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S1 Derivation of moment equations

S1.1 Definitions

Definition 1. (Frobenius inner product) The Frobenius inner product, ◦, is a binary op-

erator that yields the sum of the component-wise product of two tensors A and B of the same

size and shape given by

A ◦B =
∑
i1

∑
i2

· · ·
∑
ik

Ai1,i2,...,ikBi1,i2,...,ik = vec(A)ᵀvec(B).

Here, vec(A) denotes the vectorisation operator, returning a vector containing all the elements

of A in column-major order.

If A and B are vectors, then the Frobenius inner product reduces to the dot product, such

that A ◦B = AᵀB = A ·B. If A and B are matrices, then A ◦B = Tr(AᵀB).

Definition 2. (Observed moments) The k-th order observed moment of the vector ϕ ∈ Rd

is

Mk(ϕ) ∈ Rd
k
.

and contains elements relating to all possible k-term products of the elements of ϕ. For example,

we might define Mk recursively where

M0(ϕ) = 1,

M1(ϕ) = ϕ,

M2(ϕ) = ϕ⊗ϕ = vec(ϕϕᵀ),

Mk(ϕ) = ϕ⊗Mk−1(ϕ) = Mk−1(ϕ)⊗ϕ k ≥ 1,

Mk(ϕ) = Mk−a(ϕ)⊗Ma(ϕ), k ≥ a.

Regardless of the shape of Mk(ϕ), for ϕ = θ − θ̂, the expectations of Mk(θ − θ̂) relate to

the covariance matrix, coskewness tensor and cokurtosis tensor for k = 2, 3 and 4, respectively

for θ̂ = E(θ). We denote these tensors

V(θ) = 〈M2(θ − θ̂)〉,

S(θ) = 〈M3(θ − θ̂)〉,

K(θ) = 〈M4(θ − θ̂)〉,

respectively.

Definition 3. (Differential operator) The k-th order differential operator of the function

f : Rd → R is

Dkf =
∂kf

∂Mk(ϕ)
.
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We can also define the differential operator recursively

Df(ϕ) = ∇f(ϕ),

D2f(ϕ) = ∇⊗∇f(ϕ),

Dkf(ϕ) = ∇⊗Dk−1f(ϕ) ∈ Rd
k
, k ≥ 2.

Note that the second-order differential operator is also known as the Hessian operator

D2f(ϕ) = Hf(ϕ).

S1.2 Intermediate results

Proposition 1. For constant A ∈ Rd1×d2×···×dn and function B(θ) : Rd → Rd1×d2×···×dn, where

θ is a random vector,

〈A ◦B(θ)〉 = A ◦ 〈B(θ)〉,

where 〈·〉 denotes an expectation with respect to θ.

Proof.

〈A ◦B(θ)〉 = 〈vec(A)ᵀvec(B(θ))〉,

= vec(A)ᵀ〈vec(B(θ))〉, since EX(AX) = AEX(X) by [1, 2],

= vec(A) ◦ 〈vec(B(θ))〉,

= A ◦ 〈B(θ)〉.

Proposition 2. For symmetric matrix A ∈ Rd×d and vectors x,y ∈ Rd,

xᵀAy = A ◦ yxᵀ = A ◦ xyᵀ.

Proof.

A ◦ yxᵀ = Tr(Aᵀyxᵀ),

= Tr((Ay)xᵀ),

= Tr(xᵀ(Ay)),

= xᵀAy.

Also, consider A ◦ yxᵀ = Aᵀ ◦ (yxᵀ)ᵀ = A ◦ xyᵀ.

Proposition 3. For matrices A,B ∈ Rm×n and C,D ∈ Rp×q,

(A ◦B)(C ◦D) = (A⊗ C) ◦ (B ⊗D).
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Proof.

(A ◦B)(C ◦D) = Tr(AᵀB) Tr(CᵀD),

= Tr
(
(AᵀB)⊗ (CᵀD)

)
,

= Tr
(
(Aᵀ ⊗ Cᵀ)(B ⊗D)

)
,

= Tr
(
(A⊗ C)ᵀ(B ⊗D)

)
,

= (A⊗ C) ◦ (B ⊗D).

Proposition 4. (Multivariate Taylor series) Let f : Rd → R ⊂ R and let Dn and Mn be

defined as in definitions 2 and 3, respectively. Then

f(a+ h) =
∞∑
k=0

1

k!
Dkf(a) ◦Mk(h).

for a,h ∈ Rd.

Proof. First, consider the scalar function F (t) = f(a+ th) such that

F (t) =
∞∑
k=0

1

k!
F (k)(0) tk. (S1)

Let r(t) = a+ th and consider

F ′(t) =
df(r(t))

dt
=
∂r(t)

∂t
· ∇f(r(t)) = (h · ∇)f(r(t)),

by the chain rule. Observe further that

F ′′(t) = (h · ∇)
df(r(t))

dt
,

= (h · ∇)(h · ∇)f(r(t)),

= (h · ∇)2f(r(t)).

Assume now that F (k)(t) = (h · ∇)kf(r(t)) holds for k = `, then

F (`+1)(t) =
d

dt
F (`)(t),

= (h · ∇)`
df(r(t))

dt
,

= (h · ∇)`(h · ∇)f(r(t)),

= (h · ∇)`+1f(r(t)),

which completes the induction step. Therefore, by the principle of mathematical induction,

F (k)(t) = (h · ∇)kf(r(t)) holds true for all k ∈ N by the principle of mathematical induction.
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Thus, eq. (S1) can be expressed in the form

F (t) = f(a+ ht) =

∞∑
k=0

1

k!
(h · ∇)kf(a) tk

and for t = 1, we have that

f(a+ h) =
∞∑
k=0

1

k!
(h · ∇)kf(a).

It remains to be shown that (h · ∇)kf(a) = Dkf(a) ◦Mk(h). For k = 1, we have that

Df(a) ◦M1(h) = ∇f(a) ◦ h = h · ∇f(a) = (h · ∇)f(a).

Assuming that (h · ∇)kf(a) = Dkf(a) ◦Mk(h) holds for k = `, then

(h · ∇)`+1f(a) = (h · ∇)(h · ∇)`f(a),

= (h ◦ ∇)(h ◦ ∇)`f(a), by def. 1,

= (∇ ◦ h)
(
D`f(a) ◦M`(h)

)
,

=
(
∇⊗D`f(a)

)
◦
(
h⊗M`(h)

)
, by prop. 3,

= D`+1f(a) ◦M`+1(h), by defs. 2 and 3,

which concludes the induction step. Therefore, (h · ∇)nf(a) = Dnf(a) ◦Mn(h) holds for all

n ∈ N by the principle of mathematical induction.

S1.3 Obtaining approximate expressions for the moments of f(θ)

By proposition 4 we have that

f(θ) = f(θ̂) +
∞∑
k=1

1

k!
Dkf(θ̂) ◦Mk(θ − θ̂), (S2)

where a = θ̂ and h = θ− θ̂. Truncating the series to k ≤ 2 yields a second-order approximation

to f(θ) about θ = θ̂ given by

f(θ) ≈ f(θ̂) +∇f(θ̂) · (θ − θ̂) +
1

2
Hf(θ̂) ◦M2(θ − θ̂), (S3)

where ◦, M2(θ), and Hf(θ̂) are defined in definitions 1, 2, and 3, respectively.

In the main paper, we present approximate expressions for the mean 〈f(θ)〉, the univariate

second moments 〈f2(θ)〉, the covariance 〈fi(θ)fj(θ)〉 for two functions fi(θ) and fj(θ), and

finally for the univariate third moments, 〈f3(θ)〉. Here, we derive these expressions using the

notation defined in the definitions and results derived in the propositions from section S1.1

and section S1.2. In this supporting information document, we work with the definitions of

Mk(ϕ) given in definition 2 having the useful property that Mk(ϕ) are matrices for all k. In
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section S1.3.4, we explain how the results are invariant to the shape of Mk(ϕ) and therefore, how

the results relate to the formulation in the main text where Mk(ϕ) is a k-dimensional tensor.

This observation enables the elements of Mk(ϕ) (and therefore, elements of the expectation

〈Mk(ϕ)〉) to be more readily obtained.

In the present work, we consider only the quadratic approximation (eq. (S3)) however similar

working can be applied for an approximation of any order.

S1.3.1 First-order

Taking expectations of eq. (S3), we have that

〈f(θ)〉 ≈ 〈f(θ̂)〉+
〈
∇f(θ̂) · (θ − θ̂)

〉
+

〈
1

2
Hf(θ̂) ◦M2(θ − θ̂)

〉
,

= f(θ̂) +∇f(θ̂) ·
〈

(θ − θ̂)
〉

+
1

2
Hf(θ̂) ◦

〈
M2(θ − θ̂)

〉
,

= f(θ̂) + V(θ) ◦ 1

2
Hf(θ̂).

(S4)

S1.3.2 Second-order

It suffices to derive an expression for 〈fi(θ)fj(θ)〉 since 〈f2(θ)〉 = 〈f(θ)f(θ)〉. Consider

fi(θ)fj(θ) ≈ fi(θ̂)fj(θ̂) + fi(θ̂)∇fj(θ̂) · (θ − θ̂) + fj(θ̂)∇fi(θ̂) · (θ − θ̂)

+
[
∇fi(θ̂) · (θ − θ̂)

] [
∇fj(θ̂) · (θ − θ̂)

]
︸ ︷︷ ︸

Term 1

+
1

2
fi(θ̂)Hfj(θ̂) ◦M2(θ − θ̂) +

1

2
fj(θ̂)Hfi(θ̂) ◦M2(θ − θ̂)

+
1

2

[
∇fi(θ̂) · (θ − θ̂)

] [
Hfj(θ̂) ◦M2(θ − θ̂)

]
︸ ︷︷ ︸

Term 2

+
1

2

[
∇fj(θ̂) · (θ − θ̂)

] [
Hfi(θ̂) ◦M2(θ − θ̂)

]
+

1

4

[
Hfi(θ̂) ◦M2(θ − θ̂)

] [
Hfj(θ̂) ◦M2(θ − θ̂)

]
︸ ︷︷ ︸

Term 3

.

(S5)

The unnamed terms in the expression above relate to terms that already appear in the first-order

expression, or terms that appear twice.

We now apply results from propositions 1 to 3 so that expectations related to the moments

of θ can be taken.
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Term 1 [
∇fi(θ̂) · (θ − θ̂)

] [
∇fj(θ̂) · (θ − θ̂)

]
=
[
∇fi(θ̂) ◦ (θ − θ̂)

] [
∇fj(θ̂) ◦ (θ − θ̂)

]
,

=
[
∇fi(θ̂)⊗∇fj(θ̂)

]
◦
[
(θ − θ̂)⊗ (θ − θ̂)

]
,

= M2(θ − θ̂) ◦
(
∇fi(θ̂)⊗∇fj(θ̂)

)
.

∴
〈[
∇fi(θ̂) · (θ − θ̂)

] [
∇fj(θ̂) · (θ − θ̂)

]〉
=
〈
M2(θ − θ̂) ◦

(
∇fi(θ̂)⊗∇fj(θ̂)

)〉
,

=
〈
M2(θ − θ̂)

〉
◦
(
∇fi(θ̂)⊗∇fj(θ̂)

)
,

= V(θ) ◦
(
∇fi(θ̂)⊗∇fj(θ̂)

)
.

Term 2[
∇fi(θ̂) · (θ − θ̂)

] [
Hfj(θ̂) ◦M2(θ − θ̂)

]
=
[
Hfj(θ̂) ◦M2(θ − θ̂)

] [
∇fi(θ̂) · (θ − θ̂)

]
,

=
(
Hfj(θ̂)⊗∇fi(θ̂)

)
◦
(
M2(θ − θ̂)⊗ (θ − θ̂)

)
,

=
(
Hfj(θ̂)⊗∇fi(θ̂)

)
◦M3(θ − θ̂).

∴
〈[
∇fi(θ̂) · (θ − θ̂)

] [
Hfj(θ̂) ◦M2(θ − θ̂)

]〉
= S(θ) ◦

(
Hfj(θ̂)⊗∇fi(θ̂)

)
.

Term 3[
Hfi(θ̂) ◦M2(θ − θ̂)

] [
Hfj(θ̂) ◦M2(θ − θ̂)

]
=
(
Hfi(θ̂)⊗Hfj(θ̂)

)
◦
(
M2(θ − θ̂)⊗M2(θ − θ̂)

)
,

=
(
Hfi(θ̂)⊗Hfj(θ̂)

)
◦M4(θ − θ̂).

∴
〈[
Hfi(θ̂) ◦M2(θ − θ̂)

] [
Hfj(θ̂) ◦M2(θ − θ̂)

]〉
= K(θ) ◦

(
Hfi(θ̂)⊗Hfj(θ̂)

)
.

Therefore, we have that

〈fi(θ)fj(θ)〉 ≈
〈
fi(θ̂)fj(θ̂)

〉
+ V(θ) ◦

(
∇fi(θ̂)⊗∇fj(θ̂)

)
+

1

2
V(θ) ◦

(
fi(θ̂)Hfj(θ̂) + fj(θ̂)Hfi(θ̂)

)
+

1

2
S(θ) ◦

(
Hfi(θ̂)⊗∇fj(θ̂) +Hfj(θ̂)⊗∇fi(θ̂)

)
+

1

4
K(θ) ◦

(
Hfi(θ̂)⊗Hfj(θ̂)

)
.

(S6)
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S1.3.3 Third-order

Next, we take the cube of eq. (S3) to obtain

f3(θ) = f3(θ̂) + 3f2(θ̂)∇f(θ̂) · (θ − θ̂) + 3f(θ̂)
(
∇f(θ̂) · (θ − θ̂)

)2
+
(
∇f(θ̂) · (θ − θ̂)

)3
︸ ︷︷ ︸

Term 1

+
3

2
f2(θ̂)Hf(θ̂) ◦M2(θ − θ̂)

+ 3f(θ̂)
(
∇f(θ̂) · (θ − θ̂)

)(
Hf(θ̂) ◦M2(θ − θ̂)

)
+

3

2

(
∇f(θ̂) · (θ − θ̂)

)2 (
Hf(θ̂) ◦M2(θ − θ̂)

)
︸ ︷︷ ︸

Term 2

+
3

4
f(θ̂)

(
Hf(θ̂) ◦M2(θ − θ̂)

)2
+

3

4

(
∇f(θ̂) · (θ − θ̂)

)(
Hf(θ̂) ◦M2(θ − θ̂)

)2
︸ ︷︷ ︸

Term 3

+
1

6

(
Hf(θ̂) ◦M2(θ − θ̂)

)3
︸ ︷︷ ︸

Term 4

.

(S7)

As with the second-order expression, we now apply results from propositions 1 to 3 so that

expectations that relate to the moments of θ can be taken.

Term 1 (
∇f(θ̂) · (θ − θ̂)

)3
=
(
∇f(θ̂) · (θ − θ̂)

)2 (
∇f(θ̂) · (θ − θ̂)

)
,

=
(
M2(θ − θ̂) ◦

(
∇f(θ̂)⊗∇f(θ̂)

))(
(θ − θ̂) ◦ ∇f(θ̂)

)
,

=
(
M2(θ − θ̂) ◦M2

(
∇f(θ̂)

))(
(θ − θ̂) ◦ ∇f(θ̂)

)
,

=
(
M2(θ − θ̂)⊗ (θ − θ̂)

)
◦
(
M2

(
∇f(θ̂)

)
⊗∇f(θ̂)

)
,

= M3(θ − θ̂) ◦M3

(
∇f(θ̂)

)
.

Term 2(
∇f(θ̂) · (θ − θ̂)

)2 (
Hf(θ̂) ◦M2(θ − θ̂)

)
=
(
M2

(
∇f(θ̂)

)
◦M2(θ − θ̂)

)(
Hf(θ̂) ◦M2(θ − θ̂)

)
,

=
(
M2

(
∇f(θ̂)

)
⊗Hf(θ̂)

)
◦
(
M2(θ − θ̂)⊗M2(θ − θ̂)

)
,

=
(
M2

(
∇f(θ̂)

)
⊗Hf(θ̂)

)
◦M4(θ − θ̂).

Term 3(
∇f(θ̂) · (θ − θ̂)

)(
Hf(θ̂) ◦M2(θ − θ̂)

)2
=
(
Hf(θ̂) ◦M2(θ − θ̂)

)2 (
∇f(θ̂) · (θ − θ̂)

)
,

=
((
Hf(θ̂)⊗Hf(θ̂)

)
◦M4(θ − θ̂)

)(
∇f(θ̂) · (θ − θ̂)

)
,

=
((
Hf(θ̂)⊗Hf(θ̂)⊗∇f(θ̂)

)
◦M5(θ − θ̂)

)
.
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Term 4(
Hf(θ̂) ◦M2(θ − θ̂)

)3
=
(
Hf(θ̂) ◦M2(θ − θ̂)

)2 (
Hf(θ̂) ◦M2(θ − θ̂)

)
,

=
((
Hf(θ̂)⊗Hf(θ̂)

)
◦M4(θ − θ̂)

)(
Hf(θ̂) ◦M2(θ − θ̂)

)
,

=
(
Hf(θ̂)⊗Hf(θ̂)⊗Hf(θ̂)

)
◦M6(θ − θ̂).

At third order, we make the approximation that 〈M5(θ− θ̂)〉 = 〈M6(θ− θ̂)〉 = 0; therefore,

the expectation of terms 3 and 4 above are also zero. Therefore, we arrive at the following

expression for the expectation of the third-order moment〈
f3(θ)

〉
= f3(θ̂) + 3f(θ̂)V(θ) ◦M2

(
∇f(θ̂)

)
+ S(θ) ◦M3

(
∇f(θ̂)

)
+

3

2
f2(θ̂)V(θ) ◦Hf(θ̂)

+ 3f(θ̂)S(θ) ◦
(
Hfj(θ̂)⊗∇fi(θ̂)

)
+

3

2
K(θ) ◦

(
M2

(
∇f(θ̂)

)
⊗Hf(θ̂)

)
+

3

4
f(θ̂)K(θ) ◦

(
Hf(θ̂)⊗Hf(θ̂)

)
.

(S8)

S1.3.4 Reshaped expressions

We note that eqs. (S4), (S6) and (S8) include only scalar multiplication, the Frobenius inner-

product, and the Kronecker product (but no matrix products), all of which are operations that

are independent of the matrix shape (for example, we could apply the vec(·) operator to all

matrices in eqs. (S4), (S6) and (S8) and the equations would remain valid). Therefore, we

introduce a generalisation of the Kronecker product such that moment expressions Mp(ϕ) are

p-dimensional tensors with elements

[
Mp(ϕ)

]
a1a2,...,ap

=

p∏
i=1

ϕai . (S9)

This formulation allows for the expectation 〈Mp(θ−θ̂)〉 to be formulated more easily element-by-

element for common distributions, such as when θ is multivariate normal, or Gamma distributed.

Definition 4. (Multidimensional Kronecker product) For matrices A ∈ Rm×n and B ∈
Rp×q, the multidimensional Kronecker product ⊗ of A and B

C = A⊗B (S10)

such that

C1:m,1:n,i,j = Bi,jA. (S11)

The multidimensional Kronecker product is similarly applicable to A and B as m- and p-

dimensional tensors.
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Definition 5. (Kronecker power) For tensor A and positive integer n, the Kronecker power

is

A⊗ n = A⊗A⊗ · · · ⊗A︸ ︷︷ ︸
n times

. (S12)

From these definitions, we can redefine

Mp(ϕ) = ϕ⊗ p. (S13)

and writing eqs. (S4), (S6) and (S8) using definitions 4 and 5 allows us to arrive at the following

expressions.

〈fi(θ)〉 ≈ fi(θ̂) + V(θ) ◦ 1

2
Hfi(θ̂), (S14)

〈f2i (θ)〉 ≈ f2i (θ̂) + V(θ) ◦
(
∇fi(θ̂)⊗ 2 + fi(θ̂)Hfi(θ̂)

)
(S15)

+ S(θ) ◦
(
Hfi(θ̂)⊗∇fi(θ̂)

)
+ K(θ) ◦ 1

4
Hfi(θ̂)⊗ 2,

〈f3i (θ)〉 ≈ f3i (θ̂) + V(θ) ◦ 3

2
fi(θ̂)

(
2∇fi(θ̂)⊗ 2 + fi(θ̂)Hfi(θ̂)

)
(S16)

+ S(θ) ◦
(
∇fi(θ̂)⊗ 3 + 3fi(θ̂)Hfi(θ̂)⊗∇fi(θ̂)

)
+ K(θ) ◦ 3

(1

4
fi(θ̂)Hfi(θ̂)⊗ 2 +

1

2
∇fi(θ̂)⊗ 2 ⊗Hfi(θ̂)

)
.

and

〈fi(θ)fj(θ)〉 ≈ fi(θ̂)fj(θ̂)

+ V(θ) ◦ 1

2

(
fi(θ̂)Hfj(θ̂) + fj(θ̂)Hfi(θ̂) + 2∇fi(θ̂)⊗ fj(θ̂)

)
+ S(θ) ◦

(
∇fi(θ̂)⊗Hfj(θ̂) +∇fj(θ̂)⊗Hfi(θ̂)

)
+ K(θ) ◦ 1

4
Hfi(θ̂)⊗Hfj(θ̂).

(S17)
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S2 Kolmogorov-Smirnov test results for Fig 2

In Fig 2 of the main document we compare approximate solutions to the random parameter

logistic model to a kernel density estimate constructed from N = 105 samples. Here, we com-

pute p-values from a Kolmogorov-Smirnov test that compares Ni samples to each approximate

distribution (the null hypothesis is that samples are drawn from the approximate distribution).

For this model, both approximations perform well, with no evidence at the α = 0.05 level to

reject the null hypothesis for Ni ≤ 100, with the gamma approximation providing no evidence

to reject the null hypothesis for Ni ≤ 1000.

Table A

Ni

Distribution 10 100 1000 10 000 100 000

(a) Normal 0.507 0.173 0.660 1.69× 10−3 3.28× 10−39

Gamma 0.436 0.636 0.995 0.103 9.67× 10−4

(b) Normal 0.132 0.343 0.0936 3.89× 10−10 1.37× 10−90

Gamma 0.609 0.588 0.270 0.244 0.98

(c) Normal 0.345 0.163 0.00989 3.15× 10−39 5.31× 10−298

Gamma 0.124 0.569 0.196 6.22× 10−3 5.87× 10−21
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S3 Approximate solutions to random parameter logistic model

Here, we consider dependent observations of the logistic model, such that

f(θ) =

f1(θ)

f2(θ)

f3(θ)

 =

r(20;θ)

r(30;θ)

r(40;θ)

 , (S18)

where r(t;θ) is the solution to the logistic model. We assume that θ =
[
r0, λ,R

]ᵀ
are correlated

random parameters with density function

θ ∼ MVN


µλµR
µr0

 ,
 σ2λ ρσλσR 0

ρσλσR σ2R 0

0 0 σ2r0


 . (S19)

In Fig A we compare approximate solutions based on normal (two-moment) and gamma (three-

moment) distributions for µλ = 0.5, µR = 300, µr0 = 10, σλ = 0.05, σR = 50, σr0 = 1,

ρ = 0.8.
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f3(θ ) [40 min]

Fig A. Approximate transformation for dependent observations of the logistic model. The
model output, f(θ) ∈ R3, comprises observations of the logistic model at t = 20, 30 and 40 min. Shown
is synthetic data from 105 samples of θ and an approximate transformed distribution based on the
multivariate normal distribution (blue dashed) and multivariate Gamma distribution (red dotted).
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S4 Approximate solutions for linear two-pool model

In Fig B we compare the gamma approximation of the solution of the random parameter

linear two-pool model to a kernel density estimate constructed through simulation. In Table

B we compute p-values from a Kolmogorov-Smirnov test that compares Ni samples to the

approximate distribution (the null hypothesis is that samples are drawn from the approximate

distribution). For this model, the approximation performs well at the at the α = 0.05 level in

all cases.
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Fig B. Approximate transformation for independent observations of the linear two-pool
model. We compare the accuracy of an approximate solution based on a three-moment-matched gamma
distribution (red). Also shown are kernel density estimates (black) produced from 104 samples.

Table B

Ni

Time 10 100 1000 10 000

(a) 0.5 0.889 0.947 0.315 0.278

(b) 1.5 0.987 0.660 0.508 0.720

(c) 2.5 0.223 0.0754 0.814 0.0787

(d) 3.5 0.205 0.284 0.101 0.262

(e) 5.0 0.195 0.700 0.113 0.662

(f) 7.0 0.753 0.857 0.296 0.407
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S5 Approximate solutions for non-linear two-pool model

In Fig C we compare the bivariate gamma approximation of the solution of the random param-

eter non-linear two-pool model to a kernel density estimate constructed through simulation. In

Table C we compute p-values from a Kolmogorov-Smirnov test that compares Ni samples to

the approximate marginal distribution (the null hypothesis is that samples are drawn from the

approximate marginal distribution). For this model, the approximation performs well at the at

the α = 0.05 level in most cases for Ni ≤ 1000.
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f 2
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Fig C. Approximate transformation for dependent observations of the non-linear two-pool
model. We compare the accuracy of an approximate solution based on a three-moment-matched gamma
distribution (red). Also shown are kernel density estimates (greyscale) produced from 105 samples and
synthetic data used for analysis (blue).

Table C

Ni

10 100 1000 10 000

Time f1 f2 f1 f2 f1 f2 f1 f2

(a) 2.0 0.506 0.240 0.421 0.762 0.699 0.0806 0.140 0.196

(b) 4.0 0.708 0.0273 0.515 0.917 0.572 0.362 0.205 0.326

(c) 6.0 0.285 0.169 0.423 0.380 0.825 0.0525 0.499 8.09× 10−7

(d) 8.0 0.162 0.579 0.220 0.233 0.167 0.235 0.0186 0.0043

(e) 10.0 0.420 0.438 0.542 0.748 0.594 0.401 0.210 0.921
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S6 Additional comparison for misspecified bimodal model

Here, we provide additional results exploring how misspecification of a parameter distribution

affects identifiability and model predictions. We consider a case where λ has a bimodal distri-

bution, given by a normal mixture λ ∼ wλ1 + (1− w)λ2 where

λ1 ∼ N
(
µ
(1)
λ , σ

(1)
λ

)
,

λ2 ∼ N
(
µ
(2)
λ , σ

(2)
λ

)
.

(S20)

A similar problem was previously explored by Banks et al. [3]. In the main text, we set µ
(1)
λ = 0.9,

µ
(1)
λ = 1.1, σ

(1)
λ = σ

(2)
λ = 0.05 and w = 0.4. Here, we explore a case where the subpopulations

are more distinct, setting µ
(1)
λ = 0.7, µ

(1)
λ = 1.3 (Fig D(i)). Results are shown in Fig D.
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Fig D. Inference and prediction where parameter distribution is misspecified. We explore a
case where the underlying growth rate distribution has a bimodal distribution, modelled as the mixture
wλ1 + (1− w)λ2 with λ1 = N (0.9, 0.052), λ2 = N (1.1, 0.052) and w = 0.5. To ensure practical identifi-
ability, we use a large sample size of n = 1000 per time point. In (i) we compare the true distribution
(black) to a MAP prediction (equivalent to MLE) based on the true bimodal distribution (orange) and
a misspecified normal distribution (blue). In (ii), predictions at the MAP estimates are compared to the
data. A 95% prediction interval is shown for the true model (shaded) and the misspecified model (blue
dashed), solid curves to the mean, and violin plots show the data. In (iii), we compare predictions for
the density from the true and misspecified models at t = 4.
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S7 Bistable model

Here, we consider an extension of the logistic model, known as the strong Allee effect,

dr

dt
=
λ

3
r
( r
A
− 1
)(

1− r

R

)
, r(0) = r0. (S21)

Whereas the standard logistic model has a single unstable steady-state at r = 0 and a single

stable steady-state at r = R, the logistic model with strong Allee effect has two stable steady-

states at r = 0 and r = R, and an unstable steady state at r = A. In effect, solutions to

eq. (S21) with r0 < A become extinct, r → 0 and solutions with r0 > A grow to carrying

capacity r → R (Fig D(i)).

To demonstrate a case where our approximate should not be used, consider model eq. (S21)

with a single random parameter,

r0 ∼ N (51, 1), (S22)

and with constant parameters λ = 3, R = 300, A = 50. Therefore, we expect approximately

84% of realisations to grow to carrying capacity, and 16% to tend to extinction (Fig E(i)). For

t sufficiently large, the distribution of r(t) is bimodal and constrained between 0 < r(t) < R.

However, this behaviour cannot be captured by our approximate solution, which uses informa-

tion about the derivatives of r(t) only at r0 = 51 (Fig E).
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Fig E. Failure of approximate solution for a bistable model. (i) Solutions to eq. (S21) for 50
random parameter combinations. (ii) Distribution of r(5), showing results from 104 simulated trajectories
(black) and an approximate solution based on a gamma distribution (red).
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S8 Uniformly distributed parameters model

Here, investigate the ability of our method to infer parameter distributions that are not well

described by their moments by reproducing analysis in Section 3.1.1 for the logistic model where

the parameter distributions are uniform. We set

r0 ∼ Uniform
(
µr0 −

√
3σr0 , µr0 +

√
3σr0

)
,

λ ∼ Uniform
(
µλ −

√
3σλ, µλ +

√
3σλ

)
,

R ∼ Uniform
(
µR −

√
3σR, µR +

√
3σR

)
,

(S23)

where we parameterise each distribution in terms of a mean and variance parameter. To ensure

model parameters are identifiable, we neglect measurement noise in this example. Hyperparam-

eters are otherwise set to match those in the main paper µλ = 1, µR = 300, µr0 = 50, σλ = 0.05,

σR = 20 and σr0 = 3.

In Fig F(i) we compare the approximate solutions to the random parameter logistic model

at t = 2 d to a kernel density estimate produced from 105 samples. The approximations are

poor in comparison to those in the main paper (Fig 2) for the case where model parameters are

normally distributed. However, both approximations recapture the mean and variance of the

simulated data.

Next, we perform profile likelihood analysis to establish the identifiability of µR and σR

from N = 10 measurements at each t = 0, 2, 4, ..., 14. Results in Fig F(ii–iii) demonstrate that

both parameters are identifiable, and that despite the discrepancy between the approximate

and simulated distributions in Fig F(i) we are able to recover the true value of each parameter.
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Fig F. Analysis of logistic model with uniformly distributed random parameters. (i) Com-
parison of the normal (blue dashed) and gamma (red dotted) approximations to a kernel density estimate
produced using 105 samples. (ii–iii) Profile likelihood results for µR and log(σR) from N = 10 samples
from each t = 0, 2, 4, ..., 14 using the gamma approximation. Shown are likelihood profiles (red), the
true value used to produce synthetic data (vertical dotted), and the threshold for an approximate 95%
confidence interval.
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