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Dear Professor Martinez-Garcia,

I am writing to submit a revised manuscript, “Efficient inference and identifiability analysis for
differential equation models with random parameters” that has been accepted for publication
as a methods article in PLOS Computational Biology pending minor revisions

We thank all three referees for their positive and helpful comments, and are pleased to see
that all three recommend the paper for publication. In response to the comments from referee
1, we have clarified technical details relating to our approach, and provided additional results
to demonstrate that our methodology can still be robust to the forms of misspecification that we
demonstrate. Noting that both referees 1 and 3 commented on the dimensionality of the state-
space in our three didactic examples, we have added text to the manuscript to discuss the key
assumption behind our method: namely, that data of any dimension are approximately jointly
normally distributed, or that data of dimension less than two can be described approximately
using shifted gamma distributions that account for skew.

To address the concerns of referee 2, in the revised manuscript we provide an expanded
and explicit comparison of our contribution to that of others, particularly the research work
suggested by the referee. We also now explicitly provide an expression for the log-likelihood
function, to make the methodology clear.

We attach to this letter a point-by-point response to the specific comments raised by each
referee. Changes to the manuscript are indicated in the margins and highlighted in blue font.
We hope that you find this revised manuscript suitable for publication in PLOS Computational
Biology.

Thank you for your consideration.

Yours sincerely,

Matthew J. Simpson
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Referee 1

Browning et al. present a new approach that enables parameter estimation and identifiability
analysis for differential equation models incorporating heterogeneity. This approach allows
for efficient inference and identifiability analysis by leveraging an approximate solution to the
differential equation. Overall this work is widely applicable to differential equation models that
explicitly model heterogeneity observed in the data via random parameters with parametric
distributions. The efficient approach presented in this work enables critical analyses that would
otherwise be computationally intractable for many applications.

Overall, | found that the authors clearly explain their method and provide adequate background
and detail to enable a reader’s understanding. Additionally, the authors use three test cases to
provide an excellent introduction to the identifiability analysis of this class of models. | believe
this work will allow future users to conduct a similar analysis of their models.

| have no major changes to suggest, but | have a few minor points | would like the authors to
address:

Response: We thank the referee for their positive review of our manuscript and now ad-
dressed their minor comments.

R1.1 The proposed approach requires the user to specify parametric distributions for the
model parameters. They show that misspecification of these distributions can lead to
errors in the identifiability analysis. | am concerned about the limitations of this approach
when prior knowledge of these distributions is limited. Can the authors address the pos-
sible limitations of assuming specific parametric distributions for model parameters and
provide suggestions for when the distribution may be unknown?

Response: We agree that misspecification of the mathematical model (or specifically,
the distributional form of the model parameters) can give rise to misleading results. How-
ever, although the way we present the methodology involves assuming a specific distri-
butional form for the model parameters, it is the moments of the input parameters are
inferred that are inferred. We now explicitly note this in the revised manuscript (Page 3).
Further, we note that when we explore misspecification by fitting a univariate normal dis-
tribution where the true distribution is a bivariate mixture (fig. |9, Page 13), the mean and
variance are both recovered accurately (1.016 vs 1.020 for the inferred and true mean,
respectively; 1.21 x 1072 vs 1.22 x 10~2 for the inferred and true variance, respectively)
(Page 13).

R1.2 How does the identifiability of a model parameter affect the identifiability of its distribu-
tions hyper-parameters? For instance, if one found that a parameter is non-identifiable
via an a priori analysis, what should they expect to see in the identifiability analysis of
that parameter’s hyper-parameters?

Response: If a model parameter was a priori established as non-identifiable (using
structural identifiability analysis, for example) we hypothesise that the mean of the model
parameter distribution would likely also be non-identifiable. It is more difficult to extrapo-
late what one might expect for the variance of the model parameter distribution: in many
cases, we expect that this might also be non-identifiable in general, but that we may still
be able to establish an upper bound on the variance based on the variance of the output.
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R1.3

R1.4

R1.5

Given that our expression for the output average (eq. (1), Page 6) includes terms relat-
ing to both the parameter mean and variance, it is difficult to comment on the referee’s
question with enough certainty to be stated in the manuscript. However, the expressions
linking the input and output moments that we provide might allow more rigorous analysis
of such questions in the future. We now state this in the revised manuscript (Page 17).

Does the identifiability of a parameter’s variance terms provide insight into the model’'s
sensitivity to those parameters? For instance, in section 3.1.1, the authors state that
the slight identifiability of the variance parameter for lambda indicates that variability in
this lambda cannot be distinguished from measurement noise. Does this imply that the
model is not particularly sensitive to lambda’s value?

Response: Not necessarily. Our approximations for the output variance are similar to
those used for traditional sensitivity analysis. Such sensitivity analysis might investigate
a first-order map from the variance of a model parameter to the variance of the out-
put. However, this analysis is naturally a forwards problem. The identifiability of model
variance is an inverse problem, and while we demonstrate that in some cases one can
establish an upper bound on the variance of a parameter, this finding does not relate
just to the sensitivity of the model to the parameter value. Given that we find E(\) to be
identifiable in the examples we present, we do expect the model to be sensitive to the
value of \.

Can the authors clarify how they determine if a parameter is identifiable from its 95%
credible interval in the cases where they perform a Bayesian analysis? For example,
in section 3.1.3, lines 393-395, the authors conclude that the distribution of parameter
lambda is identifiable. However, it is unclear how they arrived at this conclusion from the
results presented in figure 5.

Response: In fig. 5| (Page 13) we establish identifiability of the distribution of A by ex-
amining a 95% credible interval for the density function of A. In this case, we find that
the density function is identified to a tightly constrained region, and so conclude that the
distribution of \ is identifiable. We have adjusted the text to make this clear (Page 13).

The authors present their method with examples that have relatively few state variables
and parameters. Can the authors comment on how this approach scales to models with
greater numbers of parameters?

Response: While we work with examples with a relatively small number of state vari-
ables and parameters, we note that this is fairly common in mathematical biology (e.g.
Hasenauer et al. 2014 PLOS Comp Biol). Aside from an increased computational cost
as the number of states increases (due to the number of elements in the Hessian ma-
trices, for instance) and the number of parameters increases (due to the number of
elements in parameter moment tensors), there is nothing preventing application of our
method to compute output moments for any number of state variables. The primary limi-
tation of our method arises in constructing a distributional approximation to the likelihood,
since only a multivariate normal approximation can be constructed for cases with more
than two state variables. Therefore, the question of state-space dimensionality is a ques-
tion of whether the observed output distributions are well approximated by a multivariate
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https://doi.org/10.1371/journal.pcbi.1003686

normal distribution; or, indeed, transformations of the output distributions. We now com-
ment on these limitations and the potential for our method to handle transformations of
the output distributions in the revised paper (Page 3).

R1.6 In addition to these points, | found several typos while reading the manuscript. Can
the authors please correct the following typos and double-check the manuscript and
supplemental materials:

(a) The caption for figure 4 states “w, = -1.5” however, the corresponding text on line
357 states “wy = 1.5.” | believe the value on line 357 needs to be negative.

(b) Line 437 says, “second tool.” | believe this should read “second pool.”

Response: We have addressed these typos and thoroughly proofread the manuscript.

Referee 2

In their manuscript titled “Efficient inference and identifiability analysis for differential equa-
tion models with random parameters”, Browning and colleagues introduce a new method for
the calibtration of ODE models with random parameters. The model can be used for the de-
scription and inference of inter-individual heterogeneity, which is a very relevant problem in
the current literature. The proposed method is novel in so far as that noise model is incorpo-
rated into the model-transformed random variable, and that the taylor approximation is applied
differently than in similar methods such as the method of moments or van kampens system
size expansion, which brings some advantages in terms of scalability (potentially at the cost
of some accuracy). The paper is very well written and easy to follow, but there are some
technical aspects that remain opaque (which I will go into more detail below). | generally like
the approach, and definitely think that this paper should be published. However, | am some
concerns that | describe below, but | have no doubt the authors will be able to address them.

Response: We thank the reviewer for their overall positive and helpful review of our manuscript,
and we now address their specific comments.

R2.1 Embedding in the existing literature:

The paper is a bit heavy on statistical jargon which might make it difficult for readers

with a stronger biological background to follow the paper. Specifically it would be great

to give a bit more explanation about what the authors mean by random/fixed effects
models. | am familiar with these terms in the context of Non-linear mixed effects mod-

els, which are likely to be what the authors call "hierarchical” models. Such models have

been used in the context of biological models (see e.g., https://doi.org/10.1186/
s12918-015-0203-x,https://doi.org/10.1371/journal.pcbi.1004706,https:
//doi.org/10.1371/journal.pone.0124050, https://doi.org/10.1038/s41540-018-0079
and references therein). Similarly the authors should contrast their approach to similar
approaches suchashttps://doi.org/10.1016/j.cels.2018.12.007 0rhttps:
//doi.org/10.1038/nmeth.2794.

Another range of approaches that seems to be relevant, but isn’t really discussed are the
moment closure approximations (https://doi.org/10.1063/1.3454685) or van
Kampens system size expansion (https://doi.org/10.1063/1.3454685). Both
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R2.2

R2.3

R2.4

use taylor expansion to approximate moments, but with respect to different variables,
which would be helpful if mentioned in the paper. Usually these methods are employed
for the description of stochastic models, but, using the approach described in |https:
//doi.org/10.1016/j.cels.2018.04.008 which the authors also use, can also
be applied to describe heterogeneity. Accordingly, the authors also should contrast
their approach to (https://doi.org/10.1371/journal.pcbi.1005030) where
moment closure and van Kampens approximation are used for parameter inference (in
a stochastic modeling context, not a heterogeneity context, but the transfer is trivial.).

Response: We agree, one of the challenges with the random parameter models we deal
with is that terminology is fragmented in different parts of the literature. We have now
expanded text in the introduction to explicitly mention non-linear mixed effects models
that are arguably, as the referee suggests, more common in the systems biology liter-
ature (Page 3). Furthermore, we now provide a more explicit comparison between our
method and the moment closure and system size expansion approaches in the revised
manuscript (Page 3).

Snapshot vs Timecourse data:

The authors just briefly mention the issue of considering snapshot vs timecourse data
(it would be good to mention these terms such that a more biological audience can
also follow) in 1142-145. However, this isn’t really picked up in the remainder of the
manuscript, but is quite relevant in practical terms. The key difference for timecourse
data is that there is temporal correlation between simulations across timepoints. It is
unclear to me how this is accounted for in the method that the authors present, as what
the authors describe only looks like an rearrangement of indices.

Response: We have expanded our explanation of how time-course data can be incor-
porated in our method with a more concrete example (Page 4).

Likelihood function:

I am still unsure whether | am fully grasping what the authors are actually doing. For
me it would be quite helpful to have some visual depiction of how the approximation
method that the authors are proposing actually works. Similarly, it would probably to
explicitly write down the equation for the likelihood pf(y,xi). My understanding is that this
would simply, in the case of the normal approach, be a multivariate normal probability
density function with mean and standard deviation according to equations 10 and 11. |
understand that the equations would be quite bulky, but (10) - (13) already pose a solid
chance of scare the reader away ;).

Response: We have now provided an example expression for the full likelihood function
pff)(') at the end of equation 2.2 (Page 8).

Approximation Error:

The authors really only discuss the approximation error in figure 2 and the discussion
and seem to forget about in the remainder of the results. It would be good to see some
more investigation of the approximation error of the method in the more complex settings,
to make sure that the findings are not the result of approximation errors.
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Response: We agree that the manuscript would benefit from a more formal comparison
between the simulated data and each approximate distribution. We now provide such a
comparison using the Kolmogorov-Smirnov test for all models in the supporting material
(tables S1, S2 and S3). Further, we note that we always take care in the manuscript to
compare the fitted model to the data.

R2.5 Minor Points:

(a)

| am not sure what the argument about the inverse of f in line 149 is about. In the
vast majority of cases f(theta) wont be available analytically because f itself is not
available analytically in the first place.

Response: In the revised manuscript, we clarify that the availability of the inverse
is required for the density of f(0) to be calculated directly (as the referee states,
the mention of the existence of analytical solutions is likely not relevant to many use
cases) (Page 5).

1234 should probably read “log-likelihood function” instead of “likelihood function”

Response: We have addressed this (Page 8) and thoroughly proofread the revised
manuscript.

Panel labels in the legend to figure 5 seem misarranged

Response: We have addressed this (Figure [5 caption, Page 13).

For the parameterization of the covariance matrix D () the authors may want to con-
sult https://doi.org/10.1016/j.celrep.2021.109507 for some pointers
on how to avoid overparameterization

Response: We thank the referee for bringing the novel parameterisation approach
of Adlung et al. to our attention, and cite the work in reference to parameterising
the mean and covariances of a multivariate normal distribution (Page 7).

Non-identifiability and sloppiness are not the same, see https://doi.org/10.
1016/7.mbs.2016.10.009

Response: While we maintain that our approach to both local-identifiability and
sloppiness analysis using the Fisher information matrix (FIM) is valid, we have re-
moved discussion around model sloppiness to improve the flow of the manuscript
(Page 17).

It's a bit uncommon to introduce new data in the discussion, the authors may want
to create a separate section discussing benchmarking and the model with a strong
Allee effect

Response: Our intention of the Allee effect example is to provide a tangible, how-
ever nonessential, example of why our method is applicable only to data that are
approximately normal or gamma distributed. We now make this requirement clear
in the main text (Page 3), however maintain that the discussion is an appropriate
location for these results.
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Referee 3

Browning et al present methods for the analysis of models with intrinsic variability in their
parameters. Sources of noise in biology are ubiquitous, complex, and often neglected or at
least under-appreciated in systems biology analyses of model identifiability and parameter
inference. This is thus an important and timely contribution to the literature that will be widely
useful. The inclusion of open-source code in Julia is an additional strength of the manuscript. |
have only minor requests/suggestions for possible improvement to the paper. These are given
below.

Response: We thank the referee for their favourable review of our manuscript, and address
their relatively minor concerns below.

R3.1

R3.2

R3.3

While the analysis of how skewness or bimodality affect identifiability is interesting, at
least in my experience, a far more common occurrence in biological modeling is the
choice of a prior that is particularly uninformative (e.g. uniform over large interval). Would
such a prior choice affect the inference/identifiability results, and how? This would be a
useful example.

Response: We interpret the referees comment on prior choice to be in reference to
the distributional forms (normal, bimodal normal mixture, etc) of the model parameters,
which can be referred to as the model parameter priors in hierarchical modelling.

The referee raises an interesting point that was not discussed in the original manuscript.
As our approach is based on matching and inferring the moments of the input and output
distributions, respectively, it is unclear how well our method can approximate distribu-
tions that are not well described by their moments (uniform distributions, for instance).
To investigate this, we provide additional results in the supporting material that reproduce
fig. [ and fig. 3| where the parameter distributions are uniform. Despite some mismatch
between the simulated and approximate model solution, in this case, we are still able to
accurately recover the mean and variance of the unknown uniform distributions (Supple-
mentary Material, Page 17; Manuscript, Page 12).

| appreciate the advantages of & the need to strive for model simplicity, however, prac-
tically, two species is really a lower bound for realistic model sizes in sys bio. | think it
would be really beneficial if an example (or even just some discussion without an exam-
ple) of a larger (e.g. 3 species) model, in light of the analyses contained in this work:
studying identifiability with random parameters & the impact of prior choice, etc.

Response: Please refer to our response to

In Fig 9, please could you improve the caption/description: it is a figure containing quite
a lot of details and it is currently hard to figure out several details. Are colors indep
MCMC chains? The different dashed/dotted lines in A are hard to distinguish. | cannot
see orange solid lines in B. Also what does grey represent in B?

Response: We have modified the text in the caption to fig. [9]to make the interpretation
of the figure clear. Further, we have modified the line styles in fig.[9 and fig. [9p to make
the lines easier to distinguish (Page 17).

Page 7 of[7]



