Supplementary Materials

Unraveling the epigenomic and transcriptomic interplay during alcohol-induced anxiolysis

Harish R. Krishnan, Huaibo Zhang, Ying Chen, John Peyton Bohnsack, Annie W. Shieh, Handojo Kusumo, Jenny Drnevich, Chunyu Liu, Dennis R. Grayson, Mark Maienschein-Cline, Subhash C. Pandey

Supplementary Methods:

Bioinformatics of ATAC-seq data

Reads were aligned to the Rattus norvegicus Rnor 6.0 genome using BWA-MEM (Burrows-Wheeler Aligner) with default parameters [1]. Read alignments were adjusted to account for transposon binding: + strand alignments by +4bp, - strand alignments by - 5bp [2] and PCR duplicates were removed using Picard MarkDuplicates [3]. Peak calling was performed using Macs2 with parameters "--nomodel --nolambda" as appropriate for ATAC-seq data: no shifting model applied, and no input control sample [4]. Peaks were filtered at a -log10 q-value threshold >5. Peak calls from each replicate across both control and ethanol treatments were merged into a union set using bedtools merge [5]. This unified set of peaks was used as final genomic features for differential statistics and other downstream analyses. The unified peaks were annotated to genes from rn6 to provide the genic context for each peak, including promoter (+/-2kb from TSS), overlap with gene body (between TSS and TSE), upstream (<200kb upstream of TSS), or downstream (<200kb downstream of TSS). Peak abundance for each individual sample was quantified for the unified peak set as raw counts based on PCR duplicate-removed read alignments using featureCounts [6]. Normalization was performed to account for differences in sequencing depth across libraries, and reads were expressed as CPM (counts per million) with TMM normalization from edgeR [7]. Differential statistics were computed with edgeR using exactTest [7]. We adjusted pvalues for multiple testing using the false discovery rate (FDR) correction [8].

Motif and Footprinting analysis of ATAC-seq peaks

We extracted genomic sequences from the unified peaks using samtools fax [9], and performed a search of all transcription factor (TF) motifs from the JASPAR core vertebrate motif database within those sequences using FIMO [10,11]. To identify putative transcription factors (TF) of interest within the ATAC peak regions, we computed enrichment statistics for each motif: we compared the fraction of differentially enriched peaks (FDR < 0.2, 345 peaks out of ~118k) containing a motif to the fraction of non-differentially enriched peaks containing the same motif, computing log2-odds ratios and p-values using Fisher's Exact test, and adjusting p-values using the FDR correction over all motifs tested. Positive enrichment ratios indicate that motifs are present within the differentially enriched peaks more frequently than expected by chance (a log2 ratio of 1 indicates that a motif occurs twice as frequently [2^1] as expected by chance) and corresponding FDR-corrected p-values measure the statistical significance of those

observations. To strengthen our motif enrichment analysis by providing additional evidence of TF binding to open chromatin regions in aggregate, we compiled an averaged genomic footprint across all motif hits from ATAC-seq read start positions for each base surrounding the motif and generated footprinting figures (Fig.1D) for the motifs with q<0.01 and >50% enrichment (log2 ratio > 0.585) (Table S2).

Bioinformatics of RNA-seq data

Quality control and trimming of the reads were done using FastQC (v0.11.8) using default parameters and Trimmomatic (v0.38) with parameters (ILLUMINACLIP:TruSeq3-SE.fa:2:15:10 LEADING:30 TRAILING:30 MINLEN:30) to trim any remaining adapters or bases with low quality scores and remove reads shorter than 30 nt. Read alignment and gene counting were performed with STAR (v2.7.0f) [12] using the Rattus norvegicus Rnor 6.0 genome and Annotation 106 from NCBI. Read counts per gene were generated using the featureCounts [6] function from subread v1.6.3 with default parameters except -s 2 to indicate reverse-stranded reads. Of the \sim 97 million raw reads yielded per sample, over 92% of them uniquely aligned to the Rnor 6.0 genome. The proportion of reads in genes was 67.5 - 69% and the extremely high sequencing depth resulted in an average of 62.58 - 70.76 million reads per sample (Fig. S5). We used R (v3.6.2) (R Core Team, 2019-12-12) for all statistical analyses. The TMM (trimmed mean of M-values) normalization method [7] in the edgeR package [8] was used to normalize reads to account for differences arising from total number of reads and RNA composition differences. NCBI Rnor 6.0 Annotation 106 gene models have a total of 38,445 genes, and 22,372 genes were filtered out for no or low expression (0.5 counts per million in at least 3 samples), leaving 16,073 genes for differential expression analysis. We estimated sample-specific quality weights [13] and observational (gene)-level weights using the voomWithQualityWeights function in the limma package [14], which also transformed the counts appropriately for linear modeling [15]. The transformed values and weights were tested for differential expression using an empirical Bayes method, false discovery rates were evaluated, and FDR < 0.2 was chosen for pathway analysis. The list of genes satisfying the above criteria were fed into Ingenuity Pathway Analysis software (IPA®, QIAGEN Bioinformatics, Redwood City, CA), and the resulting top networks (Fig. S6) were analyzed for candidate genes that were then validated using qPCR to confirm RNA-seq results. We validated the RNA-seq data individually in the same animals where sequencing was done. In addition, several genes were also validated in a separate cohort of animals. Therefore, the number of animals is different in Fig. 2B.

Supplementary Results:

Fig. S1. Effect of acute ethanol exposure on anxiety-like behaviors in adult male rats. This behavior was measured 1hr after acute ethanol (1 g/kg: IP) exposure using Elevated Plus Maze (EPM) exploration test. Values are the mean ± SEM. (n=13; two tailed t-test; **p < 0.01; ***p < 0.001).

Fig. S2. Effect of acute ethanol exposure on mRNA levels of *Hif3a* in the bed nucleus of the stria terminalis (BNST) and hippocampus of adult male rats. Values are the mean ± SEM. (n=6; two tailed t-test; *p <0.05; **p < 0.01).

Fig. S3. Effect of acute ethanol exposure on anxiety-like behaviors (**A**) and mRNA levels of *Hif3a* in the amygdala (**B**) of adult female rats. Anxiety behavior was measured 1hr after acute ethanol (1 g/kg: IP) exposure using Elevated Plus Maze (EPM) exploration test. Values are the mean \pm SEM. (n=8; two tailed t-test; **p <0.01; ***p < 0.001).

Fig. S4. Ingenuity pathway analysis (IPA) was performed on the list of differentially altered ATAC-seq peaks associated with promoter of the genes (FDR < 0.2) in the amygdala, resulting in two networks, one containing *Hif3a* and other containing *Slc10a6*. The colors indicate increased ATAC peaks (RED) versus decreased ATAC peaks (GREEN) of the epigenome in ethanol-treated compared to control rats. The shapes denote specific protein subtypes as indicated in the inset box legends.

Fig. S5. RNA-seq data analysis in the amygdala of acute ethanol treated rats. Breakdown of the proportion of total reads in each fate for each sample from the RNAseq analysis is shown. The 6 different read fates (as indicated in the key) are as follows: 1. Filtered out after QC trimming if < 30 bp; 2. Did not align to the genome; 3. Did align, but in more than one location (not "unique"); 4. Did align uniquely, but not within a known gene; 5. Did align uniquely, but to a region covered by two genes ("ambiguous"); 6. Aligned uniquely within one gene and counted as a read for that gene. Overall, all 6 samples have consistent proportions of reads with ~0.68 present in genes.

Fig. S6. Ingenuity pathway analysis (IPA) was performed on the list of differentially expressed transcripts (FDR < 0.2) in the amygdala, and the top 4 networks are shown here (1-4). The colors indicate increased expression (RED) versus decreased expression (GREEN) of the transcripts in ethanol-treated compared to control within the RNA-seq dataset. The shapes denote specific protein subtypes as indicated in the inset box legends.

Fig. S7. Representation of neuropeptide Y1 receptor (*Npy1r*) gene transcriptional control region showing the sites where HIF3A protein occupancy was measured (**A**). Effect of acute ethanol exposure on occupancy of HIF3A protein at *Npy1r* gene promoter sites (**B**) and mRNA levels (**C**) of *Npy1r* in the amygdala of adult male rats. Values are the mean \pm SEM. (n=6-9; two tailed t-test; *p <0.05; **p < 0.01). HRE, Fig. S7. Representation of a series of the promoter sites (B) and mRN Values are the mean \pm SEN Hypoxia response element.

Supplementary Tables:

Table S1. ATAC-seq fold changes of all peaks in the amygdala (Acute ethanol vs Control). Table shows fold changes along with the p-values (please see attached xlsx file for table S1).

Table S2. Footprinting analysis of ATAC peak motifs in the amygdala. Footprinting data for 41 motifs derived from FIMO analysis of 572 vertebrate motifs from the JASPAR database. The 41 motifs satisfied the following criteria, q<0.01 and >50% enrichment (log2 ratio > 0.585). Table shows the motif consensus sequence ID's along with the p-values.

Table S3. RNA-seq fold changes in the amygdala (Acute ethanol vs Control) (please see attached xlsx file for Table S3).

Table S4. Primers used in this study are included in this table.

Supplementary References:

- 1. Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. *arXiv preprint arXiv* 2013;**1303**:3997.
- 2. Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. *Nat Methods* 2013;**10**:1213- 1218.
- 3. Wysoker A, Tibbetts K, Fennel T. 2013. Picard tools version 1.90 http://picard.sourceforge.net.
- 4. Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE et al. Modelbased analysis of ChIP-Seq (MACS). *Genome Biol* 2008; **9**: R137.
- 5. Quinlan, AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. *Bioinformatics* 2010;**26**:841-842.
- 6. Liao Y, Smyth GK, W Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. *Bioinformatics* 2014;**30**:923-930.
- 7. Robinson MD, Oshlack A. A scaling normalization method for differential expression analysis of RNA-seq data. *Genome Biol* 2010;**11**:R25.
- 8. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. *Bioinformatics* 2010;**26**:139-140.
- 9. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N et al. The Sequence alignment/map format and SAMtools. *Bioinformatics* 2009;**25**:2078-2079.
- 10.Grant CE, Bailey TL, Noble WS. FIMO: scanning for occurrences of a given motif. *Bioinformatics* 2011;**27**:1017-1018.
- 11.Khan A, Fornes O, Stigliani A, Gheorghe M, Castro-Mondragon JA, van der Lee R et al. JASPAR 2018: update of the open-access database of transcription factor binding profiles and its web framework. *Nucleic Acids Res* 2018;**46**(D1):D260-D266.
- 12.Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S et al. STAR: ultrafast universal RNA-seq aligner. *Bioinformatics* 2013;**29**:15-21.
- 13.Liu R, Holik AZ, Su S, Jansz N, Chen K, Leong HS et al. Why weight? modelling sample and observational level variability improves power in RNA-seq analyses. *Nucleic Acids Res* 2015;**43**:e97.
- 14.Law CW, Chen Y, Shi W, Smyth GK. voom: Precision weights unlock linear model analysis tools for RNA-seq read counts. *Genome Biol* 2014;**15**:R29.
- 15.Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, W Shi et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies. *Nucleic Acids Res* 2015;**43**:e47.