial = endothelial cells; Mural = mural cells; RBC = red blood cells. 
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Table S7 

Associations between Age at Death and Cell Type Content Estimates in vmPFC 

Cell type B SE p p-adj 

Astrocytes 0.004 0.004 0.294 NA 

Endothelial 0.003 0.004 0.438 NA 

Microglia <0.001 0.006 0.970 NA 

Mural 0.004 0.003 0.223 NA 

Neurons -0.005 0.004 0.300 NA 

Oligodendrocytes 0.011 0.007 0.099 NA 

RBC -0.001 0.004 0.877 NA 

Note. Regressions controlled for sex, sequencing run IDs, and first three qSVs. Cell type content scores were estimated via BraininaBlender. B = 

unstandardized coefficient; SE = standard error; P-adj = FDR adjusted p-value across the number of cell types; Endothelial = endothelial cells; 

Mural = mural cells; RBC = red blood cells. 
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Table S8 

Top 5 Most Significant Associations between Genes in the RNAAgeCalc Algorithm and Cell Type Content Estimates in vmPFC 

Cell Type Gene 

# Corrected 

Significant 

Association 

log2FoldChange p p-adj 

Astrocyte 

BBOX1 

134 

1.423 1.243E-26 6.272E-24 

FKBP10 0.816 2.461E-23 7.017E-21 

UNG 0.624 5.368E-16 5.043E-14 

PLCD1 0.727 5.160E-15 4.258E-13 

CADPS -0.528 9.664E-14 6.735E-12 

Endothelial 

TINAGL1 

162 

1.513 5.866E-27 3.679E-24 

TLN1 0.939 1.233E-22 3.222E-20 

HLA-B 1.125 1.332E-18 2.321E-16 

IFITM1 1.636 3.422E-18 5.365E-16 

ENG 1.144 4.552E-17 5.437E-15 

Microglia 

VSIG4 

167 

2.435 6.273E-36 9.836E-33 

MAN2B1 0.747 3.530E-28 2.768E-25 

MS4A6A 1.918 1.503E-21 3.142E-19 

HLA-B 0.716 5.093E-18 7.260E-16 

MS4A4A 1.747 1.001E-17 1.308E-15 

Mural 

AEBP1 

129 

1.877 2.031E-16 2.123E-14 

TINAGL1 1.615 6.555E-16 5.873E-14 

SYDE1 1.233 4.956E-14 3.701E-12 

TLN1 0.979 1.910E-13 1.223E-11 
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IFITM1 1.732 1.070E-11 5.082E-10 

Neuron 

PRKCB 

199 

0.939 1.160E-48 3.639E-45 

PTPN3 0.937 2.326E-33 2.431E-30 

ARHGEF3 0.656 1.400E-26 6.272E-24 

HIVEP2 0.544 1.649E-24 6.466E-22 

C1QL3 1.194 9.178E-24 2.878E-21 

Oligodendrocyte 

AQP1 

137 

2.214 4.047E-24 1.410E-21 

C14orf132 -0.460 1.252E-21 2.971E-19 

CRB2 0.766 1.326E-21 2.971E-19 

KIF19 1.991 1.199E-20 2.212E-18 

KIAA1324L 0.411 1.442E-18 2.380E-16 

RBC 

HBG2 

88 

1.767 4.542E-09 1.228E-07 

CDC42EP4 0.434 7.914E-06 8.392E-05 

ZNF711 -0.342 8.390E-06 8.764E-05 

ORC4 -0.400 1.483E-05 1.422E-04 

BRWD1 -0.237 1.492E-05 1.427E-04 

Note. Log2FoldChange = log2 fold change; p-adj = FDR adjusted p-value across number of genes examined and cell types (n = 448 x 7). 

Endothelial = endothelial cells; Mural = mural cells; RBC = red blood cells;  
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Table S9 

Associations between RNA Age Residuals and Cell Type Content Estimates in dlPFC and motor cortex 

Cell type dlPFC Motor cortex 

 B SE p p-adj B SE p p-adj 

Astrocytes -0.024 0.009 0.007 0.016 0.007 0.010 0.508 0.711 

Endothelial -0.029 0.007 0.0002 0.001 -0.014 0.008 0.094 0.282 

Microglia -0.023 0.011 0.031 0.044 -0.016 0.013 0.215 0.376 

Mural -0.027 0.007 0.0003 0.001 -0.010 0.006 0.121 0.282 

Neurons 0.012 0.006 0.059 0.069 0.002 0.008 0.800 0.800 

Oligodendrocytes 0.021 0.009 0.023 0.040 0.017 0.010 0.076 0.282 

RBC 0.012 0.008 0.136 0.136 0.003 0.008 0.661 0.771 

Note. Regressions controlled for sex, sequencing run IDs, and first three qSVs. Cell type content scores were estimated via BraininaBlender. 

P-values were adjusted across the number of cell types within each brain region. Significant effects are shown in bold font. B = 

unstandardized coefficient; SE = standard error; p-adj = FDR adjusted p-value across the number of cell types; Endothelial = 

endothelial cells; Mural = mural cells; RBC = red blood cells. 
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Supplementary Figures 

Supplementary Figure S1 

 

The figure shows a correlation heatmap illustrating the correlations among age at the time of death, RNA 

age, Horvath DNAm age, Choi brain-specific DNAm age, Shireby cortical DNAm age, RNA age 

residuals, Horvath age residuals, Shireby age residuals, and Choi age residuals across dlPFC, vmPFC, and 

motor cortex. AgeAccelRNA = RNA age residuals. AgeAccelHorvath = Horvath DNAm age residuals. 

AgeAccelShireby = Shireby DNAm age residuals. AgeAccelChoi = Choi DNAm age residuals. 
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