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Supplementary Methods 
The saturation analysis of the fragment number required for CRAG. 

A group of fragmentation-positive and fragmentation-negative regions was generated for the 
benchmark. For fragmentation-positive regions, we chose the CGI TSS that are overlapped 
with conserved TssA chromHMM states (15-state chromHMM) shared across the cell types 
from NIH Epigenome Roadmap. Regions that are -50bp to +150bp around these active TSS 
were defined as the fragmentation-positive regions. For fragmentation-negative regions, we 
chose the same number of random genomic regions from conserved Quies chromHMM states 
shared across the cell types but with the same chromosome, region size, G+C% content, and 
mappability score as that in fragmentation-positive regions. 

We downsampled the high-quality fragments in the BH01 dataset to 50 million fragments. We 
identified the hotspots at these downsampled datasets and calculated TP (true positive), FP 
(false positive), TN (true negative), FN (false negative) based on their overlaps with the 
benchmark regions generated above. F-score was calculated: 

       (1) 

in which, Precision and Recall were calculated using equation (2) and equation (3), 
respectively: 

        (2) 

          (3) 

The performance is saturated at ~0.9 F1-score with 200 million high-quality fragments. 
(Additional file 2: Fig. S1). 

The enrichment analysis of the cfDNA fragmentation hotspots in gene-regulatory elements. 

The number of hotspots that overlapped with the regulatory element was counted by bedtools 
v2 1. After filtering out the dark regions and low mappability regions (mappability less than 0.9), 
random genomic regions were generated with matched chromosomes and sizes. Fisher exact 
test (two-tail) was performed to calculate the enrichment of hotspots over the matched random 
regions.   

The Principal Component Analysis of the cfDNA fragmentation hotspots across different 
diseases. 

The cfDNA fragmentation hotspots were called at each pathological condition as described in 
the Methods. Principal Component Analysis (PCA) was performed on the z-score transformed 
IFS across all the fragmentation hotspots (pca function at Matlab 2019b). 

Unsupervised hierarchical clustering analysis of the cfDNA fragmentation hotspots across 
different diseases. 
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The cfDNA fragmentation hotspots were called at each pathological condition as described in 
the Methods. Top N most variable hotspots were kept for the clustering (ranked by the 
variation across all the samples). Spearman's rank correlation was utilized to evaluate the 
distance among the samples. Also, weighted average distance (WPGMA, with 'weighted' as 
the parameter in clustergram function at Matlab 2019b) was applied together with the linkage 
method. In the Cristiano et al. dataset, one-way ANOVA (p-value < = 0.01) was applied to 
select the hotspots that showed the group-specific fragmentation patterns. Further, hotspots 
are ranked by the z-score difference between the samples within the group and outside the 
group. The top 5,000 hotspots in each group were finally visualized in the figure. 

The t-SNE visualization of the cfDNA fragmentation hotspots across different diseases. 

T-SNE (tsne function at Matlab 2019b) was utilized for the dimensionality reduction and 
visualization of the fragmentation dynamics in the hotspots across multiple cancer and healthy 
conditions. Hotspots with a p-value <= 0.01 (one-way ANOVA) were used for the analysis. 
Distance similarity was calculated by the Spearman correlation together with default 
parameters (tsne function at Matlab 2019b). 

The Gene Ontology and pathway analysis of the cfDNA fragmentation hotspots. 

Gene Ontology (GO) and KEGG pathway analysis of the cfDNA fragmentation hotspots was 
performed by Cistrome-GO2. 

The motif analysis of the cfDNA fragmentation hotspots. 

Motif analysis of cfDNA fragmentation hotspots was performed by HOMER (v4.11) with the 
command ‘findMotifsGenome.pl hotspots_file hg19 output_file -size given’ 3. Only motifs with a 
q-value of less than 0.01 were kept.   

The estimation of tumor fractions and copy number variations by ichorCNA. 

The ichorCNA v0.2.04 was run at 1Mb resolution with the normalization by the normal panel 
provided in the package together with G+C%, mappability, and the following parameters: --
normal “c(0.75)” --ploidy “c(2)” --maxCN 5 --estimateScPrevalence FALSE --scStates “c(1,3)” -
-chrs “c(1:22)” .   

The batch effect correction and the performance evaluation at the independent test dataset. 

Principal Component Analysis (PCA) was performed on the z-score transformed IFS across all 
the fragmentation hotspots in public dataset and independent test dataset. There is indeed a 
batch effect between the training set (public data) and our independent test set (Additional file 
2: Fig. S19a). Therefore, we performed a batch effect correction. Specifically, we used num.sv 
and sva functions in sva package (R v4.2.0) to estimate the surrogate variables. num.sv 
suggests that there is only one major hidden surrogate variable. The underlying surrogate 
variable showed a high correlation with the data source and confirmed that the data source is 
indeed the only major contributor to the batch effect we observed (we also infer the gender by 
coverage ratio in chrX/chrY from the data). Finally, we apply the ComBat algorithm to correct 
the batch effects between the train and test datasets by their data source. After the correction, 
we randomly choose 2/3 of the samples in the training dataset (public data) to train the model 
(SVM classifier with linear kernel and default parameters). To balance the case and control 
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categories, we down-sampled them to be equal during the training process. We evaluated the 
performance at the remaining 1/3 of the training set and chose the fixed cut-off to identify the 
positive and negative labels in the remaining 1/3 of the training set. We further applied this 
model and fixed the cut-off at the independent test set to vote for the positive and negative 
labels for the test samples. We repeated this process 100 times. Samples that received more 
than half of the positive votes (>=50 votes) will be classified as cancer, otherwise controls. The 
performance is shown in Additional file 1: Table S11. The high performance in the test set 
suggests that our method indeed has the potential clinical application. 
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Supplementary Figures 

 
Fig. S1. The power estimation for the cfDNA fragmentation hotspots called by CRAG 
with different numbers of fragments. 
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Fig. S2. The fragmentation patterns near the cfDNA fragmentation hotspots. The 
distribution of (a) IFS from IH01, and (b) adjusted IFS (after k-mer correction) from BH01 
around the fragmentation hotspots called in the BH01 dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure 2
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Fig. S3. The enrichment of ATAC-see signals from neutrophils around the cfDNA 
fragmentation hotspots (BH01). 
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Fig. S4. Epigenetic signals around cfDNA fragmentation hotspots (BH01). The histone 
modification signal distributions (-log10 P-value calculated by MACS2, downloaded from 
Roadmap Epigenomics Consortium) from neutrophil, B cell, and T cell around cfDNA 
fragmentation hotspots (BH01). 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure 4
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Fig. S5. The boxplot of the conservation score (PhastCons) within cfDNA fragmentation 
hotspots and matched random regions. 
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Fig. S6. CfDNA fragmentation hotspots and transposable elements (TE). (a). The 
mappability score distribution at 3’end of TE. (b). The G+C% content distribution at 3’end of 
TE. (c). The top10 motif enrichment at hotspots after the 3’end of TE. 
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Fig. S7. Unsupervised clustering on the Z-score of IFS at the top 10,000 most variable 
cfDNA fragmentation hotspots called from HCC and healthy samples (after GC bias 
correction). 
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Fig. S8. The significant GO BPs for the genes associated with (a) Class I and (b) Class II 
hotspots. 
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Fig. S9. The enrichment of HCC-specific and lung-cancer-specific hotspots at different 
chromHMM states. (a). The odds ratio is compared between HCC-specific (Class II) hotspots 
over healthy-specific (Class I) hotspots. P-value is calculated based on Fisher's exact test. (b). 
The Odds ratio is compared between lung-cancer-specific (Class II) hotspots over healthy-
specific (Class I) hotspots. P-value is calculated based on Fisher’s exact test. 
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Fig. S10. Unsupervised clustering on the Z-score of IFS at the top 10,000 most variable 
cfDNA fragmentation hotspots called from HCC (red), chronic HBV infection(cyan),HBV-
associated liver cirrhosis(green), and Healthy(blue) samples (a). Before and (b). After GC 
bias correction. 
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Fig. S11. Unsupervised clustering on the Z-score of IFS at the most variable cfDNA 
fragmentation hotspots called from HCC, HBV-associated liver cirrhosis, chronic HBV 
infection, and healthy individuals. (a). Clustering on the euclidean distance metrics from the 
top 30,000 most variable hotspots. (b). Clustering on the spearman correlation distance 
metrics from the top 10,000 most variable hotspots. (c). Clustering on the euclidean distance 
metrics from the top 10,000 most variable hotspots. (d). Clustering on the spearman 
correlation distance metrics from the top 20,000 most variable hotspots. (e). Clustering on the 
euclidean distance metrics from the top 20,000 most variable hotspots. (f). Clustering on the 
spearman correlation distance metrics from the top 40,000 most variable hotspots. (g). 
Clustering on the euclidean distance metrics from the top 40,000 most variable hotspots. 
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Fig. S12. Receiver operator characteristics (ROC) for the detection of early-stage HCC. 
IFS from cfDNA fragmentation hotspots (a) before and (b) after GC bias correction. The 
performance is compared with that by using copy number variations (cyan) and mitochondrial 
genome copy number analysis (blue). 
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Fig. S13. Receiver operator characteristics (ROC) to distinguish early-stage HCC with 
benign conditions (HBV-associated liver cirrhosis and chronic HBV infection) by using 
IFS from cfDNA fragmentation hotspots (a). Before and (b). After GC bias correction. 
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Fig. S14. The aberrations of IFS (before GC bias correction) across multiple early-stage 
cancer and healthy. (a). t-SNE visualization on the Z-score of IFS (before GC bias correction) 
at the top 40,000 most variable cfDNA fragmentation hotspots across multiple different early-
stage cancer types and healthy. (b). Unsupervised clustering (WPGMA method on spearman 
correlation distance) on Z-score of IFS (before GC bias correction) at the top 40,000 most 
variable cfDNA fragmentation hotspots across multiple different early-stage cancer types and 
healthy. (c). Unsupervised clustering (Ward's method on euclidean distance) on Z-score of IFS 
(before GC bias correction) at the top 40,000 most variable cfDNA fragmentation hotspots 
across multiple different early-stage cancer types and healthy. 
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Fig. S15. Receiver operator characteristics (ROC) for the detection of different early-
stage cancers by using IFS from cfDNA fragmentation hotspots before (left panel) and 
after (right panel) GC bias correction. (a). Breast cancer. (b). Colorectal cancer. (c). Gastric 
cancer. (d). Lung cancer. (e). Ovarian cancer. (f). Bile duct cancer. (g). Pancreatic cancer. 
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Fig. S16. The sensitivity across different cancer stages at 100% specificity for the 
detection of different early-stage cancers by using IFS from cfDNA fragmentation 
hotspots before (left panel) and after (right panel) GC bias correction. (a). Breast cancer. 
(b). Colorectal cancer. (c). Gastric cancer. (d). Lung cancer. (e). Ovarian cancer. (f). Bile duct 
cancer. (g). Pancreatic cancer. Error bars represent 95% confidence intervals. The sample 
size in each stage is at the bottom of each bar. 
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Fig. S17. The sensitivity at 100% specificity for the detection of early-stage cancer 
across different tumor fractions. (a) Cristiano et al. data and (b) HCC vs. Healthy at Jiang et 
al. data. The tumor fraction is estimated by ichorCNA. 
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Fig. S18. Receiver operator characteristics (ROC) at the independent early stage (a). 
HCC and (b). breast cancer. Hotspots and machine learning models were identified and 
trained by Jiang et al. 2015 data (HCC) and Cristiano et al. 2019 data (breast cancer), 
respectively. 

 

 

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1-specificity

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
S

en
si

tiv
ity

Early stage HCC vs. healthy samples (after GC-bias correction)

cfDNA hotspots: AUC = 0.97
ATAC-seq peaks:AUC = 0.69
TSS (200bp): AUC = 0.55
TSS (2kb): AUC = 0.67
TFBS: AUC = 0.77
DELFI: AUC = 0.81
mtDNA: AUC = 0.60
CNV: AUC = 0.63

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1-specificity

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Se
ns

iti
vi

ty

Early-stage breast cancer vs. healthy samples (after GC-bias correction)

cfDNA hotspots: AUC = 0.80
ATAC-seq peaks:AUC = 0.64
TSS (200bp): AUC = 0.62
TSS (2kb): AUC = 0.60
TFBS: AUC = 0.70
DELFI: AUC = 0.76
mtDNA: AUC = 0.50
CNV: AUC = 0.48

a b
Supplementary Figure 18



 

26 

 
 

 

Fig. S19. PCA results on the IFS Z-score at fragmentation hotspots before (a) and after 
(b) batch effect correction. Batch A is the public dataset (Breast cancer and its healthy 
controls are from Cristiano et al. 2019, Liver cancer and its healthy controls are from Jiang et 
al. 2015 PNAS). Batch B is our internal test dataset. 
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Fig. S20. Tissues-of-origin prediction across six different cancer types. Percentages of 
patients correctly classified by one of the two most likely types (sum of orange and blue bars) 
or the most likely type (blue bar). Error bars represent 95% confidence intervals. 
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Fig. S21. Tissues-of-origin prediction randomly by sample frequency across five cancer 
types. Percentages of patients correctly classified by one of the two most likely types (sum of 
orange and blue bars) or the most likely type (blue bar). Error bars represent 95% confidence 
intervals. 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure 21
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Table. S1. List of public datasets used in the study. 

Table. S2. Patients’ information for the independent validation sets. 

Table. S3. Significantly differentiated fragmentation hotspots between early-stage HCC and 
Healthy. 

Table. S4. Performance evaluation for the detection of early-stage HCC (before GC bias 
correction). 

Table. S5. Performance evaluation for the detection of early-stage HCC (after GC bias 
correction). 

Table. S6. Performance evaluation to distinguish early-stage HCC with benign conditions 
(HBV-associated liver cirrhosis and chronic HBV infection). 

Table. S7. Performance evaluation to distinguish early-stage HCC with benign conditions 
(HBV-associated liver cirrhosis and chronic HBV infection) (after GC bias correction). 

Table. S8. Performance evaluation for the detection of multiple cancer types (after GC bias 
correction). 

Table. S9. Performance evaluation for the detection of multiple cancer types (before GC bias 
correction). 

Table. S10. Performance evaluation at the independent validation sets (after GC bias 
correction). 

Table. S11. Performance evaluation with a fixed cut-off at both training and test set (after 
batch effect correction). 

Table. S12. Performance evaluation for the localization of five or six cancer types. 

Data file S1. Zipped source code and readme files. Available in GitHub and Zenodo.org 
(https://doi.org/10.5281/zenodo.6914806). 

Data file S2. The collections of cfDNA fragmentation files and their hotspots identified at 
different conditions in the study. Available in Zenodo.org 
(https://doi.org/10.5281/zenodo.6914806). 

 

 


