Supplementary Materials

Differential IL18 signaling *via* IL18 receptor and Na-CI co-transporter discriminating thermogenesis and glucose metabolism regulation

Xian Zhang,^{1,2} Songyuan Luo,^{2,3} Minjie Wang,² Qiongqiong Cao,¹ Zhixin Zhang,¹ Qin Huang,² Jie Li,² Zhiyong Deng,² Tianxiao Liu,² Cong-Lin Liu,^{2,4} Mathilde Meppen,² Amelie Vromman,² Richard A. Flavell,⁵ Gökhan S. Hotamışlıgil,⁶ Jian Liu,¹ Peter Libby,² Zhangsuo Liu,⁴ Guo-Ping Shi²

- 1) School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
- 2) Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510000, China
- 4) Department of Nephrology, the First Affiliated Hospital, Research Institute of Nephrology, Zhengzhou University, Henan Province Research Center For Kidney Disease, Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, Henan 450052, China
- 5) Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
- Department of Molecular Metabolism, Harvard School of Public Health, Boston, MA 02115, USA

Supplementary Fig. 1. Adipose tissue expressions of IL18, IL18r, and NCC in EAT, SAT, and BAT from WT mice in response to thermogenic activation at room temperature (RT) or 4 $^{\circ}$ C for 7 days on a LFD (n=4 biologically independent samples per group). Data are mean±SEM, two-sided Mann-Whitney *U* test.

Supplementary Fig. 2. IL18r and NCC expression in different types of adipose tissues. Representative immunostaining of NCC and IL18r in EAT, SAT and BAT sections from WT mice on a LFD or HFD (n=8 biologically independent samples per group). Scale: 50 µm.

Supplementary Fig. 3. Energy expenditure in LFD-fed mice without CL316243 treatment. **a-c.** Mouse metabolic parameters, including oxygen consumption (VO₂) (**a**), carbon dioxide production (VCO₂) (**b**), and energy expenditure (**c**) and their average values from full day cycle, light cycle, and dark cycle during 48 hrs of monitoring in LFD-fed WT, $Ncc^{-/-}$, $II18r^{-/-}$, and $II18r^{-/-}Ncc^{-/-}$ mice (WT: n=5; $Ncc^{-/-}$: n=4, $II18r^{-/-}$: n=5; $II18r^{-/-}Ncc^{-/-}$: n=5 biologically independent animals). Data are mean±SEM. One-way ANOVA test, followed by LSD post-test.

UCP1

Supplementary Fig. 4. Bodyweight, adipocyte morphology, and gene expressions in WT, Ncc^{-/-}, *II18r^{-/-}* and *II18r^{-/-}Ncc^{-/-}* mice in response to CL316243. **a-c**. Body mass (WT: n=11; *Ncc^{-/-}*: n=5, *II18r^{-/-}*: n=5; *II18r^{-/-}Ncc^{-/-}*: n=10 biologically independent animals) (**a**), food intake during the day-night cycles (WT: n=8; $Ncc^{-/-}$: n=5; $II18r^{-/-}$: n=5; $II18r^{-/-}Ncc^{-/-}$: n=8 biologically independent animals) (b), and ambulatory activity and their average values (WT: n=10; Ncc^{-/-}: n=5, II18r^{-/-}: n=6; $II18r^{-/-}Ncc^{-/-}$: n=7 biologically independent animals) (c). d. Representative images of H&E staining and quantification of adipocyte sizes in EAT, SAT, and BAT (WT-EAT: n=10; Ncc^{-/-}-EAT: n=11, *II18r^{-/-}*-EAT: n=9; *II18r^{-/-}Ncc^{-/-}*-EAT: n=15; WT-SAT: n=13; *Ncc^{-/-}*-SAT: n=13, *II18r^{-/-}*-SAT: n=14; *II18r^{-/-}Ncc^{-/-}*-SAT: n=15; WT-BAT: n=8; *Ncc^{-/-}*-BAT: n=7, *II18r^{-/-}*-BAT: n=7; *II18r^{-/-}Ncc^{-/-}*-BAT: n=8 biologically independent samples). e. Representative images of UCP1 immunostaining (n=7~10/group) of EAT and SAT. Scale: 50 µm, inset: 25 µm. f-g. RT-PCR analysis of thermogenic, mitochondrial, lipogenic, and lipolytic genes, and M2 macrophage markers, eosinophil marker, type 2 cytokines, and Treg functional molecules in EAT (WT: n=7; Ncc^{-/-}: n=6, II18r^{-/-}: n=7: II18r^{-/-}Ncc^{-/-}: n=8 biologically independent samples) (f) and SAT (WT: n=7; Ncc^{-/-}: n=6, *II18r^{-/-}*: n=7; *II18r^{-/-}Ncc^{-/-}*: n=9 biologically independent samples) (g). Data are mean±SEM, one-way ANOVA test, followed by LSD post-test.

Supplementary Fig. 5. Pre-adipocyte adipogenesis and adipocyte glucose uptake and cAMP signaling from WT, *Ncc^{-/-}*, *ll18r^{-/-}* and *ll18r^{-/-}Ncc^{-/-}* mice. **a/b**. Oil-red O staining and quantification of lipid accumulation (OD 510 nm) in differentiated white adipocytes (**a**) and differentiated brown adipocytes (**b**), scale: 50 µm (n=4 biologically independent samples per group). **c**. Glucose (2-NBDG) uptake in differentiated brown adipocytes from different mice with or without 20 nM insulin and 0 or 100 ng/mL of IL18 treatment for 24 hrs as indicated (WT: n=6; *Ncc^{-/-}*: n=6, *ll18r^{-/-}*: n=5; *ll18r^{-/-}*Ncc^{-/-}: n=6 biologically independent samples). **d-e**. cAMP levels (WT: n=4; *Ncc^{-/-}*: n=4, *ll18r^{-/-}*Ncc^{-/-}: n=3 biologically independent samples) (**d**) and immunoblot and quantification of pPKA to total PKA (**e**) in differentiated brown adipocytes from different mice with or without 100 ng/mL of IL18, 20 nM insulin, or 20 µM H89. Data are mean±SEM, one-way ANOVA test, followed by LSD post-test.

Supplementary Fig. 6. IL18 expression, adipocyte morphology, and body and tissue weights in $II18^{fl/fl}$ and $II18^{fl/fl}Ucp1^{Cre}$ mice. **a.** Immunoblot analysis of IL18 expression in different tissues from LFD-fed $II18^{fl/fl}$ and $II18^{fl/fl}Ucp1^{Cre}$ mice. Representative of 3 independent experiments. **b**. RT-PCR analysis of II18 in BAT from LFD-fed $II18^{fl/fl}$ and $II18^{fl/fl}Ucp1^{Cre}$ mice (n=3 biologically independent samples per group). **c**. Representative images of H&E staining of EAT and SAT from mice fed a HFD for 12 weeks ($II18^{fl/fl}$ -EAT: n=7; $II18^{fl/fl}Ucp1^{Cre}$ -EAT: n=6; $II18^{fl/fl}$ -EAT: n=8; $II18^{fl/fl}Ucp1^{Cre}$ -EAT: n=9 biologically independent samples). Scale: 50 µm. Bodyweight (**d**), tissue weight (**e**), and representative H&E staining of EAT and SAT (**f**) from mice after 7 days of CL316243 treatment (n=9 biologically independent samples per group). Scale: 50 µm. Data are mean±SEM, two-sided Student's t-test.

Supplementary Fig. 7. NCC and metabolic gene expression and insulin signaling in $Ncc^{fl/fl}$ and $Ncc^{fl/fl}Ucp1^{Cre}$ mice after 12 weeks of a HFD. **a.** RT-PCR analysis of NCC expression in EAT, SAT, and BAT from $Ncc^{fl/fl}$ and $Ncc^{fl/fl}Ucp1^{Cre}$ mice (n=6 biologically independent samples per group). **b-c.** RT-PCR analysis of lipogenic, lipolytic, glucose metabolic, thermogenic, and inflammatory genes in EAT (**b**) and SAT (**c**) from indicated mice ($Ncc^{fl/fl}$: n=12; $Ncc^{fl/fl}Ucp1^{Cre}$: n=9 biologically independent samples). **d**. Immunoblots analysis of pAKT, pIR β and GAPDH in WAT from HFD-fed $Ncc^{fl/fl}$ and $Ncc^{fl/fl}Ucp1^{Cre}$ mice (n=6 biologically independent samples per group). Data are mean±SEM, two-sided Mann-Whitney *U* test.

Supplementary Fig. 8. Quantification of different T cells in EAT, SAT, and BAT from $Ncc^{fl/fl}$ and $Ncc^{fl/fl}Ucp1^{Cre}$ mice after 12 weeks of a HFD. **a-e**. Representative FACS images and quantification of total CD4⁺ and CD8⁺ T cells (n=4 biologically independent samples per group in EAT and SAT, n=3 biologically independent samples per group in BAT) (**a**) and CD4⁺IFNγ⁺ Th1, CD4⁺IL4⁺ Th2, CD4⁺IL17A⁺ Th17 (**b-d**), and CD4⁺CD25⁺Foxp3⁺ Treg (n=7 biologically independent samples per group in EAT and SAT, n=4 biologically independent samples per group in BAT) (**e**) cells in EAT, SAT, and BAT from indicated mice. Data are mean±SEM, **P*<0.05, ***P*<0.01, two-sided Student's t-test.

Supplementary Fig. 9. Quantification of eosinophils, macrophages, and different T cells in EAT, SAT, and spleens from LFD-fed *Ncc*^{#/#} and *Ncc*^{#/#}*Ucp1*^{Cre} mice. **a-b.** Representative FACS images and quantification of CD11b⁺Siglec-F⁺ eosinophils (**a**) and CD11b⁺F4/80⁺ total macrophages, CD11b⁺F4/80⁺CD11c⁺ M1 macrophages, and CD11b⁺F4/80⁺CD206⁺ M2 macrophages in EAT, SAT, and BAT (**b**) from indicated mice. **c-e**, Representative FACS images and quantification of total CD4⁺ and CD8⁺ T cells (**c**) and CD4⁺IFNγ⁺ Th1, CD4⁺IL4⁺ Th2, CD4⁺IL17A⁺ Th17 T cells (**d**), and CD4⁺CD25⁺Foxp3⁺ Treg (**e**) in EAT, SAT, and BAT from indicated mice. n=3 biologically independent samples per group. Data are mean±SEM. Two-sided Mann-Whitney *U* test.

Supplementary Fig. 10. Gating strategies used for flow cytometry. **a**. Gating strategy to detect adipose tissue total (CD45⁺CD11b⁺F4/80⁺), M1 (CD45⁺CD11b⁺F4/80⁺CD11c⁺CD206⁻), and M2 (CD45⁺CD11b⁺F4/80⁺ CD11c⁻CD206⁺) macrophages. **b**. Gating strategy to detect adipose tissue eosinophils (CD45⁺CD11b⁺Siglec-F⁺). **c**. Gating strategy to detect adipose tissue CD8⁺ (CD45⁺CD8⁺CD4⁻) and CD4⁺ (CD45⁺CD8⁻CD4⁺) T cells. **d**. Gating strategy to detect adipose tissue tissue Th1 (CD45⁺CD3⁺CD4⁺IFN-γ⁺), Th2 (CD45⁺CD3⁺CD4⁺IL4⁺), and Th17 (CD45⁺CD3⁺CD4⁺IL17A⁺) cells. **e**. Gating strategy to detect adipose tissue and splenic Treg (CD45⁺CD3⁺CD4⁺CD25⁺Foxp3⁺) cells.

Supplementary Fig. 11. Energy expenditure in LFD-fed mice that were housed at a thermoneutral temperature (30 °C) for 7 days. **a-c.** Mouse metabolic parameters, including oxygen consumption (VO₂) (**a**) and carbon dioxide production (VCO₂) (**b**), and energy expenditure (**c**) and their average values from full day cycle, light cycle, and dark cycle during 48 hrs of monitoring in LFD-fed in *Ncc^{fl/fl}* and *Ncc^{fl/fl}Ucp1^{Cre}* mice (*Ncc^{fl/fl}Ucp1^{Cre}*: n=6 biologically independent animals). Data are mean±SEM, two-sided Student's t-test.

Supplementary Fig. 12. IL18r expression, UCP1 immunostaining, thermogenic gene expression, and different T-cell numbers in *II18r^{fl/fl}* and *II18r^{fl/fl}Adipog^{Cre}* mice after 12 weeks of a HFD. **a.** RT-PCR analysis of IL18r expression in EAT, SAT, and BAT from *II18r^{fl/fl}* and *II18r^{fl/fl}Adipog^{Cre}* mice (n=6 biologically independent samples per group). **b.** Immunostaining and guantification of UCP1-positive area in EAT, SAT, and BAT (*II18r^{1//1}-*EAT: n=8; *II18r^{fl/fl}Adipoq^{Cre}*-EAT: n=9; *II18r^{fl/fl}*-SAT: n=8; *II18r^{fl/fl}Adipoq^{Cre}*-SAT: n=7; *II18r^{fl/fl}*-BAT: n=12; II18r^{fl/fl}Adipog^{Cre}-BAT: n=13 biologically independent samples). Scale: 50 µm, inset: 25 µm. c. RT-PCR analyses of thermogenic genes in BAT from *II18r^{fl/fl}* and *II18r^{fl/fl}Adipog^{Cre}* mice (n=6 biologically independent samples per group). d-h. Representative FACS images and guantification of total CD4⁺ and CD8⁺ T cells (*II18r^{fl/fl}*-EAT: n=6; *II18r^{fl/fl}Adipog^{Cre}*-EAT: n=5; *II18r^{fl/fl}*-SAT: n=6; *II18r^{fl/fl}Adipoq^{Cre}*-SAT: n=5; *II18r^{fl/fl}*-BAT: n=3; *II18r^{fl/fl}Adipoq^{Cre}*-BAT: n=3 biologically independent samples) (**d**) and CD4⁺IFNy⁺ Th1, CD4⁺IL4⁺ Th2, CD4⁺IL17A⁺ Th17 (*II18r^{f1/f1}*-EAT: n=6; *II18r^{f1/f1}Adipoq^{Cre}*-EAT: n=7; *II18r^{f1/f1}*-SAT: n=6; *II18r^{f1/f1}Adipoq^{Cre}*-SAT: n=7; *II18r^{fl/fl}*-BAT: n=5; *II18r^{fl/fl}Adipoq^{Cre}*-BAT: n=5 biologically independent samples) (**e-g**), and CD4⁺CD25⁺Foxp3⁺ Treg (*II18r^{fl/fl}*-EAT: n=8: *II18r^{fl/fl}Adipog^{Cre}*-EAT: n=6: *II18r^{fl/fl}*-SAT: n=8: *II18r^{fl/fl}Adipoq^{Cre}*-SAT: n=7; *II18r^{fl/fl}*-BAT: n=5; *II18r^{fl/fl}Adipoq^{Cre}*-BAT: n=5 biologically independent samples) (h) in EAT, SAT, and BAT from indicated mice. Data are mean±SEM, two-sided Mann-Whitney U test.

Supplementary Fig. 13. FACS analyses of eosinophils, macrophages, and different T cells in EAT, SAT, and spleens from LFD-fed *II18r^{fl/fl}* and *II18r^{fl/fl}Adipoq^{Cre}* mice. **a-b.** Representative FACS images and quantification of CD11b⁺Siglec-F⁺ eosinophils (**a**) and CD11b⁺F4/80⁺ total macrophages, CD11b⁺F4/80⁺CD11c⁺ M1 macrophages, and CD11b⁺F4/80⁺CD206⁺ M2 macrophages in EAT, SAT, and spleens (**b**) from indicated mice. **c-e**. Representative FACS images and quantification of total CD4⁺ and CD8⁺ T cells (**c**), CD4⁺IFNγ⁺ Th1, CD4⁺IL4⁺ Th2, CD4⁺IL17A⁺ Th17 (**d**), and CD4⁺CD25⁺Foxp3⁺ Treg (**e**) cells in EAT, SAT, and spleens from indicated mice. **n=3** biologically independent per group. Data are mean±SEM.

Antibodies	Dilutions, Applications	Catalog Numbers, Vendors			
Rabbit anti-IL18	1:25, immunohistology	ab207324, Abcam			
Goat anti-IL18r	1:20, immunohistology	AF856, R&D Systems			
Rabbit anti-NCC	1:50, immunohistology	AB3553, Millipore			
Mouse anti-UCP1	1:250, immunohistology	MAB6158, R&D Systems			
Rat anti-Mac-3	1:200, immunohistology	108502, BioLegend			
Biotin-conjugated secondary	1:500, immunohistology	Vector Laboratories			
antibodies					
HRP-streptavidin	1:500, immunohistology	P039701-2, DAKO			
Mouse anti-IRβ antibodies	1:50, immunohistology	3020S, Cell Signaling Tech			
Alex Fluor 555	1:500, immunohistology	Thermo Fisher Scientific			
Alex Fluor 488	1:300, immunohistology	Thermo Fisher Scientific			
Rabbit anti-IL18	1:1000, immunoblot	ab207324, Abcam			
Goat anti-IL18r	1:1000, immunoblot	AF856, R&D Systems			
Rabbit anti-NCC	1:1000, immunoblot	AB3553, Millipore			
Mouse anti-UCP1	1:1000, immunoblot	MAB6158, R&D Systems			
Rabbit anti-PGC1α	1:1000, immunoblot	ab54481, Abcam			
Rabbit anti-ATGL	1:1000, immunoblot	PA5-17436, Invitrogen			
Rabbit anti-β3-AR	1:1000, immunoblot	PA5-117769, Thermo Fisher			
		Scientific			
Goat anti-GLUT4	1:1000, immunoblot	sc-1608, Santa Cruz Biotech			
Mouse anti-PPARy	1:1000, immunoblot	sc-7273, Santa Cruz Biotech			
Rabbit anti-pAMPK	1:1000, immunoblot	4185, Cell Signaling Tech			
Rabbit anti-AMPK	1:1000, immunoblot	2532, Cell Signaling Tech			
Rabbit anti-pHSL	1:1000, immunoblot	4139, Cell Signaling Tech			
Rabbit anti-HSL	1:1000, immunoblot	4107, Cell Signaling Tech			
Rabbit anti-COX IV	1:1000, immunoblot	4850, Cell Signaling Tech			
Rabbit anti-Cyt C	1:1000, immunoblot	11940, Cell Signaling Tech			
Rabbit anti-pAKT	1:1000, immunoblot	4060, Cell Signaling Tech			
Rabbit anti-AKT	1:1000, immunoblot	9272, Cell Signaling Tech			
Rabbit anti-pIRβ	1:1000, immunoblot	3026, Cell Signaling Tech			
Mouse anti-IRβ	1:1000, immunoblot	3020, Cell Signaling Tech			
Rabbit anti-pPKA	1:1000, immunoblot	4781, Cell Signaling Tech			
Rabbit anti-PKA	1:1000, immunoblot	4782, Cell Signaling Tech			
Rabbit anti-GAPDH	1:1000, immunoblot	2118, Cell Signaling Tech			
Rabbit anti-β-actin	1:1000, immunoblot	8457, Cell Signaling Tech			

HRP-conjugated secondary	1:5000, immunoblot	Thermo Fisher Scientific	
antibodies			
Viability Dye eFluor 450	1:100, flow cytometry	65-0863-14, eBioscience	
Anti-CD45-APC	1:100, flow cytometry	103112, BioLegend	
Anti-CD11b-APC-Cyanine7	1:100, flow cytometry	101226, BioLegend	
Anti-F4/80-PE	1:100, flow cytometry	123110, BioLegend	
Anti-CD206-PerCP-Cyanine5.5	1:100, flow cytometry	141716, BioLegend	
Anti-CD11c-FITC	1:100, flow cytometry	53-0114-82, eBioscience	
Anti-CD45-PerCP-Cyanine5.5	1:100, flow cytometry	45-0451-82, Invitrogen	
Anti-CD11b-APC	1:100, flow cytometry	17-0112-83, eBioscience	
Anti-Siglec-F-PE	1:100, flow cytometry	12-1702-82, eBioscience	
Anti-CD4-FITC	1:100, flow cytometry	11-0042-85, eBiosciences	
Anti-CD8-PE	1:100, flow cytometry	100708, BioLegend	
Anti-CD3-APC- Cyanine7	1:100, flow cytometry	100222, BioLegend	
Anti-CD25-PE	1:100, flow cytometry	102008, BioLegend	
Anti-Foxp3-APC	1:100, flow cytometry	17-5773-82, eBioscience	
Anti-IFN-γ-PE	1:100, flow cytometry	12-7311-82, eBioscience	
Anti-IL4-APC	1:100, flow cytometry	17-7041-82, eBioscience	
Anti-IL17A-PE-Cyanine7	1:100, flow cytometry	506922, BioLegend	

Gene	Forward primers (5' to 3')	Reverse primers (5' to 3')			
Ucp1	CACTCAGGATTGGCCTCTACG	GGGGTTTGATCCCATGCAGA			
Prdm16	CCACCAGACTTCGAGCTACG	ACACCTCTGTATCCGTCAGCA			
Pgc1a	CCCTGCCATTGTTAAGACC	TGCTGCTGTTCCTGTTTTC			
Elovl3	TTCTCACGCGGGTTAAAAATGG	GAGCAACAGATAGACGACCAC			
Tmem26	ACCCTGTCATCCCACAGAG	TGTTTGGTGGAGTCCTAAGGTC			
CD137	CGTGCAGAACTCCTGTGATAAC	GTCCACCTATGCTGGAGAAGG			
Cited1	ACTAGCTCCTCTGGATCGACA	GACCCAGTTTTGCATGGGC			
Pdgfra	AGCAGGCAGGGCTTCAACGG	ACACAGTCTGGCGTGCGTCC			
Ap2	ACACCGAGATTTCCTTCA AACTG	CCATCTAGGGTTATGATGCTCTTCA			
Pparγ	TTGTAGAGTGCCAGGTGCTG	CCTCCATAGCTCAGGTGGAA			
Fas	AAGTCCCAGAAATCGCCTATG	GGTATGGTTTCACGACTGGAG			
Srebp1c	ATGCCATGGGCAAGTACACA	ATAGCATCTCCTGCGCACTC			
Acc1	TGTCCACCCAAGCATTTCTTC	CATCCAACACCAGTTCAGTATACGT			
Acc2	ACTTTGACCTGACCGCTGTG	CTGAGTGCCGGATAATGGC			
Atgl	GGATGAAAGAGCAGACGGGTAG	CGCAAGACAGTGGCACAGAG			
Hsl	ACTGAGATTGAGGTGCTGTC	AGGTGAGATGGTAACTGTGAG			
Insr	CTACAGTGTTCGAGTCCGGG	TGGCAATATTTGATGGGACATCT			
Glut4	CTATTCAACCAGCATCTTCGAG	CTACTAAGAGCACCGAGACC			
Glut1	GACGGGCCGCCTCATGTTGG	GCTCTCCGTAGCGGTGGTTCC			
IL18	CAGGCCTGACATCTTCTGCAA	CTGACATGGCAGCCATTGT			
Ncc	CTTCGGCCACTGGCATTCTG	GATGGCAAGGTAGGAGATGG			
ll18r	TTAGGACCAAAGTGT-GAGAAGG	TCTCGTCTCTTT-CCGCTATGCG			
IL6	CCTTCCTACCCCAATTTCCAA	AGATGAATTGGATGGTCTTGGTC			
Мср1	TTAAAAACCTGGATCGGAACCAA	GCATTAGCTTCAGATTTACGGGT			
Tnfα	CAAAGGGAGAGTGGTCAGGT	GGCAACAAGGTAGAGAGGC			
IL1β	TGAAATGCCACCTTTTGACAG	CCACAGCCACAATGAGTGATAC			
Arg1	CTCCAAGCCAAAGTCCTTAGAG	AGGAGCTGTCATTAGGGACATC			
Mrc1	TGATTACGAGCAGTGGAAGC	GTTCACCGTAAGCCCAATTT			
Clec10a	CTCTGGAGAGCACAGTGGAG	ACTTCCGAGCCGTTGTTCT			
Siglec-F	CTGGCTACGGACGGTTATTCG	GGAATTGGGGTACTGGACTTG			
IL4	GGTCTCAACCCCCAGCTAGT	GCCGATGATCTCTCTCAAGTGAT			
IL13	CCTGGCTCTTGCTTGCCTT	GGTCTTGTGTGATGTTGCTCA			
ATPase	CACCACCAAGAAGGGATCGA	GCAGGGTCAGTCAGGTCATCA			

Supplementary Table 2. Real-time PCR primer sequences.

Cox2	TCTCCCCTCTCTACGCATTCT	TCATTGGTGCCCTATGGTTT
Cox8b	TGCGAAGTTCACAGTGGTTC	ATGCTGCGGAGCTCTTTTA
Cytc	GGCTGCTGGATTCTCTTACACA	CCAAATACTCCATCAGGGTATCCT
18s rRNA	TCATAAGCTTGCGTTGATTA	TAGTCAAGTTCGACCGTCTT
16s rRNA	ACATCCCAATGGTGTAGAAG	AAGTTGAGAGCGCTTATTTG
Pten	TGGATTCGACTTAGACTTGACCT	GCGGTGTCATAATGTCTCTCAG
Stat6	ACCTGTCCATTCGCTCACTG	ATCTGGGGCTCTGGAGTAGG
Pdpn	ACCGTGCCAGTGTTGTTCTG	AGCACCTGTGGTTGTTATTTTGT
Zbtb16	CTGGGACTTTGTGCGATGTG	CGGTGGAAGAGGATCTCAAACA
GAPDH	TGTCATACTTGGCAGGTTTCT	CGTGTTCCTACCCCCAATGT

Donor number	Procedure	Age	Gender	BMI	Diabetic	Tissue	Source
1	Panniculectomy	49	Male	32.5	No	Abdomen	Brigham and
							Women's Hospital
2	Abdominoplasty	50	Female	21.3	No	Abdomen	Brigham and
							Women's Hospital

Supplementary Table 3. Human donor information for Fig. 50.