Supplementary Information

Genetic manipulation of the human gut bacterium Eggerthella lenta reveals a widespread family

of transcriptional regulators

Authors: Xueyang Dong', Ben G. H. Guthrie?, Margaret Alexander?, Cecilia Noecker?, Lorenzo

Ramirez?, Nathaniel R. Glasser’, Peter J. Turnbaugh?®, Emily P. Balskus'*

'Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA

“Department of Microbiology & Immunology, University of California San Francisco, San Francisco, CA
94143, USA

3Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
*Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA

*Correspondence: balskus@chemistry.harvard.edu

This file includes:
Supplementary Figures 1-8

Supplementary Tables 1



pXD69m1(TetW) : yfp
7044 bp

no antibiotic 100 pg/mL kanamycin 20 pg/mL tetracycline
0.6 06 0.4
0.5 0.5
0.3
0.4 0.4
8§ 03 n§ 0.3 Wild type g 02 . pXD6&9m1
0.2 «  pXD69m2 o +  pXD69m2 Wild ty;
- . pXD68Kan2 0.2 « pXD8Kan2 o1 pe
0.1 pXD69M1 0.1
0.0 T T 1 0.0 T T 1 0.0 f T T -1
0 12 24 36 48 [} 12 24 36 48 0 12 24 36 48
hour hour hour
6x104
L] o 10% glycerol
= 0.5 M sucrose
< . = 0/
E 4x104 A 30% PEG3350
) A
2
2 2x10¢
5 2x10 R
0 =
fresh thawed
m )
Y N
> > ¢ |
\ L] |
N\ v,
h and d cell Electroporation at 2.5 kV;
i Wash and suspend cells in recover for 3 h;
Ei /etnia orItGordonlbacter ODggo of 0.2-0.4 electroporation buffer spread to antibiotic+ plate;
starter culture 3-4 day growth
10° 9 15
* pXD69m1 e Acgr
— 100
=7 1 ] = pXD69m2 =0
g 2 1014 o2 3
=9 . pXD68Kan2 2 @ 1.0
O .= 2 A o 2
% E 10-2+ . 2 E
- @
28 10°4 I . ag
~ A 0
25 104 23057
S |.0|. . . 5
LT T T P b ()
ND T T T T 0.0 T T
0 20 40 60 80 100 0 50 100 150
Generations Generations
E. lenta AB8n2 fonibacter urolithinfaciens DSM 27213

no DNA pXD69m2 pXD68Kan2 pXD69m2 pXD68Kan2
transformation transformation transformation transformation



Supplementary Fig. 1] Transformation of human gut Coriobacteriia related to Fig. 1. a, Arrows indicating
regions amplified on individual plasmid to confirm plasmid presence within E. lenta and Gordonibacter transformants.
b, Growth of E. lenta DSM 2243 pXD69m1, pXD69m2, and pXD68Kan2 transformants and WT strain in liquid BHIrf
medium or medium supplemented with 100 yg/mL kanamycin or 20 ug/mL tetracycline. ¢, Additional buffers, 0.5 M
sucrose solution or 30% PEG3350 solution, could be used to prepare E. lenta DSM 2243 electrocompetent cells.
Electrocompetent E. lenta cells made with 10% glycerol or 0.5 M sucrose tolerated freezing. We thus used 10%
glycerol to prepare E. lenta DSM 2243 electrocompetent cells and stored competent cells at —80 °C for further
routine transformation unless otherwise noted. d, Workflow of preparing E. lenta and Gordonibacter species
electrocompetent cells. e, Plasmid maintenance of pXD69m1, pXD69m2 and pXD68Kan2 in E. lenta DSM 2243.
ND: colonies not detected in the selective medium. f, Transformation of additional E. lenta and Gordonibacter
species strains. Electrocompetent cells for E. lenta 28B, A2, AB8n2, AB12n2, CC8/2 BHI2 and Valencia strains,
Gordonibacter pamelacae 3C, Gordonibacter sp. 28C and Gordonibacter urolithinfaciens DSM 27213 were
prepared following the same procedures for E. lenta DSM 2243. We found plasmids can be transformed into E.
lenta AB8n2, Gordonibacter urolithinfaciens DSM 27213 and Gordonibacter sp. 28C, but not others, using our
electroporation conditions. g, Plasmid maintenance of cgr-editing plasmid in E. lenta DSM 2243 Acgr. Results
represented as mean with n = 2 biological replicates for ¢. Results represented as mean + standard deviation (SD)
with n = 3 biological replicates for b, e and g. Source data are provided as a Source Data file.
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Supplementary Fig. 2] Construction and characterization of inducible expression systems using lacZ
reporter related to Fig. 2. a, Workflow of lacZ assays to measure (3-Gal activity of E. lenta cultures harboring
different lacZ fusions. b, Growth of E. lenta DSM 2243 cultures harboring pXD70CT3 or pXD70CT5 in the presence
of different concentrations of cumate overnight at 37 “C. Final ODeoo represented as mean = SD with n = 3 biological
replicates. ¢, To identify an optimal site for CuO insertion on Pcsq, transcriptomic reads from previous E. lenta RNA-
seq experiments’ were mapped to the Pcsq region. A cumate operator was inserted near a site where we found an
abrupt decrease of RNA read coverage, as we speculated that binding of CymR at this site may establish control
of gene expression. d, Growth of E. lenta DSM 2243 cultures harboring pXD70LacZ6 in the presence of different
concentrations of IPTG overnight at 37 °C. Final ODeoo represented as mean + SD with n = 3 biological replicates
for b and d. Source data are provided as a Source Data file.
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Supplementary Fig. 3| Domain architecture of DadR and genomic arrangement of 12-transmembrane helix
LuxRs in E. lenta DSM 2243 genome. a, DadR is predicted to possess an N-terminal 12-transmembrane helix
domain (blue) and a C-terminal helix-turn-helix DNA-binding domain (green) by TMHMM?. Membrane topology
model was generated by Protter®. b, Predicted 12-TM LuxRs (blue) are located near genes encoding E. lenta
metabolic enzymes Dadh, Cadh, Hcdh, Cgr2, and Ber (red).
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Supplementary Fig. 4| Harnessing endogenous Type I-C CRISPR-Cas system for E. lenta genomic
engineering, related to Fig. 5. a, Adding an additional CuO tightened the expression control of cumate-inducible
construct. LacZ assays revealed that pXD70CT5.1 construct showed lower lacZ expression levels than pXD70CT5
in the absence of cumate and at low cumate concentrations. Results represented as mean + SD with n = 3 biological
replicates. b, PCR screening was performed to probe potential dadR deletion in colonies formed after spreading
initial pXD71Cas10.1 transformant cultures onto a cumate-containing agar plate, and revealed all the tested
colonies lacked dadR deletion. E. lenta DSM 2243 WT gDNA was used as control. Primers flanking the target site
were used. ¢, PCR screening revealed spacer loss within colonies formed after spreading pXD71Cas10.1
transformant cultures onto a cumate-containing agar plate, which was confirmed by Sanger sequencing.
pXD71Cas10.1 plasmid was used as control. d, Presence of Type I-C CRISPR-Cas systems in Coriobacteriia. The
amino acid sequence of E. lenta DSM 2243 Cas3 (C8WIK3) was blast searched against Coriobacteriia genomes in
UniProt database, and genomic contexts of the hits were retrieved and visualized using EFI-GNT tool* and manually
curated according to the presence of other typical Cas proteins within genome neighborhoods. For each diagram,
the accession of the Cas3 homolog, species identity and the CRISPR-Cas locus were displayed. Experiments
shown in panels b and ¢ were performed once on randomly selected colonies. Source data are provided as a
Source Data file.
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Supplementary Fig. 5| Confirmation of dadR gene complementation and expression related to Fig. 6. a, PCR
screening confirmed the presence of tetracycline-resistance plasmid pXD69m1(TetW) vector and pXD70Tet(DadR)
within the complemented strains AdadR/vector and AdadR/DadR, respectively. Plasmids (P) were used as controls.
b, PCR screening confirmed the dadR deletion background of the AdadR/vector and AdadR/DadR strains. The
gDNA of AdadR strain was used as a control. ¢, PCR screening confirmed the presence of the plasmid encoding
truncated DadR mutant DadR(ADBD), DadR(ATM) or linker shuffled mutant DadR(linker) within the corresponding
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complemented strains. d, PCR screening confirmed the dadR deletion background of the strains complemented
with plasmid encoding DadR mutants. e, Western blot to measure the expression of N-terminal FLAG-tagged DadR
and DadR mutants. E. lenta AdadR strains harboring various N-terminal FLAG-tagged DadR constructs were
inoculated 1:20 in fresh BHIrf medium with 20 pg/mL tetracycline and were either incubated with vehicle (-) or 1 mM
dopamine (+) at 37 °C for 40 h before harvesting for measuring protein expression. Molecular weight of each of the
N-FLAG-tagged constructs: FLAG-DadR 56 kDa, FLAG-DadR(ADBD) 48 kDa, FLAG-DadR(ATM) 15 kDa, FLAG-
DadR(linker) 56 kDa. Asterisks indicate the detected signals for individual constructs. The unspecific signals close
to the expected location of FLAG-DadR(ADBD) prevented a steady readout of signals from FLAG-DadR(ADBD).
Experiments shown in panels a—d were performed once on randomly selected colonies. For the experiment shown
in panel e, the Western blots for the DadR(no tag) and Flag-DadR samples were performed twice with similar results,
and Western blots for the FLAG-DadR(ADBD), FLAG-DadR(ATM) and FLAG-DadR(linker) samples were
performed once. Source data are provided as a Source Data file.
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Supplementary Fig. 6] Confirmation of additional gene deletion mutants. a,b,d, PCR screening performed to
probe deletion of E. lenta DSM 2243 hcdR, cadR, and cgr1/cgr2. E. lenta DSM 2243 WT gDNA was used as control
template. For cadR deletion, crRNA plasmid (P) was also used as control template. Two sets of primers were used
for confirming each gene deletion. Left: two primers are flanking the deletion region; Right: one primer was located
within the deleted region and one primer was located outside of the deletion region. The lower faint bands may be
PCR amplification artifacts. ¢, LC-MS/MS to quantify the production of hydrocaffeic acid dehydroxylation metabolite
m-HPPA and (+)-catechin dehydroxylation product after incubation with corresponding E. lenta cultures for 48 h.
Data represented as mean + SD with n = 3 biological replicates. Experiments shown in panels a, b and d were
performed once on randomly selected colonies. Source data are provided as a Source Data file.
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Supplementary Fig. 7| E. lenta 10-12-TM LuxRs share significant homology within the C-terminal DNA-
binding domain and are co-localized with molybdenum- and flavin-dependent enzymes. a, Sequence
alignment was performed for the 74 TM LuxR regulators in E. lenta DSM 2243 that are predicted to possess 10, 11
or 12 N-terminal transmembrane helices, using MUSCLE 3.8.425 in Geneious Prime 2021.2.2. The sequence logo
highlights the consensus residues within the C-terminal DNA-binding domain. b, 19 of the E. lenta TM LuxRs (blue)

are encoded close to molybdenum-dependent enzymes (red). ¢, 50 of the E. lenta TM LuxRs (blue) are encoded
in proximity to flavin-dependent enzymes (red).
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Supplementary Fig. 8] Experiments related to Figure 8. a, Circos plot showing Flye assembly (blue) of the Acgr
genome aligned to the reference E. lenta DSM 2243 genome GCF_000024265.1_ASM2426v1 (figure generated
with mummer2circos). b—d, Germ-free C57BL/6J male mice ages 6-8 weeks were separated into groups and
gavaged with WT (n=4) and Acgr (n=8) E. lenta. Bacteria were allowed to colonize for 2 weeks before the lamina
propria was harvested. b, Representative fluorescence histograms of colonic IL-17a levels. ¢, Percentage of ileal
IL-17a* CD4* cells within the live CD3" gate. d, Total numbers of ileal IL-17a* CD4* cells within the live CD3* gate.
e, Mean fluorescence intensity of ileal IL-17a. f, Gating strategy for flow cytometry of Th17 cells. All p-values are
displayed and were calculated with one-way ANOVA tests with Tukey’s multiple correction or Welch’s t tests for
two-way comparisons. Data represented as mean + SD for ¢, d, and e. Panels b—e show representative data from
the first of two independent experiments. Source data are provided as a Source Data file.
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Supplementary Table 1| Whole genome sequencing for the Acgr strain in comparison with other reported

genomes of E. lenta DSM 2243.

Gene annotations are based on NCBI/Prodigal for the reference genome, and prokka v1.13.3 for DSM 2243 (UCSF)

and Acgr.
Genome name Eggerthella lenta Eggerthella lenta Eggerthella lenta
DSM 2243 DSM 2243 (UCSF) DSM 2243 Acgr
Source/reporting NCBI RefSeq .
study GCF_000024265.1 | (Bisanz et al. 2020)° This study
Genome size (bp) 3632260 3596824 3641600
Number of contigs 1 69 1
N50 3632260 130831 3641600
Coverage 10.2x Sanger; 25.3x 1210 4x llumina 107.1x Oxfprd
pyrosequence Nanopore Minlon
Number of protein-
coding genes 3062 3091 3151
Number of tRNA 49 52 52
genes
Number of rRNA 9 3 9
genes
GC content 64.20% 64.19% 64.19%
Completeness 100% 100% 98.80%
Contamination 0% 0% 0%
SNPs vs DSM 2243 N/A o4 120
reference
Indels vs DSM 2243 N/A 17 106
reference
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