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Supporting information 
 
Methods 

Study populations 

Between March 2007 and November 2016, 241 patients with stable COPD aged 

between 26 and 82 years and without concurrent asthma were included in the COBRA 

cohort, a multicenter prospective cohort that recruits patients with asthma and COPD 

from 15 University Pulmonology Departments in France (S1 Table) [S1,S2].  COPD 

patients were considered stable since they did not report any exacerbation, as defined 

below, within the month before each visit. 

Patients were managed according to the best standard care of tertiary hospital’s 

outpatient clinics in each centre participating in the study. This cohort was approved 

by the CPP Ile-de-France I Ethics Committee (n° 09-11962) and all subjects gave their 

written informed consent before being enrolled.  

During the first visit (inclusion), demographic data, smoking history, peripheral 

cell counts, number of exacerbations, of unscheduled hospital visits and 

hospitalizations for COPD in the previous year, symptoms (cough and wheezing), 

pulmonary and extra-pulmonary co-morbidities and baseline medications were 

recorded in a validated standardized folder (S1 Table). 

In addition, all patients underwent spirometry, and forced expiratory volume in 

one sec (FEV1) and forced vital capacity (FVC) were monitored before and after the 

inhalation of 400 µg of salbutamol. Functional Residual Capacity (FRC), Residual 

Volume (RV) and Total Lung Capacity (TLC) were also determined. Lung emphysema 

was assessed by computed tomography (CT) and by the measurement of transfer 
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factor of the lung for carbon monoxide (DLCO), the latter correlating well with CT-

determined emphysema for all Global Initiative for Obstructive Lung Disease (GOLD) 

stages [S3,S4]. 

COPD severity was graded into stage I (22.7%), II (36.5 %), III (22.3%) and IV 

(18.5%), following GOLD [S5] (S1 Table). Most of the COPD patients were former 

smokers (61.8%) and they showed airflow obstruction with mean values of pre- and 

post-bronchodilator FEV1 lower than 70% of predicted and of pre- and post-

bronchodilator FEV1 to FVC ratio lower than 60%. Approximately 60% of the patients 

had fixed airflow obstruction, with values of post-bronchodilator FEV1/FVC lower than 

70% [S5] and 38.2% of them exhibited emphysema on CT scan. Around 40% of the 

patients experienced cough and 13.7 % had wheezing. 

The majority of the patients (between 62.3 and 69.1%) were treated with short- 

and long-acting b2-agonists (SABA and LABA, respectively), long-acting muscarinic 

antagonists (LAMA, 52.4%) and inhaled corticosteroids (ICS, 52.8%). These drugs 

were administered alone, or in combination (LABA + LAMA, or LABA + ICS + LAMA) 

(S1 Table). 

As previously reported [S6-S9], principal co-morbidities were of cardiovascular 

origin (42.7%), but also metabolic disorders, such as dyslipidemia (24.1%) and 

diabetes (11.6%). A sub-group of COPD patients also manifested allergic rhinitis and 

sinusitis (15.8 and 11.2%, respectively) and gastro-esophageal reflux (29%). Because 

of the high frequency of cardiovascular disorders and dyslipidemia, 34.5% of the 

patients were treated with anti-hypertensive drugs and 24.2% with statins. The 

proportion of patients adhering to treatments was of more than 90% (S1Table).  
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Exacerbations were defined as “acute worsening of respiratory symptoms that 

results in additional therapy”. Patients were classified as mild, if they were treated with 

SABA only, moderate if they were treated with LABA plus antibiotics and/or oral 

corticosteroids (OCS) bursts, or severe, if the patient visits the emergency room, or 

requires hospitalization [S5]. Unscheduled visits were recorded, either to the 

emergency department or to patient’s usual general practitioner. 

Peripheral venous blood was obtained in each patient and total and differential 

leukocyte counts (in numbers per mm3), levels of hemoglobin (in g per decilitre) and C 

reactive protein (CRP, in mg per Litre) were assessed. Median numbers of total and 

differential blood leukocytes were in a normal range and 16.4 % of patients showed 

numbers of eosinophils ≥ 300 per µL [S10] and 75.9 % had values of CRP ≥ 3 mg/Litre 

(S1 Table) [S11]. 

Serum aliquots (250 µL) were prepared and stored at -80°C at the Biological 

Resources Centre of the Bichat Hospital in Paris (Dr. Sarah Tubiana) for the 

determination of proteomic profile by SOMAscan. All samples were tracked through a 

dedicated database.  

The evolution in the clinical parameters and in proteomic profiles was also 

assessed in 163 COPD patients, out of the 241 initially included, since they provided 

one satisfactory follow-up visit and blood sampling (S1 Table). The time elapsing from 

the 1st (inclusion) and the 2nd visit was of 7.5 ± 6.6 months (mean ± SD).  

SOMAscan data obtained in the COBRA cohort were validated in a separate 

series of 47 COPD patients originating from the Melbourne Longitudinal COPD Cohort 

(MLCC) cohort, that was established to study the etiology of frequent exacerbators in 
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a community setting [S12] (Table S2). These 47 COPD subjects were more severe 

and symptomatic in comparison to those from the COBRA cohort. Indeed, 61.7% and 

40.8% of patients in the MLCC and COBRA cohorts, respectively, belonged to GOLD 

3-4 stages (p=0.01, Fisher exact test), 82.6% and 40.2%, respectively experienced 

cough, 97.7% and 53.0 % of patients were treated with LAMA, 91.5% and 52.8% 

received long-term ICS and 57.4% and 15.5 % were on oxygen therapy (all p<0.0001) 

(S1 and S2 Tables). Airflow obstruction was also more severe in MLCC than in COBRA 

cohort and the prevalence of emphysema was higher in the former than in the latter 

cohort (94.0 % and 38.2%, respectively, p<0.0001, S2 Table).  

Serum samples were also prepared from peripheral blood of n=50 non-COPD, 

non-asthmatic healthy volunteers who served as controls. These subjects were 

anonymously enrolled in the AstraZeneca Research Specimen Collection Program 

and they provided signed informed consent. They were aged of (mean ± SD) 41.2±10.7 

years and 80% were of male gender. 

SOMAscan proteomic assay, data processing and statistical analysis 

Total of 1305 analytes were quantified in patient serum using the SOMAscan 

high throughput proteomic assay (SomaLogic, Boulder, Colorado, United States of 

America) at National Jewish Health (Denver, Colorado, United States of America) 

[S13].  

The raw SOMAscan data was standardized by four steps: hybridization 

normalization, place scaling, median signal normalization and calibration according to 

manufacturer’s instructions (details can be found in SomaLogic’s technical notes 
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(http://somalogic.com/wp-content/uploads/2017/06/SSM-071-Rev-0-Technical-Note-

SOMAscan-Data-Standardization.pdf). The standardized expression values were then 

log2 transformed for downstream analysis. Unsupervised clustering was performed in 

R, including hierarchical clustering using Pearson correlation as distance measures, 

and K means clustering with K=2. Functional enrichment was performed with pathway 

databases including KEGG Reactome and Gene Ontology (GO) pathway database. 

Differential expression analysis between the two clusters were performed using Limma 

package [S14]. Proteins with Fold change >1.5 and False discovery rate (FDR)<0.05 

was defined as significant. Functional analysis of the differentially expressed proteins 

were performed based on GO (Biological processes). Additional statistical analysis 

and plots, including volcano plots and heatmaps, were generated using R, or 

GraphPad Prism 8.  

For two group comparisons, t test was performed for data with normal 

distribution, and Wilcoxon Rank Sum, or Friedman Rank tests was used when normal 

distribution could not be assumed. Pearson correlation was applied for data with 

normal distribution and Spearman correlation when normal distribution could not be 

assumed. ANOVA was used for multi-group comparisons. Fisher exact test and 

Friedman Rank test were performed for binary data.   

Bioinformatical approaches 

The bioinformatical approaches are described in Fig 1 in the main manuscript 

and can be decomposed into three steps: 
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1. SOMAscan analysis at inclusion: (i) hierarchical clustering and identification 

of contrasted clusters; (ii) identification of differentially expressed proteins; (iii) GO 

pathway analysis; iv) calculation of a protein score (median expression of identified 

proteins); (v) correlation with clinical parameters; (vi) validation of the protein score in 

an external COPD cohort and in healthy subjects;  

2. Identification of short protein signatures associated with each cluster. After 

exclusion of redundant kinases, phosphatases and adaptor proteins eleven Cluster-2 

associated biomarkers were selected by sorting the 10% of the top differentially 

expressed proteins representative of highly enriched biological processes selected 

from GO pathway analysis (Tables 1 and S4) performed at visit 1, and exhibited the 

highest odd-ratios within their corresponding pathways. Cluster-1 associated 

biomarkers included top four of the 6 up-regulated biomarkers after exclusion of C3b 

that failed to show any differential expression in the MLCC cohort;  

3. follow-up analysis at the second visit: (i) hierarchical clustering and 

identification of contrasted clusters; (ii) identification of differentially expressed proteins 

and assessment of overlap with proteins found at inclusion; (iii) monitoring of stable 

and unstable COPD patients that switched their clusters at follow-up visit using the 

protein signature. 
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Supporting information 
 
S1 Table: characteristics of COPD patients of the COBRA cohort  

 

Parameter n * 
All patients (n = 241) 

n * 
Patients with 1 visit (n=78) 

n * 
Patients with 2 visits (n = 163) 

 p value a p value b 
Visit 1 Visit 1 only Visit 1 Visit 2 

Male sex – no. (%) 241 164 (68.1) 78 50 (64.1) 163 114 (69.9) - 0.37 - 
Age (years) 241 63.1 ± 9.8 78 61.6 ± 11.4 163 63.8 ± 8.9 64.5 ± 9.0 0.14 - 
Caucasian origin – no. (%) 239 224 (93.7) 76 70 (92.1) 163 154 (94.5) - 0.49 - 
Other origin – no. (%) 239 15 (6.3) 76 6 (7.9) 163 9 (5.5) - 0.49 - 
GOLD stages          

GOLD I – no. (%) 238 54 (22.7) 75 24 (32.0) 159 28 (17.6) 28 (17.6) 0.03 0.99 
GOLD II – no. (%) 238 87 (36.5) 75 20 (26.6) 159 66 (41.5) 66 (41.5) 0.03 0.99 
GOLD III – no. (%) 238 53 (22.3) 75 14 (18.7) 159 38 (23.9) 36 (22.7) 0.03 0.99 
GOLD IV – no. (%) 238 44 (18.5) 75 17 (22.7) 159 27 (17.0) 29 (18.2) 0.03 0.99 

Smoking history          
Former smoker – no. (%) 241 149 (61.8) 78 41 (52.6) 163 108 (66.3) 108 (66.3) 0.002 1.00 
Packs per year in former smokers – no. 147 49.1 ± 23.9 39 49.7 ± 22.2 101 49.7 ± 25.1 49.9 ± 25.1 0.99 0.96 
Active smokers – no. (%) 241 84 (34.9) 78 30 (38.5) 163 54 (33.1) 54 (33.1) 0.002 1.00 
Packs per year in active smokers – no. 82 35.8 ± 21.7 28 35.1 ± 20.8 47 36.0 ± 23.8 34.9 ± 21.9 0.89 0.83 

Body Mass Index (kg per m2) 240 26.5 ± 6.1 77 25.7 ± 5.9 163 26.8 ± 6.2 - 0.21 - 
Biology          

Blood leukocytes (no. per mm3) 165 7500 (6500 - 8900) 43 7400 (6400 - 10000) 96 7350 (6500 - 8750) 7100 (6150 - 8150) 0.37 0.34 
Blood eosinophils (no. per mm3) 165 162 (104 - 230) 43 146 (94 - 213) 96 165 (103 - 225) 162 (117 - 244) 0.37 0.67 
With blood eosinophils ≥ 300 per mm3 – no. (%) 165 27 (16.4) 43 4 (9.3) 96 17 (17.7) 12 (12.5) 0.21 0.32 
Blood neutrophils (no. per mm3) 163 4752 (3840 - 5950) 42 4479 (3782 - 6486) 95 4680 (3835 - 5950) 4560 (3843 - 5265) 0.74 0.39 
Blood lymphocytes (no. per mm3) 165 1830 (1406 - 2280) 43 1920 (1539 - 2438) 96 1648 (1302 - 2190) 1782 (1387 - 2184) 0.04 0.49 
Blood monocytes (no. per mm3) 161 560 (444 - 720) 40 603 (469 - 740) 96 532 (404 - 698) 555 (463 - 667) 0.03 0.25 
Hemoglobin – g per deciliter 115 14.4 ± 1.4 32 14.1 ± 1.6 72 14.6 ± 1.3 14.3 ± 1.4 0.10 0.25 
CRP – mg per Liter 112 7.6 ± 7.6 22 6.5 ± 4.6 73 7.8 ± 8.1 6.8 ± 7.5 0.35 0.47 
With CRP ≥ 3 mg per Liter – no. (%) 112 85 (75.9) 22 17 (77.3) 73 54 (74.0) 54 (74.0) 0.76 1.00 

Blood gases          
PaO2 - mmHg 181 74.5 ± 14.1 57 74.8 ± 14.2 91 72.9 ± 13.7 74.7 ± 13.2 0.42 0.37 
PaCO2 - mmHg 182 39.6 ± 4.8 57 40.0 ± 4.8 90 39.8 ± 4.9 40.0 ± 6.0 0.86 0.86 
pH 182 7.42 ± 0.03 57 7.41 ± 0.03 92 7.41 ± 0.03 7.41 ± 0.04 0.78 0.70 
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S1 Table (continued) 
 

Respiratory function 

Pre-bronchodilator FEV1 (% predicted) 233 59.6 ± 24.3 72 63.0 ± 27.7 144 56.6 ± 21.7 56.1 ± 21.7 0.10 0.84 

Post-bronchodilator FEV1 (% predicted)  171 63.7 ± 25.8 53 71.3 ± 30.4 70 56.6 ± 22.8 56.5 ± 21.5 0.005 0.98 

With fixed airflow obstruction – no. (%) c 176 143 (81.3) 55 34 (61.8) 70 65 (92.9) 65 (92.9) < 0.0001 1.00 

Pre-bronchodilator FVC (% predicted) 233 86.6 ± 21.3 73 86.1 ± 21.9 142 85.0 ± 20.4 84.0 ± 20.4 0.73 0.68 

Post-bronchodilator FVC (% predicted) 169 91.5 ± 21.1 51 91.9 ± 21.5 69 91.0 ± 20.4 88.8 ± 21.1 0.83 0.54 

Pre-bronchodilator FEV1 / FVC (% predicted) 235 53.5 ± 15.3 74 57.0 ± 16.7 144 51.4 ± 14.0 51.7 ± 14.2 0.01 0.89 

Post-bronchodilator FEV1 / FVC (% predicted) 176 53.9 ± 16.2 55 60.6 ± 17.3 70 47.2 ± 14.4 48.4 ± 14.7 < 0.0001 0.62 

FRC - % 124 137.8 ± 38.3 49 131.5 ± 31.7 37 140.9 ± 43.4 139.9 ± 41.5 0.27 0.92 

RV - % 135 156.4 ± 53.0 53 150.7 ± 43.1 41 165.9 ± 62.9 154.7 ± 56.6 0.19 0.41 

TLC - % 137 113.8 ± 19.2 55 112.0 ± 16.9 42 114.1 ± 21.7 112.4 ± 19.5 0.60 0.70 

DLCO - % 115 59.0 ± 21.7 46 63.9 ± 21.6 34 49.5 ± 18.8 49.9 ± 18.8 0.003 0.94 

Symptoms  

With cough – no. (%) 241 97 (40.2) 78 27 (34.6) 163 70 (42.9) 56 (34.4) 0.22 0.12 

With wheezing – no. (%)  241 32 (13.3) 78 14 (17.9) 163 18 (11.0) 16 (9.8) 0.14 0.72 

With emphysema no. (%) d 241 92 (38.2) 78 28 (35.9) 163 64 (39.3) 64 (39.3) 0.62 1.00 

With exacerbations in the previous 12 months - no. (%) 241 128 (53.1) 78 39 (50.0) 163 89 (54.6) 62 (38.0) 0.51 0.003 
Exacerbations in the previous 12 months - no. 241 1.44 ± 0.16 78 1.26 ± 0.22 163 1.52 ± 0.21 1.46 ± 0.23 0.12 0.72 

Unscheduled medical visits in the previous 12 months - no. 241 1.19 ± 0.17 78 0.96 ± 0.23 163 1.29 ± 0.22 1.08 ± 0.16 0.03 0.09 

Hospitalizations for COPD in the previous 12 months – no. 241 0.32 ± 0.05 78 0.41 ± 0.11 163 0.27 ± 0.05 0.19 ± 0.06 0.10 0.17 

Comorbidities  

Cardiovascular – no. (%) 241 103 (42.7) 78 32 (41.0) 163 71 (43.6) - 0.71 - 

Hypertension – no. (%) 241 67 (27.8) 78 21 (26.9) 163 46 (28.2) - 0.84 - 

Dyslipidemia – no. (%) 241 58 (24.1) 78 14 (17.9) 163 44 (27.0) - 0.13 - 

Diabetes – no. (%) 241 28 (11.6) 78 7 (9.0) 163 21 (12.9) - 0.38 - 

Sinusitis – no. (%) 241 27 (11.2) 78 7 (9.0) 163 20 (12.3) - 0.45 - 

Allergic rhinitis – no. (%) 241 38 (15.8) 78 12 (15.4) 163 26 (15.9) - 0.92 - 

Obstructive sleep apnea – no. (%) 241 22 (9.1) 78 4 (5.1) 163 18 (11.0) - 0.14 - 

Gastro Esophageal Reflux – no. (%) 241 70 (29.0) 78 21 (26.9) 163 49 (30.1) - 0.62 - 

Bronchial dilatation – no. (%) 241 11 (4.6) 78 3 (3.8) 163 8 (4.9) - 0.72 - 
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S1 Table (continued) 
 

Treatments  

On SABA – no. (%) 231 144 (62.3) 70 33 (47.1) 158 110 (69.6) 115 (72.8) 0.002 0.54 

On LABA alone – no. (%) 233 26 (11.2) 70 5 (7.1) 160 21 (13.1) 18 (11.2) 0.19 0.61 

On LAMA alone – no. (%) 233 16 (6.9) 70 4 (5.7) 160 12 (7.5) 12 (7.5) 0.63 1.00 

On ICS alone – no. (%) 233 4 (1.7) 70 1 (1.4) 160 3 (1.9) 3 (1.9) 0.82 1.00 

  Daily dose of ICS - µg of equivalents beclomethasone 119 1304 ± 669 28 1499 ± 811 77 1253 ± 633 1242 ± 626 0.11 0.92 

On OCS – no. (%) 232 8 (3.4) 69 7 (10.1) 160 1 (0.6) 2 (1.2) 0.0003 0.57 

    Daily dose of prednisone (mg)  8 20.4 ± 10.9 7 22.6 ± 9.6 1 5 5 0.14 - 

On LABA + LAMA – no. (%) 233 22 (9.4) 70 6 (8.6) 160 16 (10.0) 21 (13.1) 0.74 0.39 

On LABA + LAMA + ICS – no. (%) 233 78 (33.5) 70 22 (31.4) 160 55 (34.4) 63 (39.4) 0.67 0.36 

On anti-histamine – no. (%) 241 20 (8.3) 78 8 (10.3) 162 12 (7.4) 8 (4.9) 0.46 0.36 

On theophylline – no. (%) 232 1 (0.4) 69 0 (0.0) 160 1 (0.6) 1 (0.6) 0.52 1.00 

On gastro esophageal reflux inhibitors – no. (%) 241 56 (23.2) 78 17 (21.8) 163 39 (23.9) 29 (17.8) 0.72 0.18 

On anti-hypertensive drugs – no. (%) 232 80 (34.5) 70 24 (34.3) 160 55 (34.4) 54 (33.7) 0.99 0.91 

On statins – no. (%) 231 56 (24.2) 69 11 (15.9) 160 44 (27.5) 49 (30.6) 0.07 0.54 

On fibrates – no. (%) 229 5 (2.2) 69 1 (1.4) 157 4 (2.5) 3 (1.9) 0.61 0.71 

On anti-platelet aggregation – no. (%) 231 63 (27.3) 69 15 (21.7) 159 47 (29.6) 42 (26.4) 0.23 0.54 

Other – no. (%) 227 102 (44.9) 68 20 (29.4) 157 81 (51.6) 75 (47.8) 0.003 0.50 

On oxygen therapy – no. (%) 238 37 (15.5) 75 11 (14.7) 161 26 (16.1) 16 (9.9) 0.78 0.10 

Adherence to treatments – no. (%) 224 203 (90.6) 64 55 (85.9) 155 144 (92.9) 143 (92.3) 0.11 0.83 
 

Data are n (%), or means ± SD, or median (25-75 IQR), or means ± SEM, in case of number of exacerbations, of unscheduled hospital visits and hospitalizations for COPD in the previous 6 months 
CRP = C reactive protein; FEV1 = Forced Expiratory Volume in 1 second; FVC = Forced Vital Capacity; FRC = Functional Residual Capacity; RV = Residual Volume; TLC = Total Lung Capacity; DLCO = 
transfer factor of the lung for carbon monoxide; ICS = inhaled corticosteroids; SABA = short-acting b2-agonists; LABA = long-acting b2-agonists; OCS = oral corticosteroids; LAMA = long-lasting muscarinic 
antagonists. 

  * denotes the number of patients with each available variable 
 a p ≤ 0.05, between COPD patients with 1 and 2 visits (n=78 and n=163, respectively) (Students’ t test, or Mann-Whitney U-test, or Fisher exact test, 2-tailed, or Poisson test). 
 b p ≤ 0.05, between visits 1 and 2 for n=163 COPD patients (Students’ t test, or Mann-Whitney U-test, or Fisher exact test, 2-tailed, or Poisson test). 
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      Supporting information 
       S2 Table: characteristics of COPD patients of the MLCC cohort 

   

Parameter n *  All patients, n = 47 

Male sex – no. (%) 47 29 (61.7) 
Age (years) 47 72.5 ± 9.6 
Caucasian origin – no. (%) 47 47 (100) 
Other origin – no. (%) 47 0 
GOLD stages 

GOLD 1 – no. (%) 47 2 (4.3) 
GOLD 2 – no. (%) 47 16 (34.0) 
GOLD 3 – no. (%) 47 19 (40.4) 
GOLD 4 – no. (%) 47 10 (21.3) 

Smoking history 
Never smokers – no. (%) 47 0 
Former smoker – no. (%) 47 41 (87.2) 
Packs per year in former smokers – no. 47 56.9 ± 32.6 
Active smokers – no. (%) 47 6 (12.8) 
Packs per year in active smokers – no. 47 89.2 ± 52.1 

Body Mass Index (kg per m2) 31 25.2 ± 6.0 
Biology 

Blood leukocytes (no. per mm3) 45 7800 (6500-9800) 
Blood eosinophils (no. per mm3) 45 200 (100-300) 
With blood eosinophils ≥ 300 per mm3 – no. (%) 45 14 (31.1) 
Blood neutrophils (no. per mm3) 45 5300 (4300-6400) 
Blood lymphocytes (no. per mm3) 45 1600 (1100-2000) 
Blood monocytes (no. per mm3) 45 700 (600-800) 
Hemoglobin – g per deciliter 45 13.1 ± 1.6 
CRP – mg per Liter 34 1.4 ± 2.9 
With CRP ≥ 3 mg per Liter – no. (%) 34 2 (5.9) 

Blood gases 
PaO2 - mmHg 9 66.1 ± 5.4 
PaCO2 - mmHg 9 40.5 ± 4.6 

Respiratory function   
Pre-bronchodilator FEV1 (% predicted) 28 39.1 ± 10.5 
Post-bronchodilator FEV1 (% predicted) 29 41.9 ± 14.2 
Pre-bronchodilator FVC (% predicted) 28 87.1 ± 16.9 
Post-bronchodilator FVC (% predicted) 30 93.1 ± 18.0 
Pre-bronchodilator FEV1 / FVC (% predicted) 28 35.5 ± 9.0 
Post-bronchodilator FEV1 / FVC (% predicted) 29 35.5 ± 10.0 
With fixed airflow obstruction – no. (%) a 29 28 (96.6) 
DLCO (%) 25 41.4 ± 12.4 

Symptoms   
With cough – no (%) 46 38 (82.6) 
With wheezing – no (%) 47 7 (14.9) 

With emphysema no. (%) 25 24 (96.0) 
Exacerbations in 12 months - no. (%) b 47 1.6 ± 0.7 
Hospitalizations for COPD in 12 months - no. b 17 0.7 ± 0.7 
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Comorbidities 
Cardiovascular – no. (%) 47 22 (46.8) 
Diabetes – no. (%) 47 9 (19.1) 
Obstructive sleep apnea – no. (%) 47 1 (2.1) 

Treatments  
On SABA – no. (%) 47 44 (93.6) 
On LABA – no. (%) 43 42 (97.7) 
On LAMA – no. (%) 47 25 (53.0) 
On ICS – no. (%) 47 43 (91.5) 

Daily dose of equivalents beclomethasone 40 842 ± 366 
On OCS – no. (%) 47 4 (8.5) 

Daily dose of prednisone (mg) 4 4.9 ± 2.3 
On oxygen therapy – no. (%) 47 27 (57.4) 
Adherence to treatment – no. (%) 12 8 (66.7) 

CRP = C reactive protein; FEV1 = Forced Expiratory Volume in 1 second; FVC = Forced Vital 
Capacity; DLCO = transfer factor of the lung for carbon monoxide; SABA = short-acting b2-agonists; 
LABA = long-acting b2-agonists; LAMA = long-lasting muscarinic antagonists; ICS = inhaled 
corticosteroids = OCS, oral corticosteroids. 
Data are n (%), or means ± SD, or median (25-75 IQR), or means ± SEM, for the number  
of exacerbations 
* denotes the number of patients with each available variable 
b Estimated frequency of exacerbations and hospitalizations based on the events during the study   
  period  

    
 

 
 

 



    S3 Table. Changes in the serum levels of the significantly-regulated proteins between COPD  
    patients from Cluster 1 and Cluster 2 

 

Protein ID Fold changes p value *  References 

Up-regulated in Cluster 2 versus Cluster 1 

Tropomyosin 4 3.093 8.13E-29 S1-S3 
Carbonic anhydrase XIII 3.005 1.73E-29 S4,S5 
BTK 2.824 3.08E-33 S6,S7 
Cyclophilin F 2.694 7.51E-29 S8 
CSK 2.549 3.06E-36 S9-S11 
FER 2.537 1.26E-28 S12,S13 
PKC-B-II 2.535 1.19E-42 S14 
SP-D 2.532 2.39E-24 S15 
VAV 2.439 5.27E-27 S16-S18 
Histone H1.2 2.420 9.64E-20 S19-S22 
GRB2 adapter protein 2.417 1.97E-26 S23,S24 
H2A3 2.344 2.10E-19 S19,S22,S25 
IMB1 2.316 6.15E-27 S26 
DRG-1 2.284 1.16E-32 S27-S29 
SRCN1 2.264 9.30E-21 S30,S31 
LYN 2.242 1.72E-29 S32,S33 
SMAD2 2.206 3.20E-33 S34, S39, S124, S137 
NSF1C 2.196 1.83E-26 S35 
LYNB 2.182 4.98E-25 S32,S33 
NDP kinase B 2.157 6.04E-29 S36-S38 
Caspase-3 2.157 3.50E-34 S39 
SBDS 2.112 1.97E-30 S40-S42 
PDPK1 2.106 4.36E-31 S43,S44 
CK2-A1:B 2.097 2.88E-27 S45,S46 
RAC1 2.077 3.08E-33 S47-S50 
IF4G2 2.064 5.73E-27 S51,S52 
eIF-4H 2.051 1.54E-25 S53 
Aflatoxin B1 aldehyde reductase 2.045 6.17E-23 S54 
Sphingosine kinase 1 2.045 1.28E-27 S55 
GAPDH, liver 2.042 8.88E-18 S56,S57 
UBE2N 2.034 4.11E-24 S58,S61 
a-synuclein 2.011 8.92E-19 S62-S63 
SGTA 2.006 3.64E-20 S64 
SNAA 1.991 3.45E-23 S65-S68 
Haemoglobin 1.966 1.81E-08 S69, S70 
METAP1 1.958 3.20E-33 S71,S72 
IMDH1 1.957 1.70E-17 S73,S74 
PRKACA 1.956 2.18E-30 S75 
Annexin I 1.921 2.88E-32 S76,S77 
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PKC-A 1.921 2.44E-19 S78 
RPS6KA3 1.916 1.57E-33 S79,S80 
Histone H2A.z 1.914 5.43E-20 S19,S21,S22,S81,S82 
hnRNP A2/B1 1.909 1.84E-29 S83-S85 
UFM1 1.888 8.39E-23 S58,S86-S88 
FYN 1.886 9.28E-13 S89,S90 
RAN 1.861 1.85E-14 S91,S92 
Myokinase 1.859 4.43E-11 S93,S94 
H2B2E 1.841 4.02E-18 S19,S21,S22,S95 
41 1.837 6.00E-16 S96,S97 
BARK1 1.835 6.95E-28 S98,S99 
M2-PK 1.825 4.82E-15 S100 
14-3-3 protein zeta/delta 1.785 1.68E-33 S101-S104 
PPID 1.781 2.29E-13 S105-S107 
6-phosphogluconate dehydrogenase 1.776 7.82E-8 S108 
HXK2 1.775 3.32E-13 S109,S110 
PTP-1C 1.756 5.02E-20 S111,S112 
DUSP3 1.731 2.39E-25 S113,S114 
TCTP 1.723 1.83E-27 S115–S117 
Triosephosphate isomerase   1.711 1.39E-23 S118,S119 
DLRB1 1.681 8.07E-19 S120,S121 
SUMO3 1.680 3.88E-26 S58,S122,S123 
PA2G4 1.671 3.51E-15 S124,S125 
14-3-3 protein b/a 1.669 3.42E-28 S101-S103,S126 
PPAC 1.667 1.62E-08 S127,S128 
Transketolase 1.660 1.28E-24 S129,S130 
UBC9 1.651 2.16E-31 S58,S86,S131 
FGF16 1.650 3.70E-18 S132,S133 
EDAR 1.610 1.56E-10 S134,S135 
SHC1 1.603 2.71E-25 S136,S137 
ARGI1 1.601 2.58E-12 S138-S140 
GPVI 1.599 3.60E-13 S141,S142 
Cyclophilin A 1.592 3.21E-33 S143,S144 
BAD 1.587 3.87E-13 S101,S145 
ERK-1 1.566 2.59E-28 S146,S147 
PLPP 1.560 9.71E-15 S148,S149 
CPNE1 1.560 8.80E-18 S150,S151 
BPI 1.554 1.79E-06 S152-S154 
NCC27 1.552 1.81E-27 S155,S156 
MK01 1.548 2.46E-16 S93,S94 
eIF-5A-1 1.544 2.47E-16 S157-S160 
NACA 1.539 5.58E-09 S161,S162 
AREG 1.538 1.51E-13 S163-S165 



S3 Table (continued) 

ATPO 1.536 1.71E-13 S166 
CD40 ligand 1.524 2.49E-11 S167-S169 
Prostatic binding protein  1.519 1.51E-13 S98,S170-S172 
Ubiquitin+1 1.512 3.62E-11 S58 
Lactoferrin 1.510 9.58E-09 S173 
Azurocidin 1.507 5.01E-10 S174,S175 
Sorting nexin 4 1.502 1.39E-13 S176 
STAT3 1.502 2.02E-26 S46, S50 

Up-regulated  in Cluster 1 versus Cluster 2    

Glucagon 0.666 1.36E-07 S177 
MMP-12 0.652 2.55E-09 S178,S179 
Renin 0.650 6.58E-06 S180 
Lactadherin (MFGM) 0.640 8.42E-14 S181-S183 
C3b 0.637 3.26E-05 S184 
Midkine 0.505 1.63E-17 S185-S187 

 
  * False discover rate from group comparisons 
     Abbreviations are listed in the Table 1 of the main manuscript 
    Bold indicates the 15 proteins belonging to the short signature 
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Supporting information 

S4 Table: Significant correlations between differentially regulated proteins and the incidence of 
exacerbations and emphysema in patients with COPD at visit 1.  

 

Biological Hallmarks Target  
Exacerbations (Y/N) Emphysema (Y/N) 
OR (2.5-97.5%) FDR OR (2.5-97.5%) FDR 

Cell fate, Remodeling 
and Repair 

PRKCA a 0.57 (0.41-0.79) 0.016 - - 
PRKACA a - - 0.62 (0.41-0.90) 0.0200 
SHC1 - - 0.33 (0.17-0.58) 0.0026 
eIF-5A-1 - - 0.43 (0.18-0.60) 0.0026 
TCTP 0.57 (0.36-0.87) 0.0476 0.35 (0.20-0.58) 0.0026 
PA2G4 - - 0.40 (0.24-0.64) 0.0026 
14-3-3 protein β/α a 0.50 (0.30-0.79) 0.0281 0.41 (0.24-0.68) 0.0032 
14-3-3 protein ζ/δ a 0.45 (0.28-0.70) 0.0160 0.42 (0.26-0.68) 0.0031 
BAD a - - 0.45 (0.27-0.70) 0.0031 
RPS6KA3 a 0.61 (0.40-0.89) 0.048 0.46 (0.29-0.71) 0.0031 
AREG - - 0.46 (0.27-0.75) 0.0065 
METAP1 a - - 0.50 (0.32-0.76) 0.0044 
FGF16 - - 0.52 (0.31-0.81) 0.0115 
RAC1 a 0.58 (0.40-0.82) 0.022 0.52 (0.35-0.76) 0.0033 
SBDS 0.66 (0.48-0.92) 0.048 0.53 (0.36-0.76) 0.0031 
hnRNP A2/B1 - - 0.53 (0.36-0.79) 0.0060 
NSF1C  - - 0.55 (0.39-0.77) 0.0031 
PKC-A a - - 0.55 (0.38-0.78) 0.0042 
SMAD2 a 0.67 (0.49-0.92) 0.048 0.58 (0.40-0.81) 0.0059 
eIF-4H 0.63 (0.45-0.86) 0.028 0.59 (0.41-0.82) 0.0061 
DRG-1 - - 0.51 (0.35-0.72) 0.0026 
DLRB1 - - 0.61 (0.39-0.91) 0.025 
PLPP - - 0.36 (0.20-0.62) 0.0026 
ARGI1 0.62 (0.43-0.88) 0.047 - - 
IMB1 a - - 0.60 (0.43-0.80) 0.003 
ARGI1 a 0.62 (0.43-0.88) 0.047 - - 
41 - - 0.62 (0.44-0.86) 0.010 
GRB2 adapter protein 0.72 (0.55-0.93) 0.017 0.64 (0.49-0.85) 0.004 
Tropomyosin 4 0.78 (0.64-0.96) 0.024 0.71 (0.57-0.89) 0.004 
Sphingosine kinase 1 0.66 (0.47-0.91) 0.048 0.60 (0.41-0.85) 0.008 
Hemoglobin - - 0.72 (0.54-0.93) 0.027 
CSK - - 0.64 (0.47-0.86) 0.006 
FYN a - - 0.74 (0.56-0.97) 0.042 
ERK-1 a 0.50 (0.29-0.84) 0.0476 0.41 (0.22-0.72) 0.0062 
MK01/ERK-2 - - 0.45 (0.26-0.74) 0.0061 
PKC-B-II 0.59 (0.43-0.80) 0.0158 0.55 (0.40-0.76) 0.0026 
Prostatic binding protein - - 0.41 (0.24-0.68) 0.0032 
Caspase-3 0.66 (0.47-0.91) 0.048 0.52 (0.35-0.74) 0.0030 
PDPK1 a - - 0.61 (0.43-0.87) 0.011 
LYN a 0.65 (0.47-0.87) 0.029 0.65 (0.47-0.89) 0.013 
LYNB a 0.65 (0.48-0.87) 0.028 0.68 (0.50-0.91) 0.016 
CK2-A1:B - - 0.56 (0.40-8.80) 0.0164 
NDP kinase B a - - 0.52 (0.36-0.74) 0.0026 
FER a 0.71 (0.55-0.91) 0.016 0.67 (0.51-0.87) 0.004 
RAN a - - 0.60 (0.42-0.82) 0.0063 
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S4 Table (continued) 

Metabolism 
and Mitochondria 

RAC1 0.58 (0.40-0.82) 0.022 0.52 (0.35-0.76) 0.0033 
a-Synuclein a - - 0.53 (0.36-0.75) 0.0031 
Cyclophilin F 0.72 (0.57-0.91) 0.016 0.63 (0.50-0.84) 0.003 
Cyclophilin A a 0.42 (0.24-0.73) 0.0222 0.31 (0.16-0.57) 0.0026 
SUMO3 - - 0.38 (0.21-0.63) 0.0026 
UFM1 - - 0.48 (0.31-0.70) 0.0026 
SNAA - - 0.47 (0.31-0.69) 0.0026 
VAV a 0.70 (0.53-0.90) 0.040 0.66 (0.49-0.86) 0.006 
14-3-3 protein β/α a 0.50 (0.30-0.79) 0.0281 0.41 (0.24-0.68) 0.0032 
14-3-3 protein ζ/δ a 0.45 (0.28-0.70) 0.0160 0.42 (0.26-0.68) 0.0031 
BAD  - - 0.45 (0.27-0.70) 0.0031 
Triosephosphate isomerase - - 0.37 (0.21-0.61) 0.0026 
RPS6KA3  0.61 (0.40-0.89) 0.048 0.46 (0.29-0.71) 0.0031 
METAP1  - - 0.50 (0.32-0.76) 0.0044 
Ubiquitin+1 a - - 0.37 (0.10-0.66) 0.0045 
UBC9 - - 0.38 (0.21-0.67) 0.0026 
UBE2N a - - 0.46 (0.31-0.68) 0.0026 
Carbonic anhydrase XIII 0.80 (0.65-0.99) 0.038 0.74 (0.59-0.94) 0.011 
SRCN1 0.64 (0.49-0.83) 0.016 0.75 (0.57-0.97) 0.035 
M2-PK 0.55 (0.39-0.77) 0.016 0.72 (0.53-0.98) 0.045 
PPAC - - 0.64 (0.47-0.85) 0.006 
Transketolase - - 0.38 (0.22-0.63) 0.0026 
Aflatoxin B1 aldehyde 
reductase - - 0.61 (0.43-0.84) 0.007 

NCC27 - - 0.46 (0.25-0.80) 0.0129 
PPID 0.60 (0.43-0.81) 0.016 0.70 (0.51-0.95) 0.033 
Myokinase - - 0.64 (0.48-0.85) 0.006 
NACA - - 0.53 (0.35-0.79) 0.0061 
SGTA - - 0.64 (0.46-0.88) 0.013 
H2A3 0.87 (0.69-1.09) 0.2495 0.81 (0.63-1.04) 0.014 
BTK a 0.72 (0.57-0.92) 0.016 0.63 (0.49-0.82) 0.003 
RPS6KA3 0.61 (0.40-0.89) 0.048 0.46 (0.29-0.71) 0.0031 
DUS3 - - 0.50 (0.30-0.78) 0.0072 
RAC1 a 0.58 (0.40-0.82) 0.022 0.52 (0.35-0.76) 0.0033 
CD40 ligand - - 0.54 (0.35-0.81) 0.0074 
CPNE1 a 0.56 (0.35-0.88) 0.048 0.51 (0.30-0.83) 0.0142 
IMB1 - - 0.60 (0.43-0.80) 0.003 
PTP-1C - - 0.63 (042-0.91) 0.023 
SRCN1 0.64 (0.49-0.83) 0.016 0.75 (0.57-0.97) 0.035 
Annexin I - - 0.59 (0.39-0.88) 0.0164 
BARK1 - - 0.62 (0.41-0.92) 0.026 
GAPDH 0.64 (0.47-0.84) 0.022 0.59 (0.44-0.78) 0.003 
SP-D - - 0.76 (0.59-0.97) 0.034 
STAT3 0.47 (0.26-0.83) 0.0476 0.38 (0.20-0.71) 0.0026 
6-Phosphogluconate 
dehydrogenase 0.68 (0.53-0.85) 0.016 - - 

ARGI1 0.62 (0.43-0.88) 0.047 - - 
Midkine - - 1.5 (1.1-2.0) 0.014 
Lactadherin (MFGM)  - - 1.9 (1.3-2.9) 0.006 

Tissue injury 
MMP-12 - - 1.51 (1.07-2.15) 0.027 
Renin - - 1.88 (1.26-2.87) 0.006 

a These proteins have multiples biological functions and, therefore, they belong to more than one biological process 
Bold indicates the 15 proteins belonging to the short signature 
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Supporting information 
S5 Table. Differences in clinical characteristics COPD patients from the MLCC cohort  
between Cluster 1 and Cluster 2 at inclusion 

Parameter Cluster 1 
(n=34) 

Cluster 2 
(n=13) p value * 

Male sex – no. (%) 19 (55.9) 10 (76.9) 0.32 
Age (years) 73.4 ± 9.3 70.4 ± 10.4 0.35 
Caucasian origin – no. (%) 34 (100) 13 (100) - 
Other origin – no. (%) 0 0 - 
GOLD stages 

GOLD 1 – no. (%) 2 (5.9) 0 (0.0) 0.80 
GOLD 2 – no. (%) 12 (35.3) 4 (30.8) 0.80 
GOLD 3 – no. (%) 13 (38.2) 6 (46.2) 0.80 
GOLD 4 – no. (%) 7 (20.6) 3 (23.1) 0.80 

Smoking history 
Never smokers – no. (%) 0 0 - 
Former smoker – no. (%) 32 (94.1) 9 (69.2) 0.07 
Packs per year in former smokers – no. 59.5 ± 35.0 47.7 ± 21.0 0.34 
Active smokers – no. (%) 2 (5.9) 4 (30.8) 0.07 
Packs per year in active smokers – no. 132.5 ± 10.6 67.5 ± 51.1 0.17 

Body Mass Index (kg per m2) 25.7 ± 5.1 23.4 ± 5.6) 0.30 
Biology 

Blood leukocytes (no. per mm3) 7700 (6400-9500) 8200 (7375-9800) 0.40 
Blood eosinophils (no. per mm3) 200 (100-300) 100 (75-200) 0.14 
With blood eosinophils ≥ 300 per mm3 – no. (%) 12 (36.4) 2 (6.7) 0.37 
Blood neutrophils (no. per mm3) 5000 (4100-6400) 5350 (4975- 6350) 0.29 
Blood lymphocytes (no. per mm3) 1500 (1100-2200) 1650 (1475-1925) 0.55 
Blood monocytes (no. per mm3) 700 (500-800) 700 (675-1000) 0.24 
Hemoglobin – g per deciliter 12.9 (1.7) 13.5 (1.5) 0.32 
CRP – mg per Liter 1.5 (3.4) 1.1 (1.0) 0.73 
With CRP ≥ 3 mg per Liter – no. (%) 2 (8.3) 0 (0.0) 0.89 

Respiratory function 
Pre-bronchodilator FEV1 (% predicted) 44.6 (15.8) 33.0 (12.0) 0.11 
Post-bronchodilator FEV1 (% predicted) 45.9 (16.4) 35.5 (12.6) 0.17 
Pre-bronchodilator FVC (% predicted) 90.5 (16.2) 84.5 (24.8) 0.49 
Post-bronchodilator FVC (% predicted) 95.3 (20.5) 87.7 (22.1) 0.44 
Pre-bronchodilator FEV1 / FVC (% predicted) 38.2 (9.9) 30.0 (4.4) 0.06 
Post-bronchodilator FEV1 / FVC (% predicted) 37.8 (10.2) 30.8 (5.0) 0.13 
DLCO (%) 47.3 (13.6) 37.2 (5.9) 0.13 
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      S5 Table (continued) 
 

Symptoms 
With cough – no (%) 28 (82.4) 10 (83.3) 1.00 
With wheezing – no (%) 3 (8.8) 4 (30.8) 0.15 
With emphysema no. (%)  30 (88.9) 5 (38.5) 0.001 

Comorbidities 
Cardiovascular – no. (%) 18 (52.9) 4 (30.8) 0.20 
Diabetes – no. (%) 8 (23.5) 1 (7.7) 0.11 

Treatments  
On SABA – no. (%) 32 (94.1) 12 (92.3) 1.00 
On LABA – no. (%) 32 (94.1) 9 (69.3) 0.04 
On LAMA – no. (%) 32 (100.0) 10 (90.9) 0.57 
On ICS – no. (%) 32 (94.1) 11 (84.6) 0.65 

Daily dose of equivalents beclomethasone  864.1 ± 382.3 752.5 ± 298.2 0.45 
On oxygen therapy – no. (%) 21 (61.8) 6 (46.2) 0.52 

Data are n (%), or means ± SD, or median (25-75 interquartile range), or means ± SEM, for the number of 
exacerbations 
CRP = C reactive protein; FEV1 = Forced Expiratory Volume in 1 second; FVC = Forced Vital Capacity; DLCO 
= transfer factor of the lung for carbon monoxide; SABA = short-acting b2-agonists; LABA = long-acting b2-
agonists; LAMA = long-lasting muscarinic antagonists; ICS = inhaled corticosteroids. 
 * Students’ t test, or Fisher exact test 2-tailed, or Mann-Whitney U-test 
 a  Estimated frequency of exacerbations and hospitalizations, according to the events during the   
   study period 
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 Supporting information 
 S6 Table. Main clinical characteristics of COPD patients switching of Clusters between visit 1 and visit 2 

 

Parameter Values at 
visit 1 

Values at 
visit 2    p value * 

COPD patients switching from Cluster 1 at visit 1 to Cluster 2 at visit 2 (n = 29) 

With emphysema - no. (%) b 16 (55.2) 13 (44.8) 0.44 
DLCO - % 49.4 ± 13.3 54.3 ± 28.5 0.60 
With exacerbations in the previous 12 months - no. (%) 20 (69.0) 11 (37.9) 0.02 
With unscheduled medical visits in the previous 12 months - no. (%) 16 (55.2) 8 (27.6) 0.04 
With hospitalizations for COPD in the previous 12 months – no. (%) 8 (27.6) 1 (3.4) 0.02 
On SABA – no. (%) 19 (65.5) 18 (69.2) 1.00 
On LABA – no. (%) 22 (75.9) 20 (70)  0.77 
On LAMA – no. (%) 19 (65.5) 20 (70) 1.00 
On ICS – no. (%) 13 (44.8) 15 (51.7) 0.79 
On anti-hypertensive drugs – no. (%) 12 (41.4) 10 (38.5) 0.79 
On statins – no. (%) 11 (37.9) 10 (38.5) 1.00 
Adherence to treatment – no. (%) 26 (89.7) 26 (89.7) 1.00 

COPD patients switching from Cluster 2 at visit 1 to Cluster 1 at visit 2 (n = 26) 

With emphysema - no. (%)  5 (19.2) 11 (42.3) 0.08 
DLCO - % 53.6 ± 18.0 53.4 ± 10.9 0.99 
With exacerbations in the previous 12 months - no. (%) 15 (57.7) 10 (38.5) 0.17 
With unscheduled medical visits in the previous 12 months - no. (%) 10 (38.5) 8 (30.8)  0.56 
With hospitalizations for COPD in the previous 12 months – no. (%) 1 (4) 6 (23.1) 0.05 
On SABA – no. (%) 20 (69) 19 (73.1) 1.00 
On LABA – no. (%) 18 (62.1) 21 (80.8) 0.52 
On LAMA – no. (%) 12 (46.2) 20 (76.9) 0.04 
On ICS – no. (%) 13 (50) 15 (57.7) 0.74 
On anti-hypertensive drugs – no. (%) 7 (24.1) 8 (30.8) 1.00 
On statins – no. (%) 2 (6.9) 3 (11.5) 1.00 
Adherence to treatments - no. (%) 23 (92.0) 24 (100.0) 1.00 

 
Data are expressed as numbers (%) and as means ± SD  
DLCO = transfer factor of the lung for carbon monoxide; SABA = short-acting b2-agonists; LABA = long-acting b2-agonists; LAMA = long-lasting 
muscarinic antagonists; ICS = inhaled corticosteroids. 
* Students’ t test or Fisher exact test 2-tailed  




