
Additional File 1: Secure Multi-Party Computation (SMPC) 

SMPC describes a collection of cryptographic techniques concerned with 
computations among several parties while maintaining privacy guarantees regarding the 
parties’ secret inputs. The field emerged in the 1980s with Andrew Yao’s publication of 
the “Garbled Circuits” protocol [1]. The fundamental insight, that by representing a 
function as a discrete circuit, either a Boolean circuit, operating on logical values, or an 
arithmetic circuit operating on elements of a finite ring, every computation that can be 
executed by a trusted third party can also be securely performed using a cryptographic 
protocol started this new research field. 

Albeit theoretically feasible, SMPC was missing practical implementation until the 
early 2000s. Due to vast improvements in both the performance of computing and 
network equipment and optimizations and novel approaches in SMPC protocols, the 
techniques became practically feasible in recent years. Today, the performance penalty 
by employing SMPC techniques is still high – sometimes multiple magnitudes increase in 
execution times compared to non-secure evaluation, nevertheless many practical 
problems can be solved using a multitude of SMPC frameworks and techniques. 

In the following two sections we will briefly describe the protocols which we used in 
the work described in this article. 

1.1 The GMW Protocol 
The GMW-Protocol [2], named after the inventors Goldreich, Miciali and Widgerson, 

operates on a Boolean circuit representation of a function that is to be evaluated. This 
representation uses only logical AND and XOR operations (that is, it states the function in 
algebraic normal form). Nearly all functions can be stated in this form, when some 
boundary conditions are met, e.g., that loops are bound and can be unrolled. More 
technically: Every polynomial-time function can be represented in a Boolean circuit of 
polynomial size. Following the terminology of electrical engineering, every operation in 
the circuit is called a gate and those gates are connected via wires that each hold one bit. 

The privacy of each party’s input is guaranteed by utilizing a threshold-cryptographic 
secret sharing scheme, that means the input is “broken up” into multiple parts, each on its 
own not containing any information, which allow reconstruction of the secret value only 
if all parts are combined. The secret value cannot be reconstructed, if even a single part, 
called a “share”, is missing. This statement holds for adversaries with unlimited 
computational power and time.  

The GMW protocol describes a way to securely compute a joint (Boolean) function on 
the secret inputs of 𝑛 parties or institutions. The idea of GMW’s information-theoretically 
secure secret sharing is to “break up” the secret input bit of each party into 𝑛 shares by 
sampling 𝑛 − 1 random bits and generating the last share by XORing all previous shares 
with each other and the secret input bit. This construction is, given a true random number 
generator, information theoretically secure, which means, that even an adversary with 
unlimited computational power and time cannot infer any information regarding the 
secret bit without access to all 𝑛 shares of a value. 

After the secret shares are generated, each party receives one share of every party’s’ 
input. No party has enough shares to reconstruct any secret value, but the computations 
can be performed on those shares. In the case of XOR-gates the operation can be 
performed locally, that is: The result of XORing one share of each input value of the gate 
is exactly the secret share of the calculation’s result. AND-gates, however, require an 



interactive sub-protocol involving communication between all parties using Oblivious 
Transfer (OT) [3–5]. 

After evaluating the Boolean circuit both parties recombine the resulting shares to 
reveal the clear text value of the output. 

1.2 Arithmetic Secret Sharing 
The GMW protocol can easily be extended to not only operate on Boolean circuits with 

logical values, but on arithmetic circuits (consisting of additions and multiplications, 
instead of the Boolean operations AND and XOR) with values of a finite ring, as well. The 
idea of the secret sharing scheme remains the same: generate shares by mixing the secret 
value with randomness so that the combination of all shares results in the reconstructed 
secret. The construction of the secret shares is analogous to the Boolean case, using 
modular arithmetic on the ring ℤ(𝑝): to generate n shares (to be distributed to the n 
parties) sample n-1 random elements of the finite ring, or formally 𝑠௜ ←$ {𝑣|𝑣 ∈ ℤ(𝑝)}, 𝑖 =

 1, … , 𝑛 − 1 . The last share, the nth, is generated by subtracting the previously sampled 
random values from the secret value, modulo the ring size to “stay inside” of the ring: 𝑠௡ =

𝑣 − ∑ 𝑠௜
௡ିଵ
௜ୀଵ mod 𝑝. 

The evaluation of the arithmetic circuit is an extension of the GMW protocol as well: 
additions can be evaluated locally and multiplications are evaluated using sub-protocols, 
like for the two-party case the Gilboa-Multiplication [6]. Without loss of generality, we can 
easily show the “locality” of the addition-operation, where 𝑠௜

௣ denotes the 𝑖th share of the 
secret value vp of party 𝑝 by writing out each definition and operation as illustrated in 
Table 1: 

 
Table 1: Illustration of arithmetic Secret Sharing 

 
 Party 1 Party 2 

Holds 𝑠ଶ
ଵ = 𝑣ଵ − 𝑠ଵ

ଵ mod 𝑝  
𝑠ଵ

ଶ =  𝑟𝑎𝑛𝑑𝑜𝑚 
sଵ

ଵ = 𝑟𝑎𝑛𝑑𝑜𝑚 
sଶ

ଶ = 𝑣ଶ − 𝑠ଵ
ଶ mod 𝑝 

𝒗𝟏 + 𝒗𝟐 𝒓𝟏 = 𝒔𝟐
𝟏 + 𝒔𝟏

𝟐𝐦𝐨𝐝 𝒑 
      = 𝒗𝟏 − 𝒔𝟏

𝟏 + 𝒔𝟏
𝟐 𝐦𝐨𝐝 𝒑 

𝒓𝟐 = 𝒔𝟏
𝟏 + 𝒔𝟐

𝟐 𝐦𝐨𝐝 𝒑  
      = 𝒔𝟏

𝟏 + 𝒗𝟐 − 𝒔𝟏
𝟐𝐦𝐨𝐝 𝒑 

 
Reconstruction 
(both parties) 

𝒓𝟏 + 𝒓𝟐𝐦𝐨𝐝 𝒑 = 𝒗𝟏 − 𝒔𝟏
𝟏 + 𝒔𝟏

𝟐 + 𝒔𝟏
𝟏 + 𝒗𝟐 − 𝒔𝟏

𝟐𝐦𝐨𝐝 𝒑  
                            = 𝒗𝟏 + 𝒗𝟐𝐦𝐨𝐝 𝒑 
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