

- **1** Supplementary Figures and Tables
- 1.1 Supplementary Figures

2

Figure S1. Quality control and preprocessing single-cell RNA sequencing

(A) Bone marrow mononuclear cells (BMMC) were negatively enriched for NK cells and labeled with oligonucleotide-conjugated antibodies (O-AB) against CD56, CXCR6, CD117 and CD34. By flow cytometry the composition of each fraction was tested. The O-AB labeled NK cells were stained with APC-conjugated goat-anti-mouse (GaM), followed by fluorochrome-conjugated antibodies against CD56, CD34, CD117 and CXCR6 to validate the binding of the oligonucleotide-conjugated antibodies. (B) Low-quality cells with <1000 expressed genes, >8300 expressed genes and >12.5% mitochondrial RNA were removed from further analyses (in total 21 cells). 454 remaining doublets were removed that clustered based on high mRNA and gene content. In total, 6525 cells were included in subsequent analyses. (C) After log-transformation and normalization, the top 2000 most variable genes were selected by computing the variance of the log-counts and fitting a trend to the variance with respect to abundance across the genes. The top 10 most variable genes are marked. (D) Principal component (PC) analysis was applied based on the top 2000 most variable genes. The top 20 PCs, explaining 14.2% of the variance, were retained for further analyses.

Figure S2. Subclustering of CD56^{bright}, CD56^{dim}GZMK⁺ and ltNK cells

(A) CD56^{bright}NK cells (n=228), (B) CD56^{dim}*GZMK*⁺ NK cells (n=225) and (C) lymphoid tissue (lt)NK cells (n=258) were selected and further subclustered (k=8) based on the first 20 principal components. In all populations only 1 cluster was identified. Genes which are coding for proteins that are only expressed by a fraction of the cells at protein level, and *CCL5* are shown. (D,E,F) To increase the number of cells, our bone marrow NK cells were integrated with single-cell RNA sequencing data from sorted NK cells from the Crinier (8 bone marrow donors, GSE159624) and Yang dataset (two blood and six bone marrow donors, GSE130430). (D) The CD56^{bright} NK cells (n=2716), (E) CD56^{dim}*GZMK*⁺ NK cells (n=5971) and (F) ltNK cells (n=3146) were clustered (k=11) and visualized in a UMAP based on the corrected principal component scores (mutual nearest neighbors correction). In the CD56^{dim}*GZMK*⁺ NK and ltNK cell population multiple clusters were identified. The top 5 most differentially expressed genes for each (G) CD56^{dim}*GZMK*⁺ and (H) ltNK cell subcluster comparison (either up- or downregulated) were selected. The average scaled expression for each cluster is shown.

Figure S3. Analysis of the single-cell RNA sequence dataset from Crinier and Yang et al.

(A) Clustering of the single-cell RNA sequencing dataset (GSE159624) of Crinier et al. containing 24522 cells from 8 bone marrow donors resulted in 12 clusters. ItNK = Iymphoid tissue NK. (B) Clustering of the single-cell RNA sequencing dataset (GSE130430) of Yang et al. containing 9071 cells from 6 bone marrow and 2 blood donors resulted in 17 clusters. (C,D) A selection of genes used to define the clusters of the C Crinier and D Yang dataset are included in the heatmap. The scaled average expression is shown. (E,F) Distribution of clusters per individual sample for the E Crinier and F Yang dataset (n=8) was based on *KIR2DL1*, *KIR3DL2*, *KIR2DL3* and *KIR3DL1*. The detection limit for KIR gene expression was set at 0, based on the log2 normalized counts. The proliferating NK cells, representing a mixed population of NK cell subsets, and cluster 12 (<25 cells) were removed. The bars represent mean and standard error of the mean. (H) The CD56^{dim}GZMK⁻ cells from the Yang dataset were selected (cluster 2, 8, 9, 12, 14, 15 and 16) and each dataset was individually clustered. The inhibitory KIR expression of 2 donors with a high percentage of *KLRC2⁺* and CD57⁺-like NK cells is shown (24y_F_BM and 26y_F_PB, respectively). Again, no inhibitory KIR-driven clustering was observed. Both the color and the size of each dot represent the expression level.

Figure S4. UMAP embedding of spectral cytometry data of 14 bone marrow samples of healthy controls

(A) High quality cells were selected based on the results of FlowAi. Single cells were gated based on forward and side scatter. NK cells were further defined as $CD45^+CD34^-CD3^-CD19^-CD14^ CD56^+CD45RA^+$ (B) A UMAP embedding of NK cells derived from 14 healthy bone marrow samples, based on 21 NK cell markers as measured by spectral cytometry is shown. Lymphoid tissue (lt)NK cells were defined as $CD69^+CD49e^-$ (Figure 4A). The non-ltNK cells were subdivided into $CD56^{\text{bright}}CD16^{+/-}$ and $CD56^{\text{dim}}CD16^+$ NK cells. (C) The heatmap indicates the scaled mean fluorescence intensity (MFI) expression of NK cell markers on the NK cell subsets in blood (3 donors) and bone marrow (14 donors).

Figure S5. Chemokine and cytokine production of NK cell subsets

(A) Previously published bulk RNA sequence data (GSE116178) showed that each NK cell subset in bone marrow expresses *CCL3*, *CCL4*, *CCL5*, *XCL1*, *XCL2*, *IFNG* and *TNF* at the mRNA level (n=4). Bars indicate median and range. CPM = counts per million reads ItNK = Iymphoid tissue NK. (B) XCL1 was intracellularly detected by a two-step staining protocol, using unconjugated goat anti-XCL1 and donkey-anti-goat (DaG) AF488. As a negative control, cells were stained with only DaG-AF488 (most right panel). NK cells from a representative blood donor are shown. (C) Intracellular CCL5 expression in NK cell subsets, either stimulated in bulk mononuclear cells (MNC, n=5 blood, n=5 bone marrow) or as enriched NK cell fraction (n=4 blood, n=2 bone marrow). Bars indicate median and interquartile range. A paired Friedman test was applied to test for differences with isotype control for each subset. Adjusted P-value*<0.05. PB=peripheral blood, BM=bone marrow.

Figure S6. NK cell development

The minimum distance parameter of UMAP (in other UMAP embeddings in this article set at 0.6) was adjusted to study the effect on the embedding. With a lower minimum distance, the CD56^{bright} NK cells were still connected to the CD56^{dim} NK cells, while the lymphoid tissue (lt)NK cells were not.

Figure S7. Subclustering of CD34⁺ population

(A) The CD34⁺ cells (n=126) in our dataset were selected and subclustered. For the UMAP, n_neighbors=20, and min_dist=0.1 was applied. In addition, reference-based analysis was performed based on bulk RNA sequence data of hematopoietic populations (Blueprint and Encode datasets). The size of the cells reflects the probability score (the bigger, the more likely the assignment of the reference label is correct). The HBD^+NKG7^+ cells in cluster 7 are likely to represent NK cells contaminated with lysed erythrocytes. (B) The expression of a selection of genes is indicated on the UMAP plot.

Figure S8. Integration of NK cells with bone marrow cells from the human cell atlas

(A) The bone marrow cells of 8 donors from the human cell atlas (HCA) single-cell RNA sequence dataset were integrated with our bone marrow NK cell dataset (total = 323466 cells). Each color on the UMAP (min. distance=0.4) represents a distinct cluster. (B) Cells from our bone marrow NK cell dataset were selected and plotted in the same UMAP embedding as in A. Cells were colored by their original subset assignment, or cluster assignment as indicated in A. ltNK = lymphoid tissue NK (C) Cluster 6, 18, 24, 28, 29 (progenitors) and 3, 30 (NK cells) from A were selected and re-clustered (total = 41476 cells), as visualized in Figure 7A. Reference-based analysis using the bulk RNA sequence Blueprint and Encode datasets was performed on each cluster for automatic annotation.

Figure S9. NK cell development in secondary lymphoid tissues

Gating strategy applied to study presence of NK progenitor cells in bone marrow, spleen, lymph node and tonsil. Dead and doublet cells were excluded per individual sample. Next, CD45^{+/low}CD3⁻CD19⁻ cells were gated and all samples were embedded in a UMAP. In the UMAP, early progenitors (CD117⁺CD16⁻SSC^{high}CD45^{low}) and a combination of NK, helper innate lymphoid cells (ILCs) and other progenitors were selected. Within the NK/ILC/progenitor gate, NK cell subsets, ILCs and the CD127^{low}CD117⁺CD56^{+/-} potential NK progenitor cells were defined per individual sample. A representative lymph node donor is shown in the first row, and last two rows. ltNK = lymphoid tissue NK, ILC= innate lymphoid cell.

1.2 Supplementary Tables

Table S1. Antibodies used for flow cytometry

Specificity		Antibody characteristics					
CD designation	Alternative name	Fluorochrome	Туре	Clone	Company	Catalog#	Panel
CD3		BV421	m-lgG1	UCHT1	Becton Dickinson	562426	LSR
CD7		AF700	m-lgG1	M-T701	Becton Dickinson	561603	LSR
CD16	FCGR3A	BV711	m-lgG1	3G8	Becton Dickinson	563127	LSR/Aurora
CD19		BV510	m-lgG1	SJ25C1	Becton Dickinson	562947	LSR
CD34		PE	m-lgG1	8G12	Becton Dickinson	345802	LSR
CD45		PE-Cy5.5	m-lgG1	J33	Beckman Coulter	A54139	LSR
CD56	NCAM	APC	m-lgG1	N901	Beckman Coulter	IM2474	LSR
CD56	NCAM	ECD	m-lgG1	N901	Beckman Coulter	A82943	LSR
CD56	NCAM	PE-Cy7	m-lgG1	N901	Beckman Coulter	A21692	LSR
CD69		PE-Cy7	m-lgG1	L78	Becton Dickinson	335792	LSR
CD117	c-KIT	PE	m-lgG1	104D2	Becton Dickinson	332785	LSR
CD117	c-KIT	BV510	m-lgG1	104D2	Biolegend	313220	LSR/Aurora
CD127	IL7R	FITC	m-lgG1	eBioRDR5	eBioscience	11-1278-42	LSR
CD186	CXCR6	Unconiugated	m-lgG2b	56811	R&D	MAB699	LSR
CD186	CXCR6	BV421	m-lgG2a	K041E5	Biolegend	356014	LSR/Aurora
Secondary	m-lø	APC	g-1g	polyclonal	Becton Dickinson	550826	LSR
Secondary	m-lgG2h	AF647	g-lgG	polyclonal	Invitrogen	Δ21242	LSR
		FITC	m-løG1	MT910		f767	Aurora
CD3		BV/480	m-lgG1		Becton Dickinson	566105	Aurora
		BV480	m lgG1		Riologond	200472	Aurora
CD3		AFE 22	m laC1	OCHII	1 eDieseienee	500472	Aurora
		AF532	m-igG1	eBI0124-1D	1 eBioscience	58-0079-42	Aurora
		R/18	m-IgG1	M-1701	Becton Dickinson	/520/9	Aurora
CD8		BUV395	m-lgG1	RPA-18	Becton Dickinson	931/565	Aurora
CD16	FCGR3A	BV480	m-lgG1	3G8	Becton Dickinson	566108	Aurora
CD27		APC-Fire 810	m-lgG1	QA17A18	Biolegend	393213	Aurora
CD45		APC-H7	m-lgG1	2D1	Becton Dickinson	641417	Aurora
CD45		BUV805	m-lgG1	HI30	Becton Dickinson	612891	Aurora
CD45RA		BV570	m-lgG2b	HI100	Biolegend	304132	Aurora
CD49e	ITGA5	BUV737	m-lgG1	IIA1	Becton Dickinson	741849	Aurora
CD49e	ITGA5	BV711	m-lgG1	IIA1	Becton Dickinson	740787	Aurora
CD56	NCAM	BV650	m-IgG2b	NCAM16.2	Becton Dickinson	564057	Aurora
CD57		РВ	m-lgM	HNK1	Biolegend	359608	Aurora
CD62L	SELL	BV605	m-lgG1	DREG-56	Biolegend	304834	Aurora
CD69		BUV737	m-lgG1	FN50	Becton Dickinson	612817	Aurora
CD69		BUV805	m-lgG1	FN50	Becton Dickinson	748763	Aurora
CD127	IL7Ra	PE-Cy5.5	m-lgG1	eBioRDR5	eBioscience	35-1278-42	Aurora
CD158a+h	KIR2DL1, KIR2DS1	PE	m-lgG1	EB6	Beckman Coulter	A09778	Aurora
CD158b1+b2+j	KIR2DL2, KIR2DL3, KIR2DS2	PE	m-lgG1	GL183	Beckman Coulter	IM2278U	Aurora
CD158e1	KIR3DL1	PE	m-lgG1	DX9	Becton Dickinson	555967	Aurora
CD158i	KIR2DS4	PE	m-lgG2a	FES172	Beckman Coulter	IM3337	Aurora
CD159a	NKG2A	PE-Cy7	m-lgG2b	Z199	Beckman Coulter	B10246	Aurora
CD226	DNAM-1	BUV563	m-lgG1	DX11	Becton Dickinson	748429	Aurora
CD335	NKp46	Unconjugated	m-lgG1	9E2	Becton Dickinson	557911	Aurora
	CCL4	PerCP-ef710	m-lgG2a	FL34Z3L	eBioscience	46-7540-42	Aurora
	CCL5	PE	m-lgG2b	VL1	Biolegend	515504	Aurora
	CX3CR1	BV786	r-lgG2b	2A9-1	Becton Dickinson	744489	Aurora
	GZMB	AF700	m-lgG1	GB-11	Becton Dickinson	560213	Aurora
	GZMB	PE	m-lgG1	GB-11	Sanquin	M2289	Aurora
	GZMK	AF647	m-lgG1	GM26F7	Biolegend	370503	Aurora
	IFNG	PE-Dazzle594	m-løG1	4S.B3	Biolegend	502546	Aurora
	KLRG1	PerCP-ef710	m-løG2a	13F12F2	eBioscience	46-9488-47	Aurora
	TIGIT	AF647	m-lgG2a	MRSA/2	eBioscience	51-9500-42	Aurora
	TNES	AE700	m laC1	Mab11	Piologond	51-3300-42	Aurora
					Bolegena	202928	Aurora
		a race	g-igo	polycional	RQU	AF095	Aurora
Secondary	g-igG (H+L)	AF488	a-IgG	polycional	invitrogen	A-11055	Aurora
Secondary	m-IgG1	AF594	g-lgG	polyclonal	Invitrogen	A-21125	Aurora

main abbreviations Type: m=mouse, g=goat, rec=recombinant, h=human, r=rat, g=goat, d=donkey

Table S2. Oligonucleotide-conjugated antibodies used for single-cell RNA sequencing

Specificity		Antibody characteristics							
CD designation	Alternative name	Oligonucleotide	Туре	Clone	Company	Catalog#			
CD34		GCAGAAATCTCCCTT	m-lgG1	581	Biolegend	343537			
CD56	NCAM	TCCTTTCCTGATAGG	m-lgG1	5.1H11	Biolegend	362557			
CD117	c-KIT	AGACTAATAGCTGAC	m-lgG1	104D2	Biolegend	313241			
CD186	CXCR6	GACAGTCGATGCAAC	m-lgG2a	K041E5	Biolegend	356021			

main abbreviations Type: m=mouse