Electronic Supplementary Information

Snowflake like metastable wurtzite CuGaS₂/MoS₂ composite with superior electrochemical HER activity

Jagan Radhakrishnan^a, Abdul Kareem^b, Srabanti Ratna^a, Sellappan Senthilkumar^b, Krishnendu Biswas^{a*}

^aChemistry Division, School of Advanced Sciences, Vellore Institute of Technology, Chennai 600127, India

^bDepartment of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, India

*Corresponding Author Email: krishnendu.biswas@vit.ac.in, krismat79@gmail.com

We have simulated the diffraction pattern for wurtzite $CuGaS_2$ using the Diamond software and the crystal parameters are given in **Table S1**. The obtained simulated diffraction pattern is shown as the red line pattern in **Figure 1**.

Table S1. Cryst	al parameters	of wurtzite	CuGaS ₂
-----------------	---------------	-------------	--------------------

Atom	Wyck.	x/a	y/b	z/c
Cu	2b	1/3	2/3	0
Ga	2b	1/3	2/3	0
S	2b	1/3	2/3	0.375

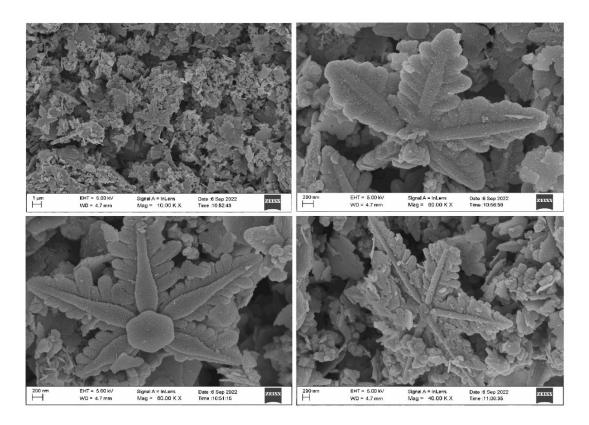


Figure S1. FESEM images of $CuGaS_2/7\%MoS_2$ at different magnifications.

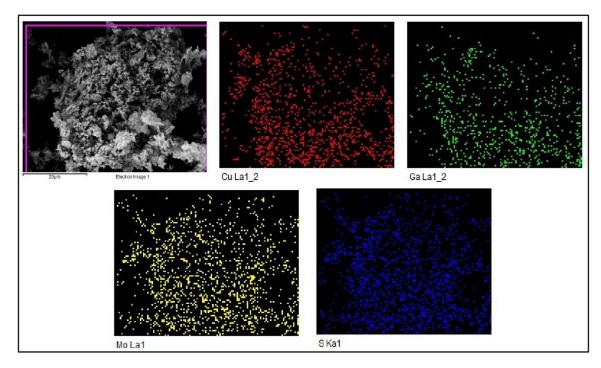
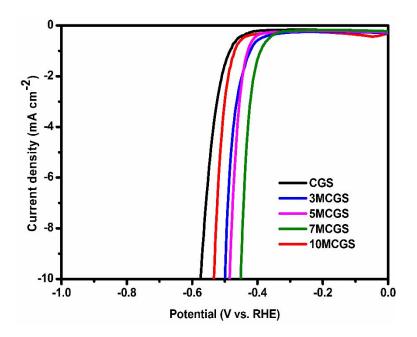



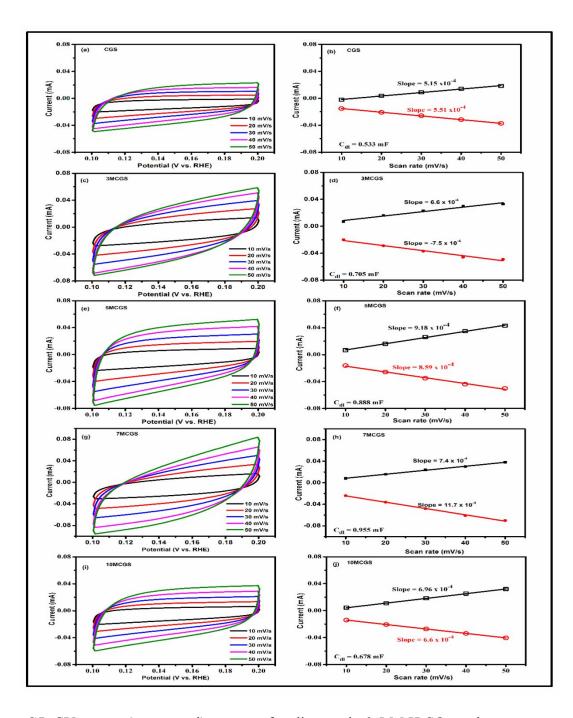
Figure S2. Elemental mapping images of CuGaS₂/7%MoS₂ composite.

Figure S3. TEM image of $CuGaS_2$ (a, b, c, d) and $CuGaS_2/7\%MoS_2$ (e, f, g, h) in different magnifications.

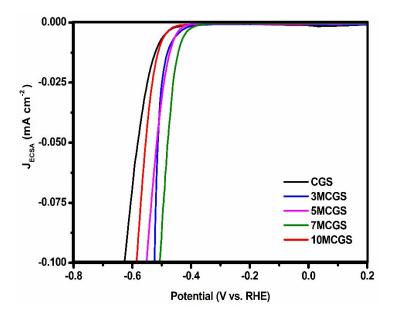
Figure S4. iR-corrected LSV curves of CGS, 3MCGS, 5MCGS, 7MCGS, and 10MCGS for HER in 0.5 M H₂SO₄.

The iR corrected LSV curves shown in **Figure S4** indicate that the catalyst 7MCGS have slightly increased overpotential value (~13 mV) attributed to the iR drop.

Calculation of Electrical double layer capacitance (Cdl) and ECSA


Electrochemical active surface area (ECSA) of CuGaS₂/xMoS₂ (x=0,3,5,7,10%wt) catalysts was estimated from their electric double layer capacitance (*Cdl*). The double layer capacitance value was measured from the non-Faradaic potential region of the CV curves at different scan rates 50 mV s⁻¹ to 10 mV s⁻¹ in 0.5 M H₂SO₄. Their anodic and cathodic current densities measured at the middle potential from CV scans were linearly fitted with the CV scan rates to obtain Slope_{anodic} and Slope_{cathodic}, respectively.

Cdl was calculated by $Cdl = (\text{Slope}_{\text{anodic}} - \text{Slope}_{\text{cathodic}})/2 --- (1)$


ECSA was then calculated by dividing the electric double layer capacitance value (*Cdl*) by the specific surface capacitance (*Cs*) of the electrode surface.

ECSA = Cdl / Cs --- (2)

Since the exact value of Cs for CuGaS₂ is not available, a commonly used Cs value (0.04 mF cm⁻²) for metal surfaces was used in this study.^{1,2}

Figure S5. CV curves (a, c, e, g, i) at a non-faradic area in $0.5 \text{ M H}_2\text{SO}_4$ at the scan rates of 10, 20, 30, 40 and 50 mV s⁻¹ and capacitive currents plotted as a function of the scan rate (b, d, f, h, j) of the CGS, 3MCGS, 5MCGS, 7MCGS, 10MCGS electrodes.

Figure S6. LSV curves of CGS, 3MCGS, 5MCGS, 7MCGS, and 10MCGS normalized by calculated ECSA.

Calculation procedure for TOF:

TOF = JA/2nF

J is current density at particular overpotential in (A cm⁻²), J at 400 mV

A is surface area of the working electrode (0.07 cm^{-2})

F is Faradays constant value 96485 C/mol

 $\frac{1}{2}$ is used as HER is a two electron reaction

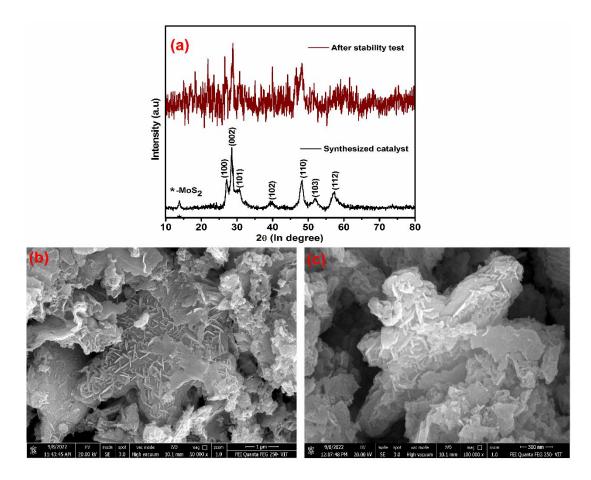
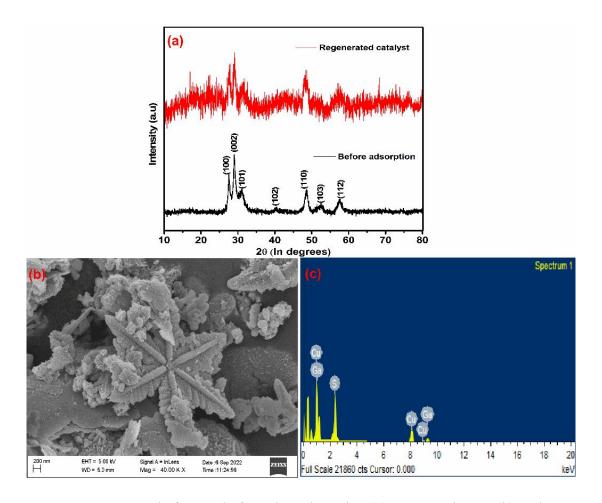

n is the number of moles of the catalyst loaded on the working electrode

Table S2 Calculated TOF of catalysts


Catalyst	TOF
CGS	4.7×10^{-4}
3MCGS	9.2 × 10 ⁻⁴
5MCGS	6.2 × 10 ⁻⁴
7MCGS	19.6 × 10 ⁻⁴
10MCGS	5.6 × 10 ⁻⁴

S. No	Adsorbent	Dye concentration (mg/L)	Catalyst amount	Time (min)	Adsorption capacity (mg g ⁻¹)	Percentage of adsorption	Ref
1	Fe ₃ O ₄ /MoS ₂ composites	20	20	30	24	-	3
2	SnS ₂ /MoS ₂ NPs	10	20	15	23.6	92	4
3	Flower-like MoS ₂ nanostructures	20	20	35	49.2	91	5
4	Ni/MoS ₂ nanocomposites	20	10	35	15.7	-	6
5	MoS ₂ nanosheets	20	100	5	19.6	97.96	7
6	Flower-like MoS ₂ nanostructure	10	10	180	59	98.5	8
7	Snowflake like CuGaS ₂	10	30	20 60	15 16.5	90 99	Present study

Table S3. Comparison for RhB adsorption performance of different sulfide based adsorbents.

Figure S7. XRD patterns before and after HER activity (a), FESEM (b, c) after HER activity of 7MCGS.

Figure S8. XRD patterns before and after RhB adsorption (a), FESEM image (b) and EDAX (c) after RhB adsorption of CuGaS₂.

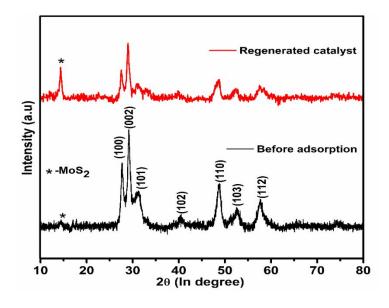


Figure S9. XRD patterns before and after RhB adsorption of CuGaS₂/5%MoS₂.

References

- Zhou, Z.; Wei, L.; Wang, Y.; Karahan, H.E.; Chen, Z.; Lei, Y.; Chen, X.; Zhai, S.; Liao, X.; Chen, Y. Hydrogen evolution reaction activity of nickel phosphide is highly sensitive to electrolyte pH. *J. Mater. Chem. A* 2017,5, 20390-20397.
- (2) Cao, X.; Medvedeva, J.E.; Nath, M. Copper cobalt selenide as a high-efficiency bifunctional electrocatalyst for overall water splitting: combined experimental and theoretical study. ACS Appl. Energy Mater. 2020, 3, 3092-3103.
- (3) Song, H.J.; You, S.; Jia, X.H.; Yang, J. MoS₂ nanosheets decorated with magnetic Fe₃O₄ nanoparticles and their ultrafast adsorption for wastewater treatment. *Ceram. Int.* 2015, 41, 13896-13902.
- (4) Cui, B.; Wang, Y.; Zhang, F.; Xiao, X.; Su, Z.; Dai, X.; Zhang, H.; Huang, S. Hydrothermal synthesis of SnS₂/MoS₂ Nanospheres for enhanced adsorption capacity of organic dyes. *Mater. Res. Express* **2019**, 7, 015016.
- (5) Wang, X.; Ding, J.; Yao, S.; Wu, X.; Feng, Q.; Wang, Z.; Geng, B. High supercapacitor and adsorption behaviors of flower-like MoS₂ nanostructures. *J. Mater. Chem. A* 2014, 2, 15958-15963.
- (6) Song, H.; You, S.; Jia, X. A facile in situ reduction method for the preparation of magnetic Ni/MoS₂ nanocomposites and their adsorption behaviors of congo red. *J. Mater. Sci.: Mater. Electron.* 2016, 27, 10841-10848.
- (7) Li, H.; Xie, F.; Li, W.; Fahlman, B.D.; Chen, M.; Li, W. Preparation and adsorption capacity of porous MoS₂ nanosheets. *RSC Adv.* **2016**, 6, 105222-105230.

(8) Han, S.; Liu, K.; Hu, L.; Teng, F.; Yu, P.; Zhu, Y. Superior adsorption and regenerable dye adsorbent based on flower-like molybdenum disulfide nanostructure. *Sci. Rep.* 2017, 7, 1-11.