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1 Structure of supplementary note

In this supplementary note, we report a substantial amount of technical material that supports
the claims we make in the main text. This includes detailed motivation for, solutions to, and
mathematical analysis of the Γ-OU and CIR transcription rate models. It is organized as follows.

• Section 2: We describe our mathematical approach and list our major results for ease of
reference. Many of these results are described in the main text, but they are described in
more technical detail here (e.g. instead of describing a distribution as negative binomial-like,
we report the precise formula).

• Section 3: We motivate both models, and describe how to solve them in exhaustive mathe-
matical detail. We solve the Γ-OU model by using the Poisson representation to map it to a
previously-solved model, and the CIR model using a physics-inspired path integral method.

• Section 4: We derive distribution properties (low order moments and autocorrelation func-
tions) for both models. Because these features are identical for both models, the same deriva-
tion yields results for both.

• Section 5: We derive the four limiting cases discussed in the main text, and study one
particularly tricky limit (the high gain limit of the CIR model) in additional mathematical
detail using tools from the study of stochastic processes.

• Section 6: We explain how to efficiently simulate both models and show that our theoretical
results and simulations match in several supplementary figures.

• Section 7: We make an important point about parameter identifiability, relevant for fitting
steady-state data.

• Section 8: We outline our approach for searching for potential model differences in single-cell
RNA sequencing data.

• Section 9: We discuss extensions of the solutions discussed here to more complex systems.

• Section 10: We visually compare analytical solutions, simulations, and raw data, and report
several secondary results obtained from benchmarking the inference procedure.

For ease of reference throughout the following sections, we summarize the two models’ SDEs and
biophysical interpretations in Supplementary Table 1. For brevity, all references to numbered
sections and equations refer to entries in the current Supplementary Note.
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Supplementary Table 1: Transcriptional model definitions

Model Transcription rate SDE Noise term Associated biology

Γ-OU K̇(t) = −κK(t) + ϵ(t)

ϵ(t): Dirac delta pro-
cess with arrival frequency
a and exponentially dis-
tributed weights with ex-
pectation θ

Mechanical frustration
and recovery

CIR K̇ = aθ − κK +
√
2κθK ξ(t) ξ(t): Gaussian white noise Regulator dynamics

The SDEs characterizing the transcription rate dynamics of the Γ-OU and CIR models. Both SDEs
are interpreted in the Itô sense.
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2 Mathematical approach and results at a glance

In this section, we describe our approach and list all of our major mathematical results.

2.1 Summary of mathematical calculations and approach

The models in our model class keep track of three things: nascent transcripts N (whose number
we denote by XN ∈ N0), mature transcriptsM (whose number we denote by XM ∈ N0), and the
transcription rate K(t) = Kt ∈ (0,∞). Each of these evolves in time according to a stochastic
process.

In some sense, obtaining a full mathematical understanding of the stochastic dynamics of these
systems reduces to exactly computing the probability density P (xN , xM ,K, t), which quantifies the
probability that the system is in the state (XN = xn, XM = xM ,Kt = K) at some time t (given
some initial condition P0(xN , xM ,K, 0)).

In the case of the constitutive model (where K is constant), the equation characterizing the
time evolution of the probability density is

∂P (xN , xM , t)

∂t
= K [P (xN − 1, xM , t)− P (xN , xM , t)]

+ β [(xN + 1)P (xN + 1, xM − 1, t)− xNP (xN , xM , t)]
+ γ [(xM + 1)P (xN , xM + 1, t)− xMP (xN , xM , t)] .

(1)

For these more complex models, the time evolution of P (xN , xM ,K, t) is also completely charac-
terized by a master equation (see Section 3). For the Γ-OU model, it is

∂P (xN , xM ,K, t)

∂t
= K [P (xN − 1, xM ,K, t)− P (xN , xM ,K, t)]

+ β [(xN + 1)P (xN + 1, xM − 1,K, t)− xNP (xN , xM ,K, t)]
+ γ [(xM + 1)P (xN , xM + 1,K, t)− xMP (xN , xM ,K, t)]

− ∂

∂K
[(−κK)P (xN , xM ,K, t)] + a

∞∑
n=1

(−θ)n ∂n

∂Kn
[P (xN , xM ,K, t)] .

For the CIR model, this equation is

∂P (xN , xM ,K, t)

∂t
= K [P (xN − 1, xM ,K, t)− P (xN , xM ,K, t)]

+ β [(xN + 1)P (xN + 1, xM − 1,K, t)− xNP (xN , xM ,K, t)]
+ γ [(xM + 1)P (xN , xM + 1,K, t)− xMP (xN , xM ,K, t)]

− ∂

∂K
[(aθ − κK)P (xN , xM ,K, t)] + κθ

∂2

∂K2
[KP (xN , xM ,K, t)] .

Our task is essentially to solve these two equations—or, at least, to understand their behavior well
enough to extract experimentally relevant properties and summaries. We restrict our analysis to
long-time/steady-state probability distributions, which describe ‘natural’ equilibria independent of
the system’s initial condition:

Pss(xN , xM ,K) := lim
t→∞

P (xN , xM ,K, t).
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As suggested by Supplementary Fig. 1, the transcriptional systems approach these equilibria ex-
ponentially fast. Because the transcription rate is usually not directly observable, we are also
primarily interested in distributions marginalized over K, i.e.

Pss(xN , xM ) :=

∫ ∞

0
dK Pss(xN , xM ,K).

Aside from the steady-state distributions marginalized overK, we are also interested in steady-state
first- and second-order moments (e.g. means and variances), which offer a partial look at how tran-
scription rate details can affect the scale and dispersion of count distributions, and autocorrelation
functions, which quantify these systems’ approach to equilibrium.

To compute these quantities, we use a variety of tricks from theoretical physics and the mathe-
matics of stochastic processes. For example, we solve the Γ-OU model by identifying a mathematical
correspondence between it and the well-known bursting model of transcription; we solve the CIR
model by computing P (xN , xM ,K, t) using a state-space path integral representation [1, 2].

A central idea in all of our calculations is to consider the discrete Fourier transform of the
probability density, the so-called probability generating function (PGF), instead of the probability
density itself. In general, it is defined as

ψ(gN , gM , h, t) :=
∞∑

xN=0

∞∑
xM=0

∫ ∞

0
dK gxNN gxMM eihK P (xN , xM ,K, t)

with gN , gM ∈ C both on the complex unit circle and h ∈ R. As with the probability density, it is
helpful to consider variants marginalized over the transcription rate and/or with the t → ∞ limit
taken. We are mainly interested in ψss(gN , gM ), the PGF of Pss(xN , xM ).

The generating function ψ satisfies a somewhat simpler equation than P (xN , xM ,K, t), and
can be exploited to compute moments and autocorrelation functions. Moreover, there is no loss of
information in considering the generating function, because one can straightforwardly recover the
probability density from it via an inverse Fourier transform:

P (xN , xM ,K, t) =

∫ ∞

−∞

dh

2π

∮
dgNdgM
(2πi)2

1

gxN+1
N gxM+1

M

e−ihKψ(gN , gM , h, t).

Numerically, this step can be efficiently performed using the inverse fast Fourier transform [3, 4].
For technical reasons, we will also consider the so-called factorial-cumulant generating function ϕ,
defined via

ϕ(uN , uM , h, t) := logψ(gN , gM , h, t)

whose RNA-related arguments are written as uN := gN − 1 and uM := gM − 1. The steady-state
version of this marginalized over transcription rate, i.e. ϕss(uN , uM ) := logψss(gN , gM ), is what
we will use to report our answers for the steady-state distributions of the Γ-OU and CIR models.

7



2.2 Notation

A guide to important notation is presented in Supplementary Table 2. Below, we describe our
notation for common probability distributions.

Supplementary Table 2: Probability objects

Symbol Meaning

K(t),Kt Stochastic and time-varying transcription rate ∈ (0,∞)
⟨K⟩ Mean transcription rate at steady state, ⟨K⟩ = (aθ)/κ = α/κ

XN ∈ N0 Nascent RNA copy number
XM ∈ N0 Mature RNA copy number

P (xN , xM ,K, t) Density of state (xN , xM ,K) ∈ N0 × N0 × (0,∞) at time t
Pss(xN , xM ,K) Steady-state density of state (xN , xM ,K) ∈ N0 × N0 × (0,∞)
Pss(xN , xM ) Steady-state probability of observing (xN , xM ) RNA counts
ψ(gN , gM , h, t) Generating function of P (xN , xM ,K, t) (see Supp. Eq. 2.1)
ψss(gN , gM , h) Steady-state generating function of Pss(xN , xM ,K)
ψss(gN , gM ) Steady-state generating function of Pss(xN , xM )
ϕ(uN , uM , h, t) Factorial-cumulant generating function logψ(uN + 1, uM + 1, h, t)
ϕss(uN , uM , h) Factorial-cumulant generating function (t→∞), logψss(uN + 1, uM + 1, h)
ϕss(uN , uM ) Factorial-cumulant generating function (t→∞, h = 0), logψss(uN + 1, uM + 1)

µN Mean nascent RNA count at steady state
µM Mean mature RNA count at steady state
σ2N Variance of nascent RNA count at steady state
σ2M Variance of mature RNA count at steady state

Cov(XN , XM ) Covariance of nascent and mature RNA counts at steady state
Cov(XN ,K) Covariance of nascent RNA count and transcription rate at steady state
Cov(XM ,K) Covariance of mature RNA count and transcription rate at steady state

RN (τ) Autocorrelation of N (normalized by its variance) at lag time τ
RM (τ) Autocorrelation ofM (normalized by its variance) at lag time τ

Probability distributions, generating functions, and moments of interest.

• The Poisson distribution is defined as follows: if X ∼ Poisson(λ), P (X = k;λ) = 1
k!λ

ke−λ,
where k ∈ N0 and λ > 0.

• The geometric distribution is defined as follows: if X ∼ Geom(p), P (X = k; p) = (1 − p)kp,
where k ∈ N0 and p ∈ (0, 1]. The geometric distribution is well-known to arise in the short-
burst limit of the two-state transcription model [5].

• The negative binomial distribution is defined as follows: if X ∼ NegBin(r, p), P (X =

k; r, p) = Γ(r+k)
k!Γ(r) (1 − p)rpk, where k ∈ N0, p ∈ [0, 1], and r > 0. We note that MATLAB

and the NumPy library take the opposite convention, with a p̃ parameter defined as 1− p.

• The exponential distribution is defined in two alternative ways: if X ∼ Exp(η), f(x; η) =
ηe−ηx, where x, η > 0. This is the rate parametrization. Conversely, MATLAB and the
NumPy library take the opposite scale parametrization, with parameter θ = η−1.
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• The gamma distribution is defined in two alternative ways: if X ∼ Gamma(α, η), f(x;α, η) =
ηα

Γ(α)x
α−1e−ηx, where x, α, η > 0. This is the shape/rate parametrization. Conversely, the

MATLAB and the NumPy library take the opposite shape/scale parametrization with pa-
rameter θ = η−1. In the literature, the rate η is usually given the variable name ‘β’; however,
we use the current convention to preclude confusion with the splicing rate parameter. Exp(η)
is equivalent to Gamma(1, η).

• The normal distribution N(µ, σ2) has probability density f(x;µ, σ2) = (2πσ2)−1/2 exp
(
−

1
2σ2 (x− µ)2

)
.

• The continuous uniform distribution U(a, b), used in simulation, has density f(x; a, b) =
(b− a)−1 on [a, b] and 0 elsewhere.

• The inverse Gaussian distribution IG(A,B) arises in the high gain limit of the CIR model and
has probability density f(x;A,B) = A√

2π
eABx−3/2 exp

(
−1

2(A
2x−1 +B2x)

)
, where x,A,B >

0.

2.3 Steady-state probability distribution solutions

Here, we again present the steady-state solutions to the Γ-OU and CIR models for ease of reference.
A complete treatment of each problem can be found in Section 3.

2.3.1 Gamma Ornstein–Uhlenbeck model

By using the Poisson representation to map the Γ-OU model to a multi-step splicing process whose
transcription occurs in geometric bursts (see Section 3.2), we find

ϕss(uN , uM ) = ⟨K⟩
∫ ∞

0

U0(s;uN , uM )

1− θ
κU0(s;uN , uM )

ds, (2)

where U0(s;uN , uM ) is the exponential sum solution of the following ODE system:

dU2

ds
= −γU2 U2(0) = uM

dU1

ds
= β(U2 − U1) U1(0) = uN

dU0

ds
= κ(U1 − U0) U0(0) = 0.

(3)

This system of linear first-order ODEs can be straightforwardly solved to find that

U0 = A0e
−κs +A1e

−βs +A2e
−γs (4)

with

A2 = uM
β

β − γ
κ

κ− γ

A1 =
κ

κ− β

(
uN − uM

β

β − γ

)
A0 = −

κ

κ− β

(
uN − uM

β

β − γ

)
− uM

β

β − γ
κ

κ− γ .
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2.3.2 Cox–Ingersoll–Ross model

Using our state space path integral approach (see Section 3.3 and [2]), we find that

ϕss(uN , uM ) = ⟨K⟩
∫ ∞

0
U0(s;uN , uM ) ds (5)

where U0(s;uN , uM ) is the solution to

dU2

ds
= −γ U2 U2(0) = uM

dU1

ds
= β (U2 − U1) U1(0) = uN

dU0

ds
= κ(U1 − U0) + θ U2

0 U0(0) = 0.

(6)

Equivalently, we have that

dU0

ds
= −κ U0 + θ U2

0 + κ

[(
uN −

β

β − γ uM
)
e−βs +

β

β − γ uMe
−γs
]
,

a form we will find more convenient in Section 5.

2.4 Distribution properties

Several salient observables of the two transcription rate models are identical. These include low
order moments, autocorrelation functions, and certain limiting cases of the steady-state probability
distribution. In this subsection, we report low order moments and autocorrelation functions. They
are derived in Section 4.

2.4.1 Moments

The full derivation of our moment results is provided in Section 4. In brief, the moments can
be computed by taking partial derivatives of the PGF and evaluating them at gN = gM = 1 (or
equivalently but more usefully, taking derivatives of ϕss and evaluating them at uN = uM = 0).
For example:

µN =

∞∑
xN=0

∞∑
xM=0

xNPss(xN , xM ) =
∂ψss(gN , gM )

∂gN

∣∣∣∣
gN=gM=1

.

Our results are reported in Supplementary Table 3, along with side-by-side comparisons to moment
results for the Poisson/constitutive model, the negative binomial model, and the bursty model of
RNA production. The Γ-OU and CIR models, whose first and second order moments all match,
apparently generalize the moment results from those more näıve models.

2.4.2 Decomposition of intrinsic and extrinsic noise sources

These results allow us to revisit well-known noise source decompositions from the stochastic gene
expression literature [6–8], which describe how intrinsic and extrinsic noise sources contribute to
overall cell-to-cell variation in RNA copy numbers. For models in our model class (including the
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Supplementary Table 3: Model moments

Moment Γ-OU and CIR Poisson model NB model Bursty model

µN ⟨K⟩/β ⟨K⟩/β ⟨K⟩/β ⟨K⟩/β
µM ⟨K⟩/γ ⟨K⟩/γ ⟨K⟩/γ ⟨K⟩/γ

σ2
N − µN (µNθ)/(κ+ β) 0 (µNθ)/β (µNθ)/κ

σ2
M − µM

µMβθ(κ+β+γ)
(κ+β)(κ+γ)(β+γ) 0 (µMθ)/γ µMθ

κ
β

β+γ

Cov(XN , XM) ⟨K⟩θ(κ+β+γ)
(κ+β)(κ+γ)(β+γ) 0 ⟨K⟩θ

βγ
⟨K⟩θ
κ(β+γ)

Moments of the Γ-OU and CIR models (Γ-OU and CIR), the constitutive/Poisson model (Poisson
model), and the negative binomial/Poisson-Gamma mixture model (NB model). Note that the
Γ-OU and CIR results match the Poisson results in the κ→∞ limit and θ → 0 limit; they match
the negative binomial results in the κ→ 0 limit.

Γ-OU and CIR models), intrinsic noise is due to randomness associated with the timing of transcrip-
tion, splicing, and degradation; meanwhile, extrinsic noise is due to variation in the transcription
rate K(t).

Define the squared coefficient of variation, η2 := σ2/µ2. For both models, we have

η2N =
1

µN
+

θ

⟨K⟩
1/κ

1/κ+ 1/β
= ς2N,int + ς2N,ext

η2M =
1

µM
+

θ

⟨K⟩
1/κ

1/κ+ 1/β

1/κ

1/κ+ 1/γ

1/κ+ 1/(β + γ)

1/κ
= ς2M,int + ς2M,ext

which exactly matches previously derived results [6], as long as the average environmental signal
is appropriately normalized by its scale θ to provide a non-dimensional η2. As expected, the
contribution of intrinsic noise goes like the inverse of the mean for both the nascent and mature
species. The extrinsic noise contribution is more complicated, depending on the relative time scales
of transcription rate dynamics (1/κ) and splicing/degradation (1/β and 1/γ).

Our results are more complicated, but consistent with previous ideas about the separability of
intrinsic and extrinsic noise sources. As one might expect, the contribution of extrinsic noise to
each coefficient of variation vanishes when transcription rate fluctuations become negligible (for
example, when the rate of mean-reversion κ is very fast, or when the gain θ is very small).

Interestingly enough, in spite of substantial differences in the details of the model, the combina-
torial form of the extrinsic noise result matches the form of a result previously derived for a two-state
model of transcription [7], with ℓ ← κ aggregating the gene locus timescales and n ← ⟨K⟩/θ de-
scribing the gene copy number or promoter strength. However, in the current model, the extrinsic
noise contribution is positive rather than negative, because there is no constraint on the promoter
strength.

The above noise decompositions can be used to describe how much of the overall noise is intrinsic
or extrinsic. In particular, one can define an ‘extrinsic noise fraction’ for both nascent and mature
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counts via

(extrinsic fraction)N :=
η2N − 1

µN

η2N
=

θ

θ + κ+ β

(extrinsic fraction)M :=
η2M − 1

µM

η2M
=

θ(κ+ β + γ)β

θ(κ+ β + γ)β + (β + γ)(κ+ β)(κ+ γ)
.

As one might expect, these fractions increase as the gain θ is increased. The behavior of the nascent
extrinsic noise fraction as various parameters are modulated is depicted in Supplementary Fig. 5.

2.4.3 Autocorrelation functions

We define the normalized autocorrelation function of a stationary process Xt with mean µ and
variance σ2 as follows:

R(τ) := lim
t→∞

1

σ2
E[(Xt − µ)(Xt+τ − µ)]

where the expectation here is taken over all possible stochastic trajectories. We can also define
autocorrelation functions in terms of transition probabilities (see Section 4.3 for the details, and
for a full derivation of autocorrelation results). To actually compute autocorrelation functions, we
defined a special generating function relating the system’s behavior at times t and t+ τ and took
partial derivatives.

The autocorrelation of the nascent species takes the following functional form:

RN (τ) = e−βτ +
Cov(xN ,K)

σ2N

(e−κτ − e−βτ )
β − κ

= e−βτ +
θβ

β + κ+ θ

(e−κτ − e−βτ )
β − κ .

The autocorrelation function of the mature species, found using the same method, is:

RM (τ) = e−γτ + β
Cov(XN , XM )

σ2M

[
e−βτ − e−γτ

]
γ − β

+ β
Cov(XM ,K)

σ2M

[
e−βτ

(β − γ)(β − κ) +
e−γτ

(γ − β)(γ − κ) +
e−κτ

(κ− β)(κ− γ)

]
= e−γτ +

θγ(β + γ + κ)

θβ(β + γ + κ) + (β + κ)(γ + κ)(β + γ)
β

[
e−βτ − e−γτ

]
γ − β

+
θβγ(β + γ)

θβ(β + γ + κ) + (β + κ)(γ + κ)(β + γ)
β

×
[

e−βτ

(β − γ)(β − κ) +
e−γτ

(γ − β)(γ − κ) +
e−κτ

(κ− β)(κ− γ)

]
.

In the limit of very fast κ, each term but the first vanishes in both RN (τ) and RM (τ), so that we
recover the autocorrelation functions of the constitutive model. In the limit of very fast splicing
(β →∞), RM (τ) matches the RN (τ) result with γ in place of β—i.e., the system effectively behaves
as if there is only one kind of RNA species.
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2.5 Limiting cases

In this subsection, we present the quantitative formulas associated with the four limits described
in the main text. These limits are derived in Section 5, summarized in Supplementary Table 4, and
depicted schematically in Figure 2.

Supplementary Table 4: Limiting regimes

Limit Parameter conditions Held fixed Nascent Mature

Fast reversion κ→∞, a→∞ α := a/κ Poisson Poisson

Slow reversion κ→ 0, a→ 0 α := a/κ NB NB

Low gain θ → 0, κ→ 0 b := θ/κ Poisson Poisson

High gain θ →∞, κ→∞ b := θ/κ NB (Γ-OU) see text (Γ-OU)
see text (CIR) see text (CIR)

Four interesting limiting regimes for both models. In each regime, two parameters are both taken
to either infinity or zero, with their ratio held fixed to avoid degeneration. For the fast and slow
reversion limits, the shape parameter α := a/κ is held fixed. For the low and high gain limits,
the burst size b := θ/κ is held fixed. The last two columns (‘Nascent’ and ‘Mature’) indicate
the steady-state marginal distributions of nascent and mature counts in each limit. NB: negative
binomial. Limiting distributions match for the Γ-OU and CIR models except in the high gain limit.

2.5.1 Fast mean-reversion limit (κ→∞, a→∞, a/κ fixed)

In the fast mean-reversion limit (κ→∞ and a→∞ with α := α/κ held constant), the transcription
rate dynamics are much more rapid than mRNA processing, so we expect the effect of the trajectory
shape to vanish.

By computing the exact solution, we find that the effect is even more severe and everything
but the location of the transcription rate distribution ceases to matter: the limit is equivalent to
a constitutive-like mean-field treatment. Quantitatively, we recover uncorrelated bivariate Poisson
distributions for both models:

ϕss(uN , uM ) =
⟨K⟩
β
uN +

⟨K⟩
γ
uM

Pss(xN , xM ) =

(
K
β

)xN
e−K/β

xN !

(
K
γ

)xM
e−K/γ

xM !
.

2.5.2 Slow mean-reversion limit (κ→ 0, a→ 0, a/κ fixed)

In the slow mean-reversion limit (κ → 0 and a → 0 with α := α/κ held constant), κ is so small
that the transcription rates of each cell in a population do not change much on experimental time
scales; for this reason, we expect the system to behave as if each cell’s transcription rate is ‘frozen’ in
time, with the distribution of these transcription rates corresponding to the long-time distribution
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of K(t) (i.e., a gamma distribution). This suggests we should recover the Poisson-gamma mixture
model, which turns out to be true for both models:

ϕss(uN , uM ) = −α log

[
1− θ

(
uN
β

+
uM
γ

)]

Pss(xN , xM ) =

∫ ∞

0
dK

Kα−1 e−K/θ

θα Γ(α)

(
K
β

)xN
e−K/β

xN !

(
K
γ

)xM
e−K/γ

xM !

Pss(xN ) =

(
xN + α− 1

xN

)(
β

θ + β

)α( θ

θ + β

)xN
Pss(xM ) =

(
xM + α− 1

xM

)(
γ

θ + γ

)α( θ

θ + γ

)xM
.

(7)

We remind the reader that the marginal distributions Pss(xN ) and Pss(xM ) are both negative
binomial for this mixture model.

2.5.3 Low gain limit (θ → 0, κ→ 0, θ/κ fixed)

In the low gain limit (θ → 0 and κ → 0 with b := θ/κ held constant), the gain θ is so small that
fluctuations in the underlying biology (the DNA’s relaxation state in the case of Γ-OU, and the
concentration of regulator molecules in the case of CIR) hardly impact the transcription rate K(t),
leaving it effectively constant; as in the fast mean-reversion limit, we expect to recover constitutive
model-like behavior. Once again, we indeed obtain Poisson distributions in this limit for both
models:

ϕss(uN , uM ) =
⟨K⟩
β
uN +

⟨K⟩
γ
uM

Pss(xN , xM ) =

(
K
β

)xN
e−K/β

xN !

(
K
γ

)xM
e−K/γ

xM !
.

2.5.4 High gain limit (θ →∞, κ→∞, θ/κ fixed)

The high gain limit (θ →∞ and κ→∞ with b := θ/κ held constant), in which the gain θ is so high
that fluctuations in the underlying biology become greatly amplified, is somewhat more interesting
and subtle than the others. This is the only limiting regime in which the predictions of the Γ-OU
and CIR models markedly differ, and the only regime in which the mathematics associated with
taking the limit becomes substantially more demanding. One obvious reason for this is that the
transcription rate dynamics become somewhat singular: for example, the steady-state transcription
rate variance σ2K = ⟨K⟩θ (see Section 4.2) becomes infinite.

In this limit, the Γ-OU model precisely recapitulates the well-known bursting model of tran-
scription, which has RNA produced in geometrically-distributed bursts. According to earlier work,
the solution to this system is [3]:

ϕss(uN , uM ) = a

∫ ∞

0

b

[(
uN − uM β

β−γ

)
e−βs + β

β−γuMe
−γs
]

1− b
[(
uN − uM β

β−γ

)
e−βs + β

β−γuMe
−γs
]ds. (8)
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While there is no nice way to simplify the mature marginal Pss(xM ), the nascent marginal Pss(xN )
is negative binomial:

ϕss(uN ) = −
a

β
log [1− buN ]

Pss(xN ) =

(
xN + a/β − 1

xN

)(
κ

θ + κ

)α( θ

θ + κ

)xN
.

Note that this is a different negative binomial distribution than the one that arises in the slow
mean-reversion limit. Interestingly, though, this distribution is identical to that one except that β
and κ are swapped.

The behavior of the CIR model in this limit is considerably more complicated, and the corre-
sponding count distribution does not seem to belong to any well-characterized parametric family.
Still, it is clear that the behavior of the CIR model diverges from that of the Γ-OU model in this
regime. Our result is that

ϕss(uN , uM ) =
a

2

∫ ∞

0
1−

√
1− 4b

[(
uN −

β

β − γ uM
)
e−βs +

β

β − γ uMe
−γs
]
ds. (9)

Once again, while there does not appear to be a simple expression for ϕss(uM ), we can write

ϕss(uN ) =
a

2

∫ ∞

0
1−

√
1− 4buNe−βsds

=
a

β

(
1−

√
1− 4buN

)
+
a

β
log

(
1 +
√
1− 4buN
2

)
for the factorial-cumulant generating function of the nascent marginal. Generally, this expression
appears to represent a heavy-tailed and overdispersed nascent count distribution, with the burst size
b controlling the dispersion. In the small-burst limit (b → 0), we have that ϕss(uN ) → (ab/β)uN ,
i.e. this complicated-looking expression approaches the Poisson result. The first term of ϕss(uN )
appears to be related to the moment-generating function of an inverse Gaussian distribution.
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3 Derivations of steady-state probability distributions

3.1 Approach

In this section, we present detailed derivations of steady-state model behavior (steady-state prob-
ability distributions, first order moments, second order moments, and autocorrelation functions)
for both the Γ-OU and CIR models. Throughout, we also discuss how these derivations can be
generalized to treat more complicated problems: particularly the generalization of our one step
splicing model to multiple steps.

The Γ-OU and CIR models are complicated hybrid models, with interacting discrete (RNA
counts) and continuous (transcription rate) degrees of freedom. There are no standard methods
for tackling these problems; part of our contribution is the development of flexible theoretical
tools for exactly computing properties of models like these. Because our calculations exhibit some
complexity, we go through them in detail, so that the reader can use them as a guide to computing
properties of complex stochastic models more generally.

In solving these models, we touch upon the following topics:

1. Construction of hybrid discrete-continuous master equations. How does one appro-
priately define the dynamics of transcription models involving coupled discrete and continuous
degrees of freedom? One way to do this straightforwardly and consistently is via the theoret-
ical framework associated with master equations.

2. Equivalence between the CME and its Poisson representation. Statements about
CMEs are statements about SDEs and vice versa. We exploit this relation to solve the
Γ-OU-driven CME through a related fully discrete system.

3. Equivalence and versatility of solution procedures. A given system can be solved using
distinct but equivalent methods, e.g. the method of characteristics and path-integral-based
approaches. The path integral approach is particularly versatile, because it can easily account
for coupling qualitatively different kinds of dynamics (e.g. discrete and continuous stochastic
processes).

4. Efficient moment computation methods. Low-order moments can be computed in a
variety of ways, by defining closed systems of equations for them using the models’ CMEs or
by direct differentiation of the generating functions.

5. Determination of limiting behaviors. Our models’ steady-state distributions reduce to
particularly simple forms in certain limiting regimes. We show how these limiting distributions
can be straightforwardly computed using our exact results.

3.2 Gamma Ornstein–Uhlenbeck model solution derivation

In this subsection, we motivate and solve the Γ-OU model. The distribution of the Γ-OU process
with downstream dynamics can be derived by reframing the gene driver as a source molecular
species with bursty production. Thus, the solution to Γ-OU coupled to an n-species isomerization
path graph is equivalent to the solution to the n+1-species path graph, under a particular parameter
scaling.
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As described previously in [9], the factorial-cumulant generating function of such a system is
given by ϕss = a

∫∞
0

bU0
1−bU0

ds, where U0 := U0(s;u0, uN , uM ) describes the downstream dynamics.
The functional form of U0 is a sum of exponentials with weights that can be computed through a
recursive procedure. A simple application of quadrature to evaluate the integral above for u0 = 0,
and varied uN , uM , yields the generating function, which can be transformed to yield the full joint
probability mass function (PMF). Furthermore, the coefficients of the exponential sum can be
directly leveraged to find the moments and cross moments of the RNA distributions, as derived
below.

3.2.1 Physical foundations

Although the wide use of mass action-type models of transcription obscures the mechanical details
of the process, biomechanics can have important consequences for transcriptional dynamics. Each
nascent RNA produced by an RNA polymerase induces a small amount of mechanical stress in
DNA, making transcription slightly more difficult. This mechanical stress builds up with each
transcription event; if the stress is sufficiently high (i.e., if the DNA is excessively supercoiled),
transcription is mechanically frustrated, and more nascent RNA cannot be produced until this
stress is relieved. Topoisomerases arrive to relieve stress, creating a dynamic balance between
transcription-mediated frustration and topoisomerase-mediated recovery. This model has been
explored by Sevier, Kessler, and Levine [10,11], and shown to recapitulate gene bursting. However,
this detailed mechanical model requires the description of submolecular features and feedback
between regulatory and transcriptional events—features which make it difficult to work with in
practice.

We can simplify this model while retaining crucial qualitative aspects. Let the transcription
rate be proportional to the level of DNA relaxation, i.e. K(t) = θ · rel, where θ is a scaling
factor/‘gain’. We assume that DNA relaxation continuously decreases (as transcription happens
roughly continuously), and that topoisomerases randomly arrive to increase relaxation. In other
words, we will describe the dynamics of relaxation via the SDE

˙rel = −κ f(rel) + [ noise ],

where f is some functional dependence on the current level of relaxation, κ encodes its time scale,
and [ noise ] denotes the random topoisomerase-induced increases in relaxation.

We choose the following plausible model for these phenomena. The functional dependence is
simply given by f(rel) = rel, corresponding to linear frustration. In a small amount of time ∆t,
a number n ∼ Poisson(a∆t) of topoisomerases arrive to relieve stress, and the ith topoisomerase
increases relaxation by an amount ri ∼ Exp(1/⟨ε⟩). Thus, topoisomerase arrival is a Poisson
process, and the stress relief of individual topoisomerases is described by Poisson shot noise.

Mathematically, this means the noise comes from a specific kind of Lévy process: a compound
Poisson process with arrival frequency a and exponentially distributed jumps with expectation ⟨ε⟩.
We can write

˙rel = −κ rel + ε(t),

where ε(t) denotes the infinitesimal Lévy process. Now the production rate K(t) = θ · rel satisfies
the Itô-interpreted SDE

K̇(t) = −κK(t) + ε(t),
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where the exponentially distributed random variables ri that appear in the Lévy process now have
ri ∼ Exp(1/θ), i.e. the expected jump size is θ.

This is the gamma Ornstein–Uhlenbeck (Γ-OU) model of transcription [12]. To summarize, it
naturally emerges from a biomechanical model with two opposing effects: the continuous mechanical
frustration of DNA undergoing transcription, which is a first-order process with rate κ, and the
stochastic relaxation by topoisomerases that arrive at rate a. The scaling between the relaxation
rate and the transcription rate is set by the gain θ.

The mechanistic meaning of the gain θ bears further discussion. We may propose that the
regulation occurs strictly on the level of transcriptional initiation, and the level of relaxation controls
the rate of polymerase recruitment. Specifically, given a reservoir of RNA polymerase P, we can
define the following coarse reaction schema:

P kini−−→ P + T , (10)

where T is a transcript produced by the locus. Next, we propose that the initiation rate kini
is a function of the relaxation level rel, such that the state rel = 0 corresponds to kini = 0, or
the maximally occluded state is inaccessible to RNA polymerase. Next, we construct a Taylor
expansion about rel = 0:

kini = kini(rel = 0) + k′ini(rel = 0)× rel +O(rel2)
≈ k′ini(rel = 0)× rel.

To motivate this first-order expansion and focus on the linear regime near rel ≈ 0, we appeal
to a physical argument: a high level of DNA compaction appears to be typical of eukaryotic
cells; even ‘decondensed’ chromatin has considerable local associations [13]. Under this model,
θ = k′ini(rel = 0)× ⟨p⟩.

The Γ-OU model is perhaps better known in finance applications, where it has been used to
model the stochastic volatility of the prices of stocks and options, among other things [14–17]. Its
utility as a financial model is largely due to its ability to capture asset behavior that deviates from
that of commonly used Gaussian Ornstein–Uhlenbeck models, such as skewness and frequent price
jumps.

3.2.2 Master equation

Here, we derive the master equation for the Γ-OU model. This equation, which completely charac-
terizes the model’s behavior, controls how the discrete and continuous degrees of freedom interact.
To construct this equation, we first need to write down the equation that describes how the tran-
scription rate distribution evolves in time, and then combine it with the constitutive model’s master
equation (Eq. 1).

The equation describing how the transcription rate distribution evolves can be derived by con-
sidering what happens in a small time step ∆t. By the definition of the Γ-OU process, if the
transcription rate is K0 at time t, it is

K = K0 − κK0∆t+ r

at time t + ∆t, where r ∼ Gamma(shape = n, scale = θ), and n ∼ Poisson(a∆t). In other
words, the probabilities of getting different values of K come from the probabilities of drawing
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different values of the gamma-distributed random variable r. This means that the probability of
transitioning from a state K0 at time t to a state K at time t+∆t can be written

P (K, t+∆t;K0, t) =
∞∑
n=0

rn−1e−r/θ

θn (n− 1)!

(a∆t)ne−a∆t

n!

where r := K−K0+κ∆tK0, and where the Poisson random variable n has been marginalized over.
If we use the integral representation1

µxe−µ

x!
=

∫ ∞

−∞
dp

C

2π

e−iµCp

(1− iCp)x+1

where C is any nonzero real constant, we can rewrite this transition probability in a particularly
useful form. We have

P (K, t+∆t;K0, t) =
∞∑
n=0

1

θ

(r/θ)n−1 e−r/θ

(n− 1)!

(a∆t)ne−a∆t

n!

=

∫ ∞

−∞

dp

2π

∞∑
n=0

e−irp

(1− iθp)n
(a∆t)ne−a∆t

n!
.

Summing this, we get that

P (K, t+∆t;K0, t) =

∫ ∞

−∞

dp

2π
e−irp−a∆t

∞∑
n=0

(
a∆t

1− iθp

)n 1

n!

=

∫ ∞

−∞

dp

2π
exp

{
−irp− a∆t+ a∆t

1

1− iθp

}
=

∫ ∞

−∞

dp

2π
exp

{
−i(K −K0 + κ∆tK0)p+ a∆t

iθp

1− iθp

}
.

With this formula for the transition probability, deriving the master equation for the transcription
rate is straightforward. Let P (K, t) denote the probability density associated with the transcription
rate being K at time t. By the Chapman-Kolmogorov equation, we have

P (K, t+∆t) =

∫ ∞

0
dz P (K, t+∆t; z, t)P (z, t)

=

∫ ∞

0
dz

∫ ∞

−∞

dp

2π
exp

{
−i(K − z + κ∆tz)p+ a∆t

iθp

1− iθp

}
P (z, t)

≈
∫ ∞

0
dz

∫ ∞

−∞

dp

2π
eip(z−K)

{
1 + ∆t

[
(−κz)(ip) + a

iθp

1− iθp

]}
P (z, t)

where we have Taylor expanded the exponential to first order in the small time step ∆t. Hence, we
have that

∂P (K, t)

∂t
≈ P (K, t+∆t)− P (K, t)

∆t
≈
∫ ∞

0
dz

∫ ∞

−∞

dp

2π
eip(z−K)

[
(−κz)(ip) + a

iθp

1− iθp

]
P (z, t).

1See Gradshteyn and Ryzhik [18] (ET I 118(3), in section 3.382, on pg. 365).
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Note that, because factors of ip can be exchanged for derivatives with respect to z, we can write

∂P (K, t)

∂t
≈
∫ ∞

0
dz

∫ ∞

−∞

dp

2π
P (z, t)

[
(−κz)

(
∂

∂z

)
+ a

∞∑
n=1

θn
∂n

∂zn

]
eip(z−K).

If we integrate by parts, this becomes

∂P (K, t)

∂t
≈
∫ ∞

0
dz

∫ ∞

−∞

dp

2π

{
∂

∂z
[κzP (z, t)] + a

∞∑
n=1

(−θ)n∂
nP (z, t)

∂zn

}
eip(z−K)

=

∫ ∞

0
dz

{
∂

∂z
[κzP (z, t)] + a

∞∑
n=1

(−θ)n∂
nP (z, t)

∂zn

}
δ(z −K)

=
∂

∂K
[κKP (K, t)] + a

∞∑
n=1

(−θ)n∂
nP (K, t)

∂Kn
.

Taking ∆t→ 0, our approximations become exact, and we find

∂P (K, t)

∂t
=

∂

∂K
[κKP (K, t)] + a

∞∑
n=1

(−θ)n∂
nP (K, t)

∂Kn

= − ∂

∂K
[(aθ − κK)P (K, t)] + aθ2

∂2P (K, t)

∂K2
+ · · ·

which is the desired master equation for the transcription rate. Coupling this to the constitutive
model’s CME, we obtain

∂P (xN , xM ,K, t)

∂t
= K [P (xN − 1, xM ,K, t)− P (xN , xM ,K, t)]

+ β [(xN + 1)P (xN + 1, xM − 1,K, t)− xNP (xN , xM ,K, t)]
+ γ [(xM + 1)P (xN , xM + 1,K, t)− xMP (xN , xM ,K, t)]

− ∂

∂K
[(−κK)P (xN , xM ,K, t)] + a

∞∑
n=1

(−θ)n ∂n

∂Kn
[P (xN , xM ,K, t)]

(11)

as the master equation describing the whole Γ-OU model. Although we have derived it from first
principles to aid in solving more general classes of SDEs, in this case it is also straightforward to
use the Kramers-Moyal expansion [19] combined with a previously reported Γ-OU Fokker-Planck
equation [20] to derive the same expression.

As discussed in the main text, it is usually more convenient to work with the generating function.
Here, we define it via

ψ(gN , gM , s, t) =

∞∑
xN=0

∞∑
xM=0

∫ ∞

0
P (xN , xM ,K, t) g

xN
N gxMM esKdK (12)

instead of as in the main text. The only difference is the substitution ih → s, which makes the
equation describing ψ’s time evolution look slightly simpler, and formally reframes ψ as a joint
PGF/MGF.
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Define the shorthand P := P (xN , xM ,K, t). We can derive a PDE describing the time evolution
of ψ that is completely equivalent to the master equation satisfied by P by taking a time derivative
of both sides of Eq. 12, rearranging sums, and integrating by parts. Each term in the original
master equation corresponds to a term in the PDE satisfied by ψ.

For example, since ∫ ∞

0
KPesKdK =

∂

∂s

∫ ∞

0
PesKdK,

the term −KP gets mapped to a term −∂ψ/∂s. Since∫ ∞

0
− ∂P
∂K

esKdK = −[PesK ]∞0 +

∫ ∞

0
sPesKdK = s

∫ ∞

0
PesKdK ,

the term −aθ ∂P/∂K gets mapped to a term aθψ. Using these and similar results, we can write
down an equation describing the time evolution of ψ:

∂ψ

∂t
= (gN − 1)

∂ψ

∂s
+ β(gM − gN )

∂ψ

∂gN
+ γ(1− gM )

∂ψ

∂gM
− κs∂ψ

∂s
+ aψ

∞∑
n=1

θnsn.

This immediately also gives us an equation for the time evolution of the factorial-cumulant gener-
ating function ϕ := logψ:

∂ϕ

∂t
= (gN − 1)

∂ϕ

∂s
+ β(gM − gN )

∂ϕ

∂gN
+ γ(1− gM )

∂ϕ

∂gM
− κs∂ϕ

∂s
+ a

∞∑
n=1

θnsn.

The sum in the final term is easily recognizable as the Taylor expansion of θs
1−θs . This can be

written slightly more compactly in terms of the auxiliary variables uN := gN −1 and uM := gM −1,
in terms of which we have

∂ϕ

∂t
= uN

∂ϕ

∂s
+ β(uM − uN )

∂ϕ

∂uN
− γuM

∂ϕ

∂uM
− κs∂ϕ

∂s
+ a

∞∑
n=1

θnsn. (13)

3.2.3 Introduction to the Poisson representation

Characterizing the behavior of stochastic dynamics involving both discrete and continuous degrees
of freedom is challenging. It is reasonable to wonder if there is a way to map this problem to one
in which the degrees of freedom are either all discrete, or all continuous—in part, in the hope that
exploiting such a correspondence would help us solve the model.

Mapping all of the degrees of freedom to continuous variables is what we have done above by
choosing to work with the generating functions ψ and ϕ. Interestingly, we can also go the other
way, and map the transcription rate dynamics of the Γ-OU model to discrete stochastic dynamics.
The key idea is to exploit the Poisson representation [19,21] popularized by Gardiner, which can be
viewed as a way to map discrete stochastic problems to continuous stochastic ones, and vice versa.
In this section, we will introduce the Poisson representation; in the next section, we will apply it
to solving the Γ-OU model.
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Consider discrete stochastic dynamics characterized by a probability distribution P (x, t) with
x ∈ N. The idea behind the Poisson representation is to write

P (x, t) =

∫ ∞

0
dΛ

(Λ/C)x e−Λ/C

x!
Q(Λ, t)

where C is some positive real constant. Because P (x, t) is normalized, Q(Λ, t) is too:

1 =

∞∑
x=0

P (x, t) =

∫ ∞

0
dΛ

∞∑
x=0

(Λ/C)x e−Λ/C

x!
Q(Λ, t) =

∫ ∞

0
dΛ Q(Λ, t).

This allows us to interpret F (Λ, t) as a time-dependent probability density, so that the discrete
dynamics of x get mapped to the continuous dynamics of Λ.

One can even exchange the time evolution of P (x, t) for the time evolution of F (Λ, t). For
example, the one species constitutive model

∂P (x, t)

∂t
= K [P (x− 1, t)− P (x, t)] + β [(x+ 1)P (x+ 1, t)− xP (x, t)] (14)

gets mapped to the dynamics

∂Q(Λ, t)

∂t
= − ∂

∂Λ
[(CK − βΛ)Q(Λ, t)] . (15)

In terms of the operators â and â+ that act on a discrete-valued function according to

â f(x) := (x+ 1)f(x+ 1)

â+ f(x) := f(x− 1)− f(x),

Eq. 14 can be written
∂P (x, t)

∂t
=
[
Kâ+ − γâ+â

]
P (x, t).

In terms of the operators Λ̂ and p̂ that act on a continuous-valued function according to

Λ̂ g(Λ) :=
Λ

C
g(Λ)

p̂ g(Λ) := −C∂g(Λ)
∂Λ

,

Eq. 15 can be written
∂Q(Λ, t)

∂t
=
[
Kp̂− γp̂Λ̂

]
Q(Λ, t).

As this example suggests, the standard recipe for moving between the two formulations is as follows:

â↔ Λ̂

â+ ↔ p̂.

More generally, we can consider the Poisson representation of a distribution P (x0, x1, ..., xD) in-
volving D + 1 discrete variables:

P (x0, ..., xD, t) =

∫ ∞

0
dΛ0

(Λ0/C0)
x0 e−Λ0/C0

x0!
· · ·
∫ ∞

0
dΛD

(ΛD/CD)
xD e−ΛD/CD

xD!
Q(Λ0, ...,ΛD, t).
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We can also generalize the operators we considered above so that we have

âi f(..., xi, ...) := (xi + 1)f(..., xi + 1, ...)

â+i f(..., xi, ...) := f(..., xi − 1, ...)− f(..., xi, ...)

Λ̂i g(..., xi, ...) :=
Λi
Ci
g(...,Λi, ...)

p̂i g(...,Λi, ...) := −Ci
∂g(...,Λi, ...)

∂Λi
,

allowing us to write down the more general recipe

âi ↔ Λ̂i

â+i ↔ p̂i.
(16)

3.2.4 Correspondence between Γ-OU model and transcriptional bursting

Motivated by the above, we can imagine the K in P (xN , xM ,K, t) to be the Poisson representation
version of some discrete variable. For reasons that will become clear, relabel and reorder the
arguments so that xN → x1, xM → x2, and P (xN , xM ,K, t) → P (K,x1, x2, t). Quantitatively, we
can write

P̃ (x0, x1, x2) :=

∫ ∞

0
dK

(K/κ)x0e−K/κ

x0!
P (K,x1, x2, t)

where the discrete distribution P̃ is normalized on N3, and where we have chosen κ to be our
constant C. Note that P (K,x1, x2, t) satisfies the master equation (cf. Eq. 11)

∂P (K,x1, x2, t)

∂t
=

{
κK̂â+1 + β(â+2 − â+1 )â1 − γâ+2 â2 − κp̂KK̂ + a

∞∑
n=1

(
θ

κ

)n
(p̂K)n

}
P (K,x1, x2, t)

where we have used K̂ and p̂K in place of Λ̂0 and p̂0. According to our previously described recipe
(Eq. 16), P̃ (x0, x1, x2, t) satisfies the master equation

∂P̃ (x0, x1, x2, t)

∂t
=

{
κâ0â

+
1 + β(â+2 − â+1 )â1 − γâ+2 â2 − κâ+0 â0 + a

∞∑
n=1

(
θ

κ

)n (
â+0
)n}

P̃ (x0, x1, x2, t)

=

{
a

∞∑
n=1

(
θ

κ

)n (
â+0
)n

+ κ(â+1 − â+0 )â0 + β(â+2 − â+1 )â1 − γâ+2 â2
}
P̃ (x0, x1, x2, t).

One can do some algebra to write this out explicitly (i.e. not in terms of operators) and find

∂P̃ (x0, x1, x2, t)

∂t
= a

[
x0∑
z=0

1

1 + θ
κ

(
θ
κ

1 + θ
κ

)z
P̃ (x0 − z, x1, x2, t)− P̃ (x0, x1, x2, t)

]
+ κ

[
(x0 + 1)P̃ (x0 + 1, x1 − 1, x2, t)− x0P̃ (x0, x1, x2, t)

]
+ β

[
(x1 + 1)P̃ (x0, x1 + 1, x2 − 1, t)− x1P̃ (x0, x1, x2, t)

]
+ γ

[
(x2 + 1)P̃ (x0, x1, x2 + 1, t)− x2P̃ (x0, x1, x2, t)

]
.
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This CME represents transcription that occurs in geometrically distributed bursts (with mean burst
size b := θ/κ), plus two downstream splicing steps (with rates κ and β) and the degradation of
mature RNA (with rate γ). It has been studied before, first by Singh and Bokes [3] and then in a
more general context by Gorin and Pachter [9].

Borrowing from previous work, we can immediately write down that the steady-state generating
function ψ̃ss associated with the distribution P̃ , defined via

ψ̃ss(g0, g1, g2, t) := lim
t→∞

∑
x0,x1,x2

gx00 g
x1
1 g

x2
2 P̃ (x0, x1, x2, t) =

∑
x0,x1,x2

gx00 g
x1
1 g

x2
2 P̃ss(x0, x1, x2)

is

ψ̃ss(g0, g1, g2) = exp

{
a

∫ ∞

0

θ
κU0(s)

1− θ
κU0(s)

ds

}
where U0(s) is the solution to the system of ODEs

dU2

ds
= −γU2 U2(0) = g2 − 1

dU1

ds
= β(U2 − U1) U1(0) = g1 − 1

dU0

ds
= κ(U1 − U0) U0(0) = g0 − 1.

We are interested in the steady-state solution marginalized over the transcription rate, since its
dynamics are typically not observable. Note that

∞∑
x0=0

P̃ (x0, x1, x2, t) =

∫ ∞

0
dK

∞∑
x0=0

(K/κ)x0e−K/κ

x0!
P (K,x1, x2, t) =

∫ ∞

0
dK P (K,x1, x2, t) = P (x1, x2, t)

i.e. marginalizing over the discrete species x0 is completely equivalent to marginalizing over the
transcription rate K. This means that, in order for us to calculate the marginalized steady-state
generating function satisfied by the Γ-OU model, all we have to do is set g0 = 1 in the above
equation. Hence, ψ̃ss(g1, g2) = ψss(g1, g2), so that

ϕss(uN , uM ) = a

∫ ∞

0

θ
κU0(s)

1− θ
κU0(s)

ds

where U0(s) is the solution to the system of ODEs

dU2

ds
= −γU2 U2(0) = uM

dU1

ds
= β(U2 − U1) U1(0) = uN

dU0

ds
= κ(U1 − U0) U0(0) = 0

and where we have gone back to our original variable labels and used the auxiliary variables
uN := gN − 1 and uM := gM − 1. It is easy to find that the solution to this system is

U0(s) = A0e
−κs +A1e

−βs +A2e
−γs
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with

A2 = uM
β

β − γ
κ

κ− γ

A1 =
κ

κ− β

(
uN − uM

β

β − γ

)
A0 = −

κ

κ− β

(
uN − uM

β

β − γ

)
− uM

β

β − γ
κ

κ− γ .

It is also interesting to convert this system to one whose degrees of freedom are all continuous.
Applying the correspondence in the other direction, and using the specific representation

P (K,x1, x2, t) =

∫ ∞

0
dΛ1

(Λ1)
x1 e−Λ1

x1!

∫ ∞

0
dΛ2

(Λ2)
x2 e−Λ2

x2!
Q(K,Λ1,Λ2, t),

the dynamics get mapped to

∂Q(K,Λ1,Λ2, t)

∂t
=

{
κK̂p̂1 + β(p̂2 − p̂1)Λ̂1 − γp̂2Λ̂2 − κp̂KK̂ + a

∞∑
n=1

(
θ

κ

)n
(p̂K)n

}
Q(K,Λ1,Λ2, t)

=− ∂

∂K
[(−κK)Q(K,Λ1,Λ2, t)]−

∂

∂Λ1
[(κK − βΛ1)Q(K,Λ1,Λ2, t)]

− ∂

∂Λ2
[(βΛ1 − γΛ2)Q(K,Λ1,Λ2, t)] + a

∞∑
n=1

θn
∂nQ(K,Λ1,Λ2, t)

∂Kn
.

This Fokker-Planck-like equation describes the same continuous stochastic dynamics as the SDEs

dK = −κKdt+ dLt

dΛ1 = (κK − βΛ1)dt

dΛ2 = (βΛ1 − γΛ2)dt

where Lt is an exponential jump subordinator with mean jump size b and Λ1 is its exponentially
smoothed moving average [22]. In other words, using the Poisson representation as a tool for
generating correspondences between discrete and continuous variables, we can consider the Γ-OU
model either as a fully discrete system (described by a CME) or as a fully continuous system
(described by SDEs).

This correspondence generalizes to splicing with multiple steps. If we denote the splicing rates
by βi, one obtains SDEs

dK = −κKdt+ dLt

dΛ1 = (κK − β1Λ1)dt

...

dΛD = (βD−1ΛD−1 − βDΛD)dt.

In words: there is a map between multi-step splicing with D molecular species driven by a Γ-
OU transcription rate, and multi-step splicing with D + 1 species, whose transcription occurs in
geometric bursts.
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3.3 Cox–Ingersoll–Ross model solution derivation

To compute the steady-state solution of the CIR production rate model, we use a path integral
method. In particular, we exploit a state space path integral representation of hybrid (discrete-
continuous) stochastic dynamics based on combining the CME path integral representation [1]
with the ‘phase space’ Martin-Siggia-Rose-De Dominicis (MSRJD) path integral representation of
SDEs [23–27]. This methodology and its application to solving the CIR production rate model are
discussed in full detail in [2].

3.3.1 Physical foundations

The rate of RNA production often depends on the concentration of regulatory molecules that do
not get consumed by transcription, such as RNA polymerases, inducers, and activators. When
there are more of such molecules available, we expect more transcription to occur; when there are
fewer, we expect less transcription. Exactly how many of these molecules there are at any given
time depends on how frequently they are produced and degraded.

We can codify this intuition in the following crude model. Let T denote our RNA transcript,
and R label a regulator that enables its transcription. Consider the following reaction list:

∅ a−→ R
R κ−→ ∅

R θ−→ R+ T

where a is the R production rate, κ is the R degradation rate, and θ is the ‘gain’ relating the
number of regulator molecules to the rate of transcription.

Let r(t) denote the number of R molecules. If the number of regulator molecules is very large,
we can accurately approximate r(t) as a continuous stochastic process. The continuous process
which best approximates the true discrete dynamics of r(t) is described by the chemical Langevin
equation (CLE) [1,28], an Itô-interpreted SDE:

ṙ = a− κr +
√
a+ κr ξ(t),

where ξ(t) is a Gaussian white noise term. A troublesome feature of this approximation is that
the domain of r(t) is (−a/κ,∞), i.e., it includes negative regulator concentrations; we can remedy
this by making an additional approximation. If r(t) spends most of its time around its mean value,
a ∼ κr, we can write

ṙ ≈ a− κr +
√
2κr ξ(t),

so that dynamics are now most naturally defined on (0,∞). The effective transcription rate K(t) :=
θr(t) then satisfies the Itô-interpreted SDE

K̇ = aθ − κK +
√
2κθK ξ(t). (17)

This is the Cox–Ingersoll–Ross (CIR) model of transcription [12] we will study in this paper.
As in the case of the Γ-OU model, the precise meaning of θ involves some subtleties. If we

are modeling the effect of RNA polymerase dynamics on transcription—i.e., R is simply P from
Eq. 10, and θ is a constant initiation rate—the above derivation is fairly satisfying. However,
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although such a model is mathematically legitimate, it is physically implausible: RNA polymerase
is a promiscuous enzyme, used across the entire genome. In other words, if we propose that the RNA
levels are controlled at RNA polymerase, we expect to observe ubiquitous and strong correlations
between all genes. This mode of regulation may be invoked in certain systems, but appears to be
fairly rare based on empirically observed correlations.

To impose a greater degree of physical realism, we need a model with ‘local,’ gene-level, rather
than ‘global,’ genome-level control of transcription. We accomplished this in Section 3.2.1 by
proposing that the locus-specific kini is modulated by local polymer relaxation and frustration
dynamics. In the CIR case, we can propose that R is a locus-specific regulator that drives promoter
accessibility. Thus, we can consider a slightly more detailed model, which retains the SDE in Eq.
17 as a description of the transcription rate dynamics.

Suppose the gene that produces T has two states, denoted by Goff and Gon. Consider the
reaction list:

∅ a−→ R
R κ−→ ∅

Goff +R
kon
⇄
koff

Gon

Gon kini−−→ Gon + T

where kon is the ‘on’ rate, koff is the ‘off’ rate, and kini is the transcription initiation rate. If the
binding of the regulator molecule R to the promoter is sufficiently fast and weak, this reaction list
is well-described by the previous one with an effective gain θ = kinikon/koff .

To see why, let goff (t) denote the fraction of time the gene spends in the ‘off’ state, and gon(t)
the fraction of time the gene spends in the ‘on’ state. If the binding/unbinding dynamics of R
occur on a sufficiently fast time scale, then we can use a quasi-steady-state argument to treat the
kinetics of binding and unbinding as roughly at equilibrium, so that

konrgoff = koffgon.

Combining this with the constraint that gon + goff = 1, we find

goff =
1

1 + konr
koff

gon =

konr
koff

1 + konr
koff

.

If the binding of R to the promoter is sufficiently weak (that is, if konr ≪ koff for typical values
of r), we can approximate the above expressions by first-order Taylor expansions

goff ≈ 1− konr

koff

gon ≈
konr

koff
.
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Given these expressions, our effective transcription rate K(t) is

K(t) = 0 · goff (t) + kini · gon(t)

≈
(
kinikon
koff

)
r(t).

Although the CIR model is popular as a description of interest rates in quantitative finance [29–31],
it has been previously used to describe biochemical input variation based on the CLE, albeit with
less discussion of the theoretical basis and limits of applicability [32–35]. Interestingly, the Γ-OU
model can arise from an analogous analysis with Poisson shot noise synthesis of R [20].

3.3.2 Master equation

Here, we derive the master equation for the CIR model. This equation completely characterizes
the model’s behavior, and is the basis for the path integral representation used to solve it in the
next section. Recall that the time evolution of the transcription rate K(t) follows the SDE

K̇ = aθ − κK +
√
2κθK ξ(t) (18)

where ξ(t) is a Gaussian white noise term. Given the well-known correspondence between SDEs
and Fokker-Planck equations [19], we could immediately write down the Fokker-Planck equation
for P (K, t), the probability density associated with the transcription rate being K at time t. But
we will write out its derivation in full in order to emphasize parallels with the derivation of the
Γ-OU master equation.

Because the derivation of P (K, t) does not sensitively depend on our particular choice of dy-
namics, we will derive the Fokker-Planck equation for the more general model

K̇ = f(K) + g(K) ξ(t) (19)

where f and g are mostly arbitrary (but sufficiently well-behaved) functions. As with the Γ-OU
model, the equation describing how the transcription rate distribution evolves can be derived by
considering what happens in a small time step ∆t. By the definition of Itô-interpreted SDEs like
Eq. 19, if the transcription rate is K0 at time t, it is

K = K0 + f(K0)∆t+ g(K0)
√
∆t r

at time t + ∆t, where r ∼ N(0, 1). Equivalently, using well-known properties of normal random
variables, we can note that this means

K ∼ N(K0 + f(K0)∆t, g(K0)
2∆t).

This means that the probability of transitioning from a state K0 at time t to a state K at time
t+∆t can be written

P (K, t+∆t;K0, t) =
1√

2πg(K0)2∆t
exp

[
−(K −K0 − f(K0)∆t)

2

2g(K0)2∆t

]
.

If we use the standard integral formula

1√
2πσ2

e−
(x−µ)2

2σ2 =

∫ ∞

−∞

dp

2π
exp

[
−i(x− µ)p− σ2

2
p2
]
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we can rewrite this transition probability in a particularly useful form. We have

P (K, t+∆t;K0, t) =

∫ ∞

−∞

dp

2π
exp

{
−i(K −K0 − f(K0)∆t)p−

g(K0)
2∆t

2
p2
}
.

With this formula for the transition probability, deriving the master equation for the transcription
rate is straightforward. By the Chapman-Kolmogorov equation, we have

P (K, t+∆t) =

∫ ∞

0
dz P (K, t+∆t; z, t)P (z, t)

=

∫ ∞

0
dz

∫ ∞

−∞

dp

2π
exp

{
−i(K − z − f(z)∆t)p− g(z)2∆t

2
p2
}
P (z, t)

≈
∫ ∞

0
dz

∫ ∞

−∞

dp

2π
eip(z−K)

{
1 + ∆t

[
f(z)(ip) +

g(z)2

2
(ip)2

]}
P (z, t)

where we have Taylor expanded the exponential to first order in the small time step ∆t. Hence, we
have that

∂P (K, t)

∂t
≈ P (K, t+∆t)− P (K, t)

∆t
≈
∫ ∞

0
dz

∫ ∞

−∞

dp

2π
eip(z−K)

[
f(z)(ip) +

g(z)2

2
(ip)2

]
P (z, t).

Note that, because factors of ip can be exchanged for derivatives with respect to z, we can write

∂P (K, t)

∂t
≈
∫ ∞

0
dz

∫ ∞

−∞

dp

2π
P (z, t)

[
f(z)

(
∂

∂z

)
+
g(z)2

2

(
∂2

∂z2

)]
eip(z−K).

If we integrate by parts, this becomes

∂P (K, t)

∂t
≈
∫ ∞

0
dz

∫ ∞

−∞

dp

2π

{
− ∂

∂z
[f(z)P (z, t)] +

1

2

∂2

∂z2
[
g(z)2P (z, t)

]}
eip(z−K)

=

∫ ∞

0
dz

{
− ∂

∂z
[f(z)P (z, t)] +

1

2

∂2

∂z2
[
g(z)2P (z, t)

]}
δ(z −K)

= − ∂

∂K
[f(K)P (K, t)] +

1

2

∂2

∂K2

[
g(K)2P (K, t)

]
.

Taking ∆t→ 0, our approximations become exact, and we find

∂P (K, t)

∂t
= − ∂

∂K
[f(K)P (K, t)] +

1

2

∂2

∂K2

[
g(K)2P (K, t)

]
which is the desired Fokker-Planck equation for the transcription rate. Specializing this to the
particular choices of f(K) and g(K) associated with Eq. 18, we have

∂P (K, t)

∂t
= − ∂

∂K
[(aθ − κK)P (K, t)] + κθ

∂2

∂K2
[KP (K, t)] .

Coupling this to the constitutive model’s CME (Eq. 1), we obtain

∂P (xN , xM ,K, t)

∂t
= K [P (xN − 1, xM ,K, t)− P (xN , xM ,K, t)]

+ β [(xN + 1)P (xN + 1, xM − 1,K, t)− xNP (xN , xM ,K, t)]
+ γ [(xM + 1)P (xN , xM + 1,K, t)− xMP (xN , xM ,K, t)]

− ∂

∂K
[(aθ − κK)P (xN , xM ,K, t)] + κθ

∂2

∂K2
[KP (xN , xM ,K, t)]

(20)

29



as the master equation of the full CIR model. As in Section 3.2.2, we can use this master equation
to derive equations describing the time evolution of ψ (the generating function) and ϕ := logψ (the
factorial-cumulant generating function). We have

∂ψ

∂t
= (gN − 1)

∂ψ

∂s
+ β(gM − gN )

∂ψ

∂gN
+ γ(1− gM )

∂ψ

∂gM
+

(
aθsψ + κs

∂ψ

∂s

)
+ κθs2

∂ψ

∂s

for ψ and

∂ϕ

∂t
= uN

∂ϕ

∂s
+ β(uM − uN )

∂ϕ

∂uN
− γuM

∂ϕ

∂uM
+ saθ − sκ∂ϕ

∂s
+ s2κθ

∂ϕ

∂s
(21)

for ϕ.

3.3.3 Path integral solution

The path integral solution approach exploits the fact that we know the probability of transitioning
between any two states in a very small amount of time. For example, we found above that the
probability of any particular change in the transcription rate within a small amount of time ∆t
goes according to

P (K, t+∆t;K(0), t) =
1√

4πκθK(0)∆t
exp

{
−
[
K −K(0) − (aθ − κK(0))∆t

]2
4κθK(0)∆t

}

=

∫ ∞

−∞

dp

2π
exp

{
−i
[
K −K(0) − (aθ − κK(0))∆t

]
p− κθK(0)∆t p2

} (22)

where we have adjusted our notation for the initial transcription rate from K0 to K(0) for reasons
that should become clear.

We can write down similar formulas for the discrete degrees of freedom. For sufficiently small
∆t, each of the possible chemical reactions in a CME model (in our case: transcription, splicing,
and degradation) fires independently, with the number of firings being Poisson-distributed [28].

Quantitatively, if there are x
(0)
N nascent mRNA and x

(0)
M mature mRNA at time t, at time t +∆t

the state of the system is

xN = x
(0)
N + rprod − rsplice

xM = x
(0)
M + rsplice − rdeg

where

rprod ∼ Poisson
(
K(0)∆t

)
rsplice ∼ Poisson

(
βx

(0)
N ∆t

)
rdeg ∼ Poisson

(
γxM

(0)∆t
)
.

This means that the probability of going from a state (x
(0)
N , x

(0)
M ) at time t to a state (xN , xM ) at

time t+∆t is

P =
∑

xN=x
(0)
N +a−b

xM=x
(0)
M +b−c

[
K(0)∆t

]a
e−K

(0)∆t

a!

[
βx

(0)
N ∆t

]b
e−βx

(0)
N ∆t

b!

[
γxM

(0)∆t
]c
e−γxM

(0)∆t

c!
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where the sum is over all values of the nonnegative integers a, b, and c that satisfy the two listed
conditions. Usefully, this sum can be rewritten as [1]

P =

∫ π

−π

∫ π

−π

dpNdpM
(2π)2

exp
{
−ipN

[
xN − x(0)N

]
− ipM

[
xM − x(0)M

]
+K(0)∆t

[
eipN − 1

]
+ βx

(0)
N ∆t

[
ei(pM−pN ) − 1

]
+ γxM

(0)∆t
[
e−ipM − 1

]}
,

(23)

a form analogous to Eq. 22. Combining Eq. 23 with Eq. 22, we find that the probability

P := P (xN , xM ,K, t+∆t;x
(0)
N , x

(0)
M ,K(0), t) of transitioning from a state (x

(0)
N , x

(0)
M ,K(0)) at time t

to a state (xN , xM ,K) at time t+∆t, for the entire system, is

P =

∫ ∞

−∞

dq

2π

∫ π

−π

∫ π

−π

dpNdpM
(2π)2

exp
{
−ipN

[
xN − x(0)N

]
− ipM

[
xM − x(0)M

]
− iq

[
K −K(0) − (aθ − κK(0))∆t

]
−κθK(0)∆t q2 +K(0)∆t

[
eipN − 1

]
+ βx

(0)
N ∆t

[
ei(pM−pN ) − 1

]
+ γxM

(0)∆t
[
e−ipM − 1

]}
.

(24)

This equation is the basis for our (state space) path integral solution approach. To see why, note that

the more general transition probability P := P (xN , xM ,K, t;x
(0)
N , x

(0)
M ,K(0), t0) = P (s, t; s(0), t0) of

going from a state s(0) at time t0 to a state s at time t can be written

P =
∑
s(1)

P (s, t; s(1), t1)P (s
(1), t1; s

(0), t0)

=
∑

s(1),s(2)

P (s, t; s(2), t2)P (s
(2), t2; s

(1), t1)P (s
(1), t1; s

(0), t0)

=
∑

s(1),s(2),...,s(T−1)

P (s, t; s(T−1), tT−1) · · ·P (s(1), t1; s(0), t0)

where t1, ..., tT−1 are arbitrary intermediate times. In other words, we can write the overall transi-
tion probability in terms of the probabilities of transitioning between various intermediate states.

Define the ‘step size’ ∆t := (t − t0)/T , define s(T ) := s, and choose the intermediate times
tj := t0 + j∆t, so that this expression can be written

P =
∑

s(1),s(2),...,s(T−1)

T∏
ℓ=1

P (s(ℓ), tℓ−1 +∆t; s(ℓ−1), tℓ−1)

=
∑

x
(1)
N ,...,x

(T−1)
N

∑
x
(1)
M ,...,x

(T−1)
M

∫
dK(1) · · · dK(T−1)

T∏
ℓ=1

P (x
(ℓ)
N , x

(ℓ)
M ,K(ℓ), tℓ−1 +∆t;x

(ℓ−1)
N , x

(ℓ−1)
M ,K(ℓ−1), tℓ−1).

If we make the number of ‘time steps’ T sufficiently large, ∆t becomes very small, and we can use Eq.
24 to approximate each of the transition probabilities. In the T →∞ limit, these approximations
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become exact. Hence, we obtain the path integral expression

P = lim
T→∞

∫
dK(1) · · · dK(T−1)

∫
dq(1) · · · dq(T )

(2π)T

∑
x
(1)
N ,...,x

(T−1)
N

∫
dp

(1)
N · · · dp

(T )
N

(2π)T

∑
x
(1)
M ,...,x

(T−1)
M

∫
dp

(1)
M · · · dp

(T )
M

(2π)T

exp

{
T∑
ℓ=1

−ip(ℓ)N
[
x
(ℓ)
N − x

(ℓ−1)
N

]
− ip(ℓ)M

[
x
(ℓ)
M − x

(ℓ−1)
M

]
− iq(ℓ)

[
K(ℓ) − aθ∆t− (1− κ∆t)K(ℓ−1)

]
−κθ∆t K(ℓ−1)

[
q(ℓ)
]2

+ K(ℓ−1)∆t
[
eip

(ℓ)
N − 1

]
+ βx

(ℓ−1)
N ∆t

[
eip

(ℓ)
M −ip(ℓ)N − 1

]
+ γx

(ℓ−1)
M ∆t

[
e−ip

(ℓ)
M − 1

] }
for the transition probability. The sums over the discrete intermediate variables x

(ℓ)
N and x

(ℓ)
M are

over all nonnegative integers. The integrals over p
(ℓ)
N and p

(ℓ)
M are over (−π, π). The integrals over

the K(ℓ) are over (0,∞), and the integrals over the q(ℓ) are over the whole real line. While this
massive integral can look somewhat intimidating, it can be evaluated piece by piece. See Appendix
A of [1] for an illustrative example calculation somewhat simpler than this one.

First, we sum over the x
(ℓ)
N and x

(ℓ)
M (for each ℓ = 1, ..., T − 1), which amounts to evaluating

∞∑
x
(ℓ)
N =0

exp
{
−ix(ℓ)N

[
p
(ℓ)
N − p

(ℓ+1)
N + iβ∆t

(
eip

(ℓ+1)
M −ip(ℓ+1)

N − 1
)]}

=
1

1− exp
{
−i
[
p
(ℓ)
N − p

(ℓ+1)
N + iβ∆t

(
eip

(ℓ+1)
M −ip(ℓ+1)

N − 1
)]}

and

∞∑
x
(ℓ)
M =0

exp
{
−ix(ℓ)M

[
p
(ℓ)
M − p

(ℓ+1)
M + iγ∆t

(
e−ip

(ℓ+1)
M − 1

)]}

=
1

1− exp
{
−i
[
p
(ℓ)
M − p

(ℓ+1)
M + iγ∆t

(
e−ip

(ℓ+1)
M − 1

)]}
i.e. summing many geometric series. Then we integrate over p

(ℓ)
N and p

(ℓ)
M (for ℓ = 1, ..., T − 1),

which amounts to evaluating many expressions of the form

∫ π

−π

dp
(ℓ)
N

2π

exp
{
F (p

(ℓ)
N )
}

1− exp
{
−i
[
p
(ℓ)
N − p

(ℓ+1)
N + iβ∆t

(
eip

(ℓ+1)
M −ip(ℓ+1)

N − 1
)]}

and ∫ π

−π

dp
(ℓ)
M

2π

exp
{
G(p

(ℓ)
M )
}

1− exp
{
−i
[
p
(ℓ)
M − p

(ℓ+1)
M + iγ∆t

(
e−ip

(ℓ+1)
M − 1

)]}
where the functions F and G describe how the rest of the path integral depends on p

(ℓ)
N and p

(ℓ)
M .

Because the rest of the path integral depends on these variables in a smooth way (i.e. there are
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no poles or singularities), we can straightforwardly evaluate these expressions as contour integrals
using Cauchy’s integral formula.

For example, change variables in the p
(ℓ)
N integral to z := exp

[
ip

(ℓ)
N

]
so that it becomes a contour

integral on the unit circle whose integrand has a simple pole:∮
dz

2πi

exp
{
F (p

(ℓ)
N )
}

z − exp
{
−i
[
−p(ℓ+1)

N + iβ∆t
(
eip

(ℓ+1)
M −ip(ℓ+1)

N − 1
)]}

= exp
{
F
(
p
(ℓ+1)
N − iβ∆t

(
eip

(ℓ+1)
M −ip(ℓ+1)

N − 1
) ) }

.

In other words, the effect of evaluating these contour integrals is to implement the constraints

p
(ℓ)
N = p

(ℓ+1)
N − iβ∆t

[
eip

(ℓ+1)
M −ip(ℓ+1)

N − 1
]

p
(ℓ)
M = p

(ℓ+1)
M − iγ∆t

[
e−ip

(ℓ+1)
M − 1

]
,

which represent each of the p
(ℓ)
j in terms of p

(T )
N and p

(T )
M . In the T →∞ limit, they become ODEs

ṗN (s) = −iβ
[
eipM (s)−ipN (s) − 1

]
ṗM (s) = −iγ

[
e−ipM (s) − 1

]
for s ∈ [t0, t] with initial conditions pN (t0) = p

(T )
N and pM (t0) = p

(T )
M . Solving them (and specializing

to t0 = 0, because the initial time is arbitrary), we find that

eipN (s) − 1 =
[
eip

(T )
N − 1

]
e−βs +

[
eip

(T )
M − 1

] β

β − γ
(
e−γs − e−βs

)
eipM (s) − 1 =

[
eip

(T )
M − 1

]
e−γs.

Next, we can integrate out the K(ℓ) (for ℓ = 1, ..., T − 1), which amounts to evaluating∫ ∞

0
dK(ℓ) exp

{
−iK(ℓ)

[
q(ℓ) − q(ℓ+1) + κ∆tq(ℓ+1) − iκθ∆t

(
q(ℓ+1)

)2
+ i∆t

(
eip

(ℓ+1)
N − 1

)]}
=
1

i

1

q(ℓ) − q(ℓ+1) + κ∆tq(ℓ+1) − iκθ∆t
(
q(ℓ+1)

)2
+ i∆t

(
eip

(ℓ+1)
N − 1

)
i.e. doing many simple Laplace-transform-like integrals. Then we can integrate out the q(ℓ) (for
ℓ = 1, ..., T − 1), which involves evaluating many expressions of the form∫ ∞

−∞

dq(ℓ)

2πi

exp
{
H(q(ℓ))

}
q(ℓ) − q(ℓ+1) + κ∆tq(ℓ+1) − iκθ∆t

(
q(ℓ+1)

)2
+ i∆t

(
eip

(ℓ+1)
N − 1

)
where H describes how the rest of the path integral depends on q(ℓ). By an argument analogous to
the one above, doing these contour integrals amounts to implementing the constraints

q(ℓ) = q(ℓ+1) +∆t

[
−κq(ℓ+1) + iκθ

[
q(ℓ+1)

]2
− i
(
eip

(ℓ+1)
N − 1

)]
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on the q(ℓ), which express each q(ℓ) in terms of q(T ). Once again, in the long time limit we have the
ODE

q̇(s) = −κq(s) + iκθq(s)2 − i
(
eipN (s) − 1

)
for s ∈ [0, t] with initial condition q(0) = q(T ). It is slightly mathematically cleaner to consider the
related function U(s) := iκq(s), which evolves according to the ODE

U̇ = −κ U + θ U2 + κ
(
eipN (s) − 1

)
.

While this equation (a Riccati equation) could in principle be solved exactly (for more details,
see [2]), for our purposes leaving it in this form yields an algorithm with better numerical stability
properties, and still allows us to compute things like limiting forms and moments.

The only variables that have not yet been integrated out or summed over are p
(T )
N , p

(T )
M , and

dq(T ). After some simplifying, what remains of the path integral is

P =

∫ ∞

−∞

dq(T )

2π

∫ π

−π

∫ π

−π

dp
(T )
N dp

(T )
M

(2π)2
exp

{
− ip(T )N xN + ip

(0)
N x

(0)
N − ip

(T )
M xM + ip

(0)
M x

(0)
M

− iq(T )K + iq(0)K(0) +
aθ

κ

∫ t

0
U(s)ds

}
,

where we define p
(0)
N := pN (t), p

(0)
M := pM (t), q(0) := q(t). To get our final answer, we make several

additional simplifications. First, we are primarily interested in the steady state distribution, which
can be obtained by taking the long time limit (t → ∞). Since pN (∞) = pM (∞) = q(∞) = 0, this
eliminates the path integral’s dependence on initial conditions, and simplifies the above to

Pss(xN , xM ,K) =

∫ ∞

−∞

dq(T )

2π

∫ π

−π

∫ π

−π

dp
(T )
N dp

(T )
M

(2π)2
exp

{
− ip(T )N xN − ip(T )M xM − iq(T )K +

aθ

κ

∫ ∞

0
U(s)ds

}
.

Second, we marginalize over the transcription rate K, because it is typically not observable. This
gives us

Pss(xN , xM ) =

∫ ∞

0
dK Pss(xN , xM ,K)

=

∫ ∞

−∞

dq(T )

2π

∫ ∞

0
dKe−iq

(T )K

∫ π

−π

∫ π

−π

dp
(T )
N dp

(T )
M

(2π)2
e−ip

(T )
N xN−ip(T )

M xM exp

{
aθ

κ

∫ ∞

0
U(s)ds

}
=

∫ ∞

−∞

dq(T )

2πi

1

q(T )

∫ π

−π

∫ π

−π

dp
(T )
N dp

(T )
M

(2π)2
e−ip

(T )
N xN−ip(T )

M xM exp

{
aθ

κ

∫ ∞

0
U(s)ds

}
=

∫ π

−π

∫ π

−π

dp
(T )
N dp

(T )
M

(2π)2
e−ip

(T )
N xN−ip(T )

M xM exp

{
aθ

κ

∫ ∞

0
U(s)ds

}
where the effect of evaluating the q(T ) contour integral was to enforce the constraint q(T ) = 0. In
other words, the initial condition of U(s) is now U(0) = 0.

Third, we consider the generating function

ψss(gN , gM ) :=

∞∑
xN=0

∞∑
xM=0

gxNN gxMM Pss(xN , xM )
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instead of considering the probability distribution directly. This eliminates the remaining two
integrals, since

ψss =

∫ π

−π

∫ π

−π

dp
(T )
N dp

(T )
M

(2π)2

∞∑
xN=0

∞∑
xM=0

[
gNe

−ip(T )
N

]xN [
gMe

−ip(T )
M

]xM
exp

{
aθ

κ

∫ ∞

0
U(s)ds

}

=

∫ π

−π

dp
(T )
N

2π

1

1− gNe−ip
(T )
N

∫ π

−π

dp
(T )
M

2π

1

1− gMe−ip
(T )
M

exp

{
aθ

κ

∫ ∞

0
U(s)ds

}
= exp

{
aθ

κ

∫ ∞

0
U(s)ds

}
where the effect of evaluating the p

(T )
N and p

(T )
M contour integrals is to enforce the constraints that

eip
(T )
N = gN

eip
(T )
M = gM .

Finally, working in terms of the factorial-cumulant generating function ϕss := logψss and variables
uN := gN − 1 and uM := gM − 1, our final answer is that

ϕss(uN , uM ) =
aθ

κ

∫ ∞

0
U(s)ds

where U(s) is the solution to

U̇ = −κ U + θ U2 + κ

[
uNe

−βs + uM
β

β − γ
(
e−γs − e−βs

)]
with initial condition U(s = 0) = 0.

Parenthetically, we note that this solution approach, which amounts to reducing the problem
of solving the master equation to the problem of solving several coupled ODEs, yields the same
answer for ϕss as the more standard method of characteristics. In fact, the method of characteristics
(which involves reducing the problem of solving a PDE to the problem of solving several coupled
ODEs) yields the exact same ODEs.

The path integral approach has two major benefits: First, it is easy to write down path integral
descriptions of even fairly complicated stochastic models, possibly involving many coupled discrete
and continuous stochastic processes. Thus, the current model can straightforwardly extend to in-
clude features like protein synthesis and degradation. Second, in cases where an exact approach
is not possible, path integral descriptions facilitate perturbative approaches. By Taylor expanding
the path integral integrand in powers of one or more small parameters, one can construct a pertur-
bative solution to the master equation whose various terms can be associated with diagrams. This
application of the path integral would be useful for working with models involving feedback and
autoregulation, e.g. promoter induction or repression by a protein.
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4 Derivations of distribution properties

In this section, we derive the moments and autocorrelation functions presented in the main text.
Our strategy is essentially model-independent, so we treat both the Γ-OU and CIR models simul-
taneously. As noted in the main text, we obtain identical results for both models.

Although we could in principle directly compute moments and autocorrelation functions from
the probability distributions derived in Section 3, we instead choose to compute them directly. In
addition to this approach being less mathematically messy, it is informative about why these results
match for both models, and can be straightforwardly generalized to other transcription models not
discussed here. The crux of our strategy is to exploit generating functions to derive linear ODEs
satisfied by our desired quantities (moments or autocorrelation functions), which we can then solve
by hand.

4.1 Illustrative toy example: moments of the constitutive model

To provide a sense of how this strategy works, we examine a toy example in this subsection.
Consider the constitutive model, whose CME we reproduce here for convenience:

∂P (xN , xM , t)

∂t
= K [P (xN − 1, xM , t)− P (xN , xM , t)]

+ β [(xN + 1)P (xN + 1, xM − 1, t)− xNP (xN , xM , t)]
+ γ [(xM + 1)P (xN , xM + 1, t)− xMP (xN , xM , t)]

(25)

where xN , xM ∈ N. Suppose we want to compute µN , the steady-state average number of nascent
RNA. First, define the generating function

ψ(uN , uM , t) :=
∑

xN ,xM

P (xN , xM , t) (uN + 1)xN (uM + 1)xM

with uN + 1 and uM + 1 both lying on the complex unit circle. Eq. 25 implies that

∂ψ

∂t
= KuNψ + β(uM − uN )

∂ψ

∂uN
− γuM

∂ψ

∂uM
. (26)

Let µN (t) denote the average number of nascent RNA at time t (so that µN = limt→∞ µN (t)).
Note that we can obtain µN (t) by differentiating ψ, since

µN (t) =
∑

xN ,xM

xNP (xN , xM , t) =
∂ψ(uN , uM , t)

∂uN

∣∣∣∣
uN=uM=0

.

The key trick is the following. Differentiate both sides of Eq. 26 with respect to uN . We obtain

∂

∂t

(
∂ψ

∂uN

)
= Kψ +KuN

∂ψ

∂uN
− β ∂ψ

∂uN
+ β(uM − uN )

∂2ψ

∂u2N
− γuM

∂2ψ

∂uN∂uM
.

Now set uN = uM = 0 (and recall that ψ(0, 0) = 1), so that this becomes

∂µN (t)

∂t
= K − βµN (t).
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To find the steady-state average number of nascent RNA, all that remains is to determine the
steady-state value of the above ODE. Setting the left-hand side equal to zero, we easily find that
µN = K/β.

This particular trick is not new. In this derivation, we demonstrate that slight modifications of
it allow one to compute exact moments and autocorrelation functions even for the mathematically
challenging hybrid discrete–continuous models we are considering.

As a final point, for technical reasons we work with the factorial-cumulant generating func-
tion ϕ := logψ instead of ψ. This makes it slightly more straightforward to compute variances,
covariances, and autocorrelation functions. For example, while

∂2ψ(uN , uM , t)

∂u2N

∣∣∣∣
uN=uM=0

=
∑

xN ,xM

xN (xN − 1)P (xN , xM , t) = ⟨xN (xN − 1)⟩

∂2ψ(uN , uM , t)

∂uN∂uM

∣∣∣∣
uN=uM=0

=
∑

xN ,xM

xNxMP (xN , xM , t) = ⟨xNxM ⟩,

the same derivatives of ϕ yield

∂2ϕ

∂u2N

∣∣∣∣
uN=uM=0

=

∂2ψ
∂u2N
−
(
∂ψ
∂uN

)2
ψ2

∣∣∣∣
uN=uM=0

= ⟨xN (xN − 1)⟩ − ⟨xN ⟩2 = σ2N (t)− µN (t)

∂2ϕ

∂uN∂uM

∣∣∣∣
uN=uM=0

=

∂2ψ
∂uN∂uM

− ∂ψ
∂uN

∂ψ
∂uM

ψ2

∣∣∣∣
uN=uM=0

= ⟨xNxM ⟩ − ⟨xN ⟩⟨xM ⟩ = Cov(XN , XM )(t)

where σ2N (t) is the variance in the number of nascent RNA at time t, and Cov(XN , XM )(t) is the
covariance in the number of nascent and mature counts at time t.

4.2 Moment derivations

In this subsection, we derive the first- and second-order moments of each model using the generating-
function-based strategy we just described. We will abuse notation slightly by using µN , µM , and
so on to denote moments at time t (rather than steady-state moments) in the intermediate steps
of the derivation.

The PDEs we will need are those describing the time evolution of the factorial-cumulant gen-
erating function ϕ, which we recall from Section 3.2 and 3.3 are

∂ϕ

∂t
= uN

∂ϕ

∂s
+ β(uM − uN )

∂ϕ

∂uN
− γuM

∂ϕ

∂uM
− κs∂ϕ

∂s
+ saθ + a

∞∑
n=2

θnsn (Γ-OU) (27)

∂ϕ

∂t
= uN

∂ϕ

∂s
+ β(uM − uN )

∂ϕ

∂uN
− γuM

∂ϕ

∂uM
− κs∂ϕ

∂s
+ saθ + s2κθ

∂ϕ

∂s
(CIR). (28)

Let us begin by computing first order moments. These relate to ϕ via

⟨K⟩ = ∂ϕ

∂s

∣∣∣∣
uN=uM=s=0

µN =
∂ϕ

∂uN

∣∣∣∣
uN=uM=s=0

µM =
∂ϕ

∂uM

∣∣∣∣
uN=uM=s=0

.
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Analogously to before, take derivatives of both sides of the above PDEs with respect to uN , uM ,
and s; in each of the three cases, set uN = uM = s = 0 to recover an ODE. We obtain the ODEs

∂⟨K⟩
∂t

= aθ − κ⟨K⟩
∂µN
∂t

= ⟨K⟩ − βµN
∂µM
∂t

= βµN − γµM

which are identical for both models because the O(s2) terms in the above PDEs (where the two
models differ) do not contribute. Setting the left-hand sides of these ODEs equal to zero, we
immediately recover the steady-state first order moments

⟨K⟩ = aθ

κ
µN =

⟨K⟩
β

=
aθ

κβ
µM =

⟨K⟩
γ

=
aθ

κγ
.

We can compute second order moments (variances and covariances) in just the same way. Second
order moments relate to ϕ via

Cov(XN , XM ) =
∂2ϕ

∂uN∂uM

∣∣∣∣
uN=uM=s=0

σ2N − µN =
∂2ϕ

∂u2N

∣∣∣∣
uN=uM=s=0

Cov(XN ,K) =
∂2ϕ

∂uN∂s

∣∣∣∣
uN=uM=s=0

σ2M − µM =
∂2ϕ

∂u2M

∣∣∣∣
uN=uM=s=0

Cov(XM ,K) =
∂2ϕ

∂uM∂s

∣∣∣∣
uN=uM=s=0

σ2K =
∂2ϕ

∂s2

∣∣∣∣
uN=uM=s=0

.

Taking two derivatives of both sides of the ϕ PDEs this time, we find

∂ [σ2N − µN ]
∂t

= 2 Cov(XN , XM )− 2β
[
σ2N − µN

]
∂ [σ2M − µM ]

∂t
= 2β Cov(XN ,K)− 2γ

[
σ2M − µM

]
∂ Cov(XN , XM )

∂t
= Cov(XM ,K) + β

[
σ2N − µN

]
− (β + γ) Cov(XN , XM )

∂ Cov(XN ,K)

∂t
= σ2K − (β + κ) Cov(XN ,K)

∂ Cov(XM ,K)

∂t
= β Cov(XN ,K)− (γ + κ) Cov(XM ,K).

(29)

Since Eq. 27 and Eq. 28 differ in their s2 terms, the transcription rate variance equations are
slightly different for the two models, with

∂σ2K
∂t

= 2aθ2 − 2κσ2K (Γ-OU)

∂σ2K
∂t

= 2κθ⟨K⟩ − 2κσ2K (CIR)
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where we use ⟨K⟩ in the equation above to denote the time-dependent average transcription rate.
This small difference (aθ2 versus κθ⟨K⟩) has important qualitative implications. By inspecting
Eq. 29, we see that all second order moments ultimately depend on σ2K . This means that time-
dependent second order moments like σ2M (t) are different for the CIR and Γ-OU models—but since
the steady-state values of σ2K match (for both models, we have σ2K → ⟨K⟩θ), these model-to-model
differences vanish exponentially quickly.

In principle, one can exactly solve the above system of relatively simple linear ODEs for the
time-dependent behavior of every second moment. However, this solution is quite complicated, and
not particularly informative. For our purposes, it is enough to note that (i) the time-dependent
solutions to the above equations are slightly different for the CIR and Γ-OU models, with the
difference between them vanishing exponentially quickly; and that (ii) the steady-state moments
are informative, and have a relatively compact form.

To obtain the desired steady-state second order moments, we must set the left-hand sides of
Eq. 29 equal to zero and solve the resulting system of linear equations. After some algebra, our
steady-state second order moment results are

σ2K =
aθ2

κ
= ⟨K⟩ θ

σ2N =
⟨K⟩
β

+
Cov(XN ,K)

β
=
⟨K⟩
β

+
⟨K⟩θ

β(β + κ)

σ2M =
⟨K⟩
γ

+
β

γ
Cov(XN , XM ) =

⟨K⟩
γ

+
⟨K⟩θ β(β + γ + κ)

γ(β + κ)(γ + κ)(β + γ)

Cov(XN ,K) =
σ2K
β + κ

=
⟨K⟩θ
β + κ

Cov(XM ,K) =
β Cov(XN ,K)

γ + κ
=

⟨K⟩θ β
(β + κ)(γ + κ)

Cov(XN , XM ) =
Cov(XN ,K) + Cov(XM ,K)

β + γ
=

⟨K⟩θ (β + γ + κ)

(β + κ)(γ + κ)(β + γ)
.

4.3 Autocorrelation function derivations

In this subsection, we describe our approach to computing the autocorrelation functions RN (τ) and
RM (τ) of our two models. In terms of the stochastic processes XN (t) and XM (t), they are defined
via

RN (τ) := lim
t→∞

1

σ2N
{ E[XN (t)XN (t+ τ)]− µN (t)µN (t+ τ) }

RM (τ) := lim
t→∞

1

σ2M
{ E[XM (t)XM (t+ τ)]− µM (t)µM (t+ τ) }

where µN (t) := E[XN (t)], µM (t) := E[XM (t)], σ2N denotes the steady-state variance of XN (t), and
σ2M denotes the steady-state variance of XM (t). Each of these expectations is taken over all possible
stochastic trajectories.

But in order to actually compute these functions, we find it more convenient to express them
in terms of P (yN , yM ,K

′, t′;xN , xM ,K, t), the probability of going from state (xN , xM ,K) at time
t to state (yN , yM ,K

′) at time t′ ≥ t. In terms of this transition probability, the autocorrelation
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functions can be written

RN (τ) :=
1

σ2N
lim
t→∞

{ ∫
dKdK ′

∑
xN ,xM ,yN ,yM

xNyNP (xN , xM ,K, t)P (yN , yM ,K
′, t+ τ ;xN , xM ,K, t)

−
[∫

dK
∑

xN ,xM

xNP (xN , xM ,K, t)

][∫
dK ′

∑
yN ,yM

yNP (yN , yM ,K
′, t+ τ)

] }

RM (τ) :=
1

σ2M
lim
t→∞

{ ∫
dKdK ′

∑
xN ,xM ,yN ,yM

xMyMP (xN , xM ,K, t)P (yN , yM ,K
′, t+ τ ;xN , xM ,K, t)

−
[∫

dK
∑

xN ,xM

xMP (xN , xM ,K, t)

][∫
dK ′

∑
yN ,yM

yMP (yN , yM ,K
′, t+ τ)

] }
.

Such a rewriting is helpful because we it will enable us to compute RN (τ) and RM (τ) using a
strategy similar to the one we used in Section 4.2 to compute steady-state moments. The first step
of this strategy is to define a generating-function-like object ψ(uN , uM , r; vN , vM , s; τ) via

ψ := lim
t→∞

∫
dKdK ′erKesK

′ ∑
xN ,xM ,yN ,yM

(uN + 1)xN (uM + 1)xM P (xN , xM ,K, t)×

× (vN + 1)yN (vM + 1)yM P (yN , yM ,K
′, t+ τ ;xN , xM ,K, t)

and use it to define ϕ := logψ. Since

∂2ϕ

∂uN∂vN

∣∣∣∣
uN=uM=vN=vM=r=s=0

= RN (τ) · σ2N

∂2ϕ

∂uM∂vM

∣∣∣∣
uN=uM=vN=vM=r=s=0

= RM (τ) · σ2M ,

(30)

we can reduce the problem of computing RN (τ) and RM (τ) to the problem of computing the above
derivatives of ϕ. This turns out to be an improvement, because we can exploit the PDE satisfied
by ϕ to derive a closed system of ODEs from which we can extract these derivatives.

The fact that ϕ satisfies a PDE follows from the fact the transition probability P (yN , yM ,K
′, t+

τ ;xN , xM ,K, t) satisfies a master equation. That is, since

∂P (yN , yM ,K
′, t′)

∂t′
= K ′ [P (yN − 1, yM ,K

′, t′)− P (yN , yM ,K ′, t′)
]

+ β
[
(yN + 1)P (yN + 1, yM − 1,K ′, t′)− yNP (yN , yM ,K ′, t′)

]
+ γ

[
(yM + 1)P (yN , yM + 1,K ′, t′)− yMP (yN , yM ,K ′, t′)

]
− ∂

∂K ′
[(
aθ − κK ′)P (yN , yM ,K ′, t′)

]
+ · · ·

we can take the τ derivative of ψ to find that

∂ψ

∂τ
= lim

t→∞

∫
· · · (uN + 1)xN (uM + 1)xM P (xN , xM ,K, t) (vN + 1)yN (vM + 1)yM

∂P (yN , yM ,K
′, t+ τ)

∂τ

= vN
∂ψ

∂s
+ β(vM − vN )

∂ψ

∂vN
− γvM

∂ψ

∂vM
− κs∂ψ

∂s
+ saθψ +O(s2)
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where the O(s2) terms are model-dependent, but will not factor into our autocorrelation calcula-
tions. Deriving this PDE in complete detail involves integration by parts and a number of argument
shifts. This immediately implies that ϕ = logψ satisfies the PDE

∂ϕ

∂τ
= vN

∂ϕ

∂s
+ β(vM − vN )

∂ϕ

∂vN
− γvM

∂ϕ

∂vM
− κs∂ϕ

∂s
+ saθ +O(s2) . (31)

The above PDE allows us to derive ODEs satisfied by RN (τ) and RM (τ). To see why, let us first
ease notation by writing ∂ϕ

∂τ → ϕ̇ and using shorthand like

∂2ϕ

∂uN∂vN

∣∣∣∣
uN=uM=vN=vM=r=s=0

→ ∂2ϕ

∂uN∂vN

∂2ϕ̇

∂s∂uN

∣∣∣∣∣
uN=uM=vN=vM=r=s=0

→ ∂2ϕ̇

∂s∂uN

to avoid writing (uN = uM = vN = vM = r = s = 0) many times. Note that, with all of these
arguments set to zero, these derivatives of ϕ are functions of τ only. Next, take the ∂2/∂uN∂vN
derivative of both sides of Eq. 31 and set all arguments equal to zero. We find

∂2ϕ̇

∂uN∂vN
=

∂2ϕ

∂s∂uN
− β ∂2ϕ

∂uN∂vN
.

Similarly, taking the ∂2/∂uM∂vM derivative of both sides of Eq. 31 and setting all arguments equal
to zero yields

∂2ϕ̇

∂uM∂vM
= β

∂2ϕ

∂uM∂vN
− γ ∂2ϕ

∂uM∂vM
.

Solving these ODEs would allow us to compute RN (τ) and RM (τ); unfortunately, these two ODEs
do not constitute a closed system, because they depend on other derivatives of ϕ. Taking more
partial derivatives of Eq. 31, we can also derive the ODEs

∂2ϕ̇

∂uM∂vN
=

∂2ϕ

∂s∂uM
− β ∂2ϕ

∂uM∂vN

∂2ϕ̇

∂s∂uN
= −κ ∂2ϕ

∂s∂uN

∂2ϕ̇

∂s∂uM
= −κ ∂2ϕ

∂s∂uM
.

Together with the previous two ODEs, we now have a complete system.
What about initial conditions? The initial conditions of these ODEs come from the fact that

evaluating derivatives of ϕ at τ = 0 case corresponds to evaluating steady state moments. For
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example,

∂ψ

∂vN

∣∣∣∣
···=0

(τ = 0) = lim
t→∞

∫
dKdK ′

∑
xN ,xM ,yN ,yM

yNP (xN , xM ,K, t)P (yN , yM ,K
′, t;xN , xM ,K, t)

= lim
t→∞

∫
dKdK ′

∑
xN ,xM ,yN ,yM

yNP (xN , xM ,K, t) δxN ,yN δxM ,yM δ(K −K ′)

= lim
t→∞

∫
dK

∑
xN ,xM

xNP (xN , xM ,K, t)

= µN

where δx1,x2 denotes the Kronecker delta function and δ(x1− x2) denotes the Dirac delta function.
Then

∂ϕ

∂vN

∣∣∣∣
···=0

(τ = 0) =

∂ψ
∂vN

∣∣∣
···=0

(τ = 0)

ψ|···=0 (τ = 0)
=
µN
1

= µN .

Following similar logic, we have

∂2ϕ

∂uN∂vN
(τ = 0) = σ2N

∂2ϕ

∂uM∂vM
(τ = 0) = σ2M

∂2ϕ

∂uM∂vN
(τ = 0) = Cov(XN , XM )

∂2ϕ

∂s∂uN
(τ = 0) = Cov(XN ,K)

∂2ϕ

∂s∂uM
(τ = 0) = Cov(XM ,K).

(32)

Because all of these steady state moments are the same for each production rate model, the solutions
to these equations (and hence the autocorrelation functions) will match.

Let us solve the various ODEs we have derived one at a time. First, we have

∂2ϕ

∂s∂uN
= Cov(XN ,K)e−κτ

∂2ϕ

∂s∂uM
= Cov(XM ,K)e−κτ .

(33)

Using those solutions, we can find

∂2ϕ

∂uN∂vN
= σ2Ne

−βτ +Cov(XN ,K)

[
e−κτ − e−βτ

]
β − κ

∂2ϕ

∂uM∂vN
= Cov(XN , XM )e−βτ +Cov(XM ,K)

[
e−κτ − e−βτ

]
β − κ .

(34)
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The solution to the remaining ODE is

∂2ϕ

∂uM∂vM
= σ2M e−γτ + β Cov(XN , XM )

[
e−βτ − e−γτ

]
γ − β

+ β Cov(XM ,K)

[
e−βτ

(β − γ)(β − κ) +
e−γτ

(γ − β)(γ − κ) +
e−κτ

(κ− β)(κ− γ)

]
.

(35)

Finally, we have that our desired autocorrelation functions are

RN (τ) =
1

σ2N

∂2ϕ

∂uN∂vN

= e−βτ +
Cov(XN ,K)

σ2N

[
e−κτ − e−βτ

]
β − κ

RM (τ) =
1

σ2M

∂2ϕ

∂uM∂vM

= e−γτ + β
Cov(XN , XM )

σ2M

[
e−βτ − e−γτ

]
γ − β

+ β
Cov(XM ,K)

σ2M

[
e−βτ

(β − γ)(β − κ) +
e−γτ

(γ − β)(γ − κ) +
e−κτ

(κ− β)(κ− γ)

]
.

Interestingly, our approach to deriving these autocorrelation functions did not depend very strongly
on the precise form of our model, since the model-dependent terms did not factor in at all.
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5 Derivations of limiting cases

In this section, we derive the four limits mentioned in the main text for both models. We also use
tools from stochastic processes to study the high gain limit of the CIR model in more mathematical
detail.

5.1 Limiting cases of Gamma Ornstein–Uhlenbeck model

To make the below derivations somewhat easier to follow, we reproduce the Γ-OU solution below.
The steady-state solution of the Γ-OU model is characterized by the factorial-cumulant generating
function

ϕss(uN , uM ) = a

∫ ∞

0

θ
κU0(s; 0, uN , uM )

1− θ
κU0(s; 0, uN , uM )

ds (36)

where U0(s; 0, uN , uM ) is
U0 = A0e

−κs +A1e
−βs +A2e

−γs (37)

with

A2 = uM
β

β − γ
κ

κ− γ

A1 =
κ

κ− β

(
uN − uM

β

β − γ

)
A0 = −

κ

κ− β

(
uN − uM

β

β − γ

)
− uM

β

β − γ
κ

κ− γ .

5.1.1 Fast mean-reversion limit (κ→∞, a→∞, a/κ fixed)

Consider the fast mean-reversion limit, in which we have κ → ∞ and a → ∞ with the ratio
α = a/κ held fixed. When κ is so large, the transcription rate quickly returns to zero after any
perturbation, with a timescale much faster than any of the downstream steps. Therefore, we expect
the particulars of the dynamics to be ‘blurred’ or non-identifiable from the count data.

To see if this is true, we will consider our solution for ϕss(uN , uM ) (cf. Eq. 36) in this limit.
For κ→∞, the function U0 (cf. Eq. 37) appearing in our solution for ϕss becomes

lim
κ→∞

U0(s) =

[
uN − uM

β

β − γ

]
e−βs + uM

β

β − γ e
−γs.

Meanwhile, ϕss becomes

ϕss(uN , uM ) = αθ

∫ ∞

0

U0

1− θ
κU0

ds

→ αθ

∫ ∞

0
U0 ds

= ⟨K⟩
∫ ∞

0

[
uN − uM

β

β − γ

]
e−βs + uM

β

β − γ e
−γsds

where we remind the reader that ⟨K⟩ = αθ. Evaluating this integral, we find

ϕss(uN , uM ) =
⟨K⟩
β
uN +

⟨K⟩
γ
uM
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which is precisely the factorial-cumulant generating function of a product of two Poisson distribu-
tions. This rather dramatic result is no longer dependent on θ, the scale parameter.

5.1.2 Slow mean-reversion limit (κ→ 0, a→ 0, a/κ fixed)

Consider the slow mean-reversion limit, in which we have κ→ 0 and a→ 0 with the ratio α = a/κ
held fixed. In this limit, κ is so small that the transcription rates of each cell in a population do
not change much on experimental time scales; for this reason, we expect the system to behave as
if each cell’s transcription rate is at local equilibrium, with the distribution of these transcription
rates corresponding to the long-time distribution of K(t) (i.e. a gamma distribution). The system
should behave just like the Poisson-gamma mixture model presented in the main text.

In this limit, the function U0 appearing in ϕss is approximately

U0(s) = A0e
−κs +A1e

−βs +A2e
−γs ≈ A0e

−κs

since κ≪ β and κ≪ γ. Then ϕss is

ϕss(uN , uM ) = αθ

∫ ∞

0

U0

1− θ
κU0

ds

≈ αθ
∫ ∞

0

A0e
−κs

1− θ
κA0e−κs

ds.

Doing this integral, we find

ϕss(uN , uM ) = −α log

[
1− θ

κ
A0

]
.

In the κ→ 0 limit, note that

A0

κ
→ 1

β

(
uN − uM

β

β − γ

)
+
uM
γ

β

β − γ =
uN
β

+
uM
γ
,

so we can write

ϕss(uN , uM ) = −α log

[
1− θ

(
uN
β

+
uM
γ

)]
.

This is precisely the factorial-cumulant generating function of the Poisson-gamma mixture model.
Its marginal distributions (obtained by setting either uN = 0 or uM = 0) are both negative binomial
distributions.

5.1.3 Low gain limit (θ → 0, κ→ 0, θ/κ fixed)

Consider the low gain limit, in which we have θ → 0 and κ→ 0 with the ratio b = θ/κ held fixed. In
this limit, the gain θ is so small that fluctuations in the DNA’s relaxation state hardly impact the
transcription rate K(t), leaving it effectively constant. As in the case of the fast mean-reversion
limit, we expect the system to behave just like the constitutive model, and Pss(xN , xM ) to be
Poisson.

Conveniently, ϕss as presented in Eq. 36 already has every factor of θ paired with a factor of
κ. We only have to evaluate the integral assuming the remaining factors of κ (in U0) are small. As
when we took the slow noise limit, we have

U0(s) ≈ A0e
−κs .
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Also as before, substituting this into our expression for ϕss and evaluating the integral yields

ϕss(uN , uM ) = −a log [1− bA0]

κ
.

All that remains is to take the κ→ 0 limit. Both the numerator and denominator approach zero as
κ→ 0, since A0 is proportional to κ; hence, we can take this limit by l’Hôpital’s rule, or by Taylor
expanding the numerator and discarding higher-order terms. Either way, we obtain

ϕss(uN , uM ) =
⟨K⟩
β
uN +

⟨K⟩
γ
uM

i.e. the factorial-cumulant generating function of a product of two Poisson distributions, the same
thing we obtained in the fast mean-reversion limit.

5.1.4 High gain limit (θ →∞, κ→∞, θ/κ fixed)

Consider the high gain limit, in which we have θ → ∞ and κ → ∞ with the ratio b = θ/κ held
fixed. In this limit, θ is so large that fluctuations in the DNA relaxation state greatly affect the
transcription rate, so that we expect an overdispersed count distribution.

As with the fast mean-reversion limit, we have

lim
κ→∞

U0(s) =

[
uN − uM

β

β − γ

]
e−βs + uM

β

β − γ e
−γs

so that

ϕss(uN , uM ) = a

∫ ∞

0

θ
κU0

1− θ
κU0

ds

≈ a
∫ ∞

0

b

[(
uN − uM β

β−γ

)
e−βs + β

β−γuMe
−γs
]

1− b
[(
uN − uM β

β−γ

)
e−βs + β

β−γuMe
−γs
]ds.

Unlike in the case of the fast mean-reversion limit, we cannot make any additional simplifications:
this is the final answer. This is precisely the generating function associated with RNA produced in
geometrically distributed bursts (cf. Eq. 32 from [3]). Qualitatively, this means that the spikes of
Γ-OU activity tend to Poisson shot noise with an exponential weight distribution.
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5.2 Limiting cases of Cox–Ingersoll–Ross model

To make the below derivations somewhat easier to follow, we reproduce the CIR model solution
below. The steady-state solution of the CIR model is characterized by the factorial-cumulant
generating function

ϕss =
aθ

κ

∫ ∞

0
U(s;uN , uM )ds

where U(s;uN , uM ) is the solution to

dU

ds
= −κU + θ U2 + κ

[(
uN −

β

β − γ uM
)
e−βs +

β

β − γ uMe
−γs
]

= −κU + θ U2 + κ
[
cNe

−βs + cMe
−γs
]

= −κU + θ U2 + κf(s)

(38)

with initial condition U(s = 0) = 0, where we have used f(s) as a shorthand for the term with
explicit time-dependence, and cN and cM as shorthand for the coefficients of the exponentials.
Although it is nonlinear, Eq. 38 can be solved exactly; it is a Riccati equation, and the usual
method for treating those types of ODEs works. The full derivation is presented in [2]. However,
for taking these four limits, it turns out that it is sufficient to know only Eq. 38.

5.2.1 Fast mean-reversion limit (κ→∞, a→∞, a/κ fixed)

Consider the fast mean-reversion limit, in which we have κ→∞ and a→∞ with the ratio α = a/κ
held fixed. We expect behavior just like the constitutive model, so that we recover a product of
two Poisson distributions.

There are three terms on the right-hand side of Eq. 38, two of which are proportional to κ. In
this limit, κ is so large that the κ-dependent terms almost completely control the ODE’s behavior.
To see this, consider how U(s) evolves in a very short amount of time. Because γ, β ≪ κ, the f(s)
term does not change very much, and is effectively constant. Meanwhile, the κ-dependent terms
rapidly change the value of U(s) until it can no longer change, i.e. until it reaches a ‘steady state’.
Quantitatively, we have

0 ≈ dU

ds
= −κU + θ U2 + κf(s)

so that we obtain

U(s) ≈
1±

√
1− 4 θκf(s)

2θ/κ

from applying the quadratic formula. We must choose the negative sign solution because we need
U(s)→ 0 as s→∞ in order for our integral expression for ϕss to converge. Now we have

ϕss(uN , uM ) ≈ a

2

∫ ∞

0
1−

√
1− 4

θ

κ
f(s)ds.

We can simplify this further by noting that, in the κ→∞ limit, we can approximate the integrand
as

1−
√
1− 4

θ

κ
f(s) = 1−

[
1− 2

θ

κ
f(s) +O

(
1

κ2

)]
≈ 2

θ

κ
f(s).
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Hence, our answer in this limit is that

ϕss(uN , uM ) ≈ aθ

κ

∫ ∞

0
f(s)ds

= ⟨K⟩
[(
uN −

β

β − γ uM
)

1

β
+

β

β − γ uM
1

γ

]
=
⟨K⟩
β
uN +

⟨K⟩
γ
uM

i.e. the expected Poisson answer.

5.2.2 Slow mean-reversion limit (κ→ 0, a→ 0, a/κ fixed)

Consider the slow noise limit, in which we have κ → 0 and a → 0 with the ratio α = a/κ held
fixed. We expect to recover the Poisson-gamma mixture model.

Because β, γ ≫ κ, the time evolution of U(s) described by Eq. 38 can be viewed as having two
phases. In the first phase, the f(s) term contributes, while the κ-dependent terms are negligible.
In the second, because the β and γ-dependent terms have decayed to zero, only the slow-acting
κ-dependent terms matter. Quantitatively, we initially have

dU

ds
≈ κf(s)

where we remind the reader that U(s = 0) = 0. Then

U(s) ≈
(
uN −

β

β − γ uM
)

κ

β

(
1− e−βs

)
+

β

β − γ uM
κ

γ

(
1− e−γs

)
.

This quickly equilibrates to

U(s) ≈
(
uN −

β

β − γ uM
)

κ

β
+

β

β − γ uM
κ

γ
= κ

(
uN
β

+
uM
γ

)
.

This effectively serves as the initial condition for the second phase of behavior, in which we have

dU

ds
≈ −κU + θU2.

The closer we take κ to zero, the more this becomes literally true: hence, the effect of the β and
γ-dependent terms is to adjust the initial condition of the above ODE to

U(s = 0) = κ

(
uN
β

+
uM
γ

)
.

Solving, we find

U(s) =
κ
(
uN
β + uM

γ

)
e−κs

1− θ
(
uN
β + uM

γ

)
(1− e−κs)
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in this limit. Substituting,

ϕss(uN , uM ) ≈ a
∫ ∞

0

θ
(
uN
β + uM

γ

)
e−κs

1− θ
(
uN
β + uM

γ

)
(1− e−κs)

= −a
κ
log

[
1− θ

(
uN
β

+
uM
γ

)]
i.e. the Poisson-gamma mixture model result.

5.2.3 Low gain limit (θ → 0, κ→ 0, θ/κ fixed)

Consider the low gain limit, in which we have θ → 0 and κ→ 0 with the ratio b = θ/κ held fixed.
We expect Poisson behavior.

We can take the answer we obtained for the slow mean-reversion limit (because it also involved
taking κ→ 0) and approximate it further. Because θ is small, we have

ϕss(uN , uM ) ≈ −a
κ
log

[
1− θ

(
uN
β

+
uM
γ

)]
= −a

κ

[
−θ
(
uN
β

+
uM
γ

)
+O(θ2)

]
≈ aθ

κ

(
uN
β

+
uM
γ

)
s

=
⟨K⟩
β
uN +

⟨K⟩
γ
uM

i.e. we obtain Poisson behavior.

5.2.4 High gain limit (θ →∞, κ→∞, θ/κ fixed)

Consider the high gain limit, in which we have θ → ∞ and κ → ∞ with the ratio b = θ/κ held
fixed. In this limit, θ is so large that fluctuations in the number of regulator molecules greatly
affect the transcription rate, so that we expect an overdispersed counts distribution.

Because the fast mean-reversion limit also involved taking κ → ∞, we can rerun the same
argument to find

ϕss(uN , uM ) ≈ a

2

∫ ∞

0
1−

√
1− 4bf(s)ds.

But this time, because we hold b = θ/κ fixed, we cannot simplify it further. If we like, we can
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rewrite it; Taylor expanding the square root and doing the integral, we obtain the series

ϕss(uN , uM ) ≈ −a
2

∞∑
k=1

(
1/2

k

)
(−4b)k

∫ ∞

0

[
cNe

−βs + cMe
−γs
]k
ds

= −a
2

∞∑
k=1

(
1/2

k

)
(−4b)k

k∑
n=0

(
k

n

)
(cN )

n(cM )k−n
∫ ∞

0
e−[βn+γ(k−n)]sds

= −a
2

∞∑
k=1

(
1/2

k

)
(−4b)k

k∑
n=0

(
k

n

)
(cN )

n(cM )k−n

βn+ γ(k − n)

= −a
2

∞∑
k=1

(
1/2

k

)
(−4b)k

k∑
n=0

(
k

n

)(uN − β
β−γuM

)n (
β

β−γuM

)k−n
βn+ γ(k − n) .

If we are interested in the nascent marginal, we can take uM = 0 and simplify this equation further.
Using the result that

∞∑
k=1

(
1/2

k

)
(−x)k
k

= lim
ϵ→0+

∫ x

ϵ

√
1− y − 1

y
dy = −2

(
1−
√
1− x

)
− 2 log

(
1 +
√
1− x
2

)
we can write

ϕss(uN ) = −
a

2β

∞∑
k=1

(
1/2

k

)
(−4buN )k

k

=
a

β

(
1−

√
1− 4buN

)
+
a

β
log

(
1 +
√
1− 4buN
2

)
.

5.3 Formal analysis of the high gain CIR limit and connections to finance

The high gain limit of the CIR model is particularly interesting because it is the only regime in
which limiting behavior does not match the Γ-OU model, and in which the functional form of the
limiting distribution was not previously known. In this subsection, we study it using an alternative
stochastic processes approach, and point out an interesting connection to the financial mathematics
associated with Ornstein-Uhlenbeck processes driven by an inverse Gaussian process.

We begin by demonstrating that the CIR–CME coupling cannot possibly reduce to the CME
with bursty production. The simplest way to do this is by showing that the integrated CIR process∫ t
0 K(t′)dt′ does not reduce to the subordinator

∑N(t)
k=0 Jk in the limit of κ→∞ and θ →∞.

For the process Kt that solves dK = (αK + β)dt+ γ
√
KdW , we define Yt :=

∫ t
0 Ktdt [36]:

E[e−sYt ] =
[

e−αt/2

cosh(Pt/2)− α
P sinh(Pt/2)

] 2β

γ2

exp

[
− sx̄

P

2 sinh(Pt/2)

cosh(Pt/2)− α
P sinh(Pt/2)

]
,

where P :=
√
α2 + 2γ2s. In the parlance of the MGF and the generic parametrization, we want

to evaluate this at −s, with γ ←
√
2κθ, β ← aθ, α ← −κ, and x̄ ← K0. The parameterization
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implies the auxiliary function P (s) =
√
κ2 − 4κθs = κ

√
1− 4θs/κ = κ

√
1− 4bs and exponent

2β
γ2

= 2aθ
2κθ = a

κ . This yields the following MGF:

E[esYt ] =
[

eκt/2

cosh(Pt/2) + κ
P sinh(Pt/2)

]a/κ
exp

[
sY0
P

2 sinh(Pt/2)

cosh(Pt/2) + κ
P sinh(Pt/2)

]
.

Setting Y0 to 0, we yield the log MGF:

lnE[esYt ] =
a

κ

[
κt/2− ln

(
cosh(Pt/2) +

κ

P
sinh(Pt/2)

)]
= at/2− a

κ
ln
(
cosh(Pt/2) +

κ

P
sinh(Pt/2)

)
.

Now, considering the prefactor of the sinh term, we find that it is independent of θ and κ:

κ

P
=

κ

κ
√
1− 4bs

= (1− 4bs)−1/2

We can restrict our discussion of the behavior of the MGF to a subsection of the real line. When
s < 1

4b , as κ→∞, P →∞ and cosh(Pt/2), sinh(Pt/2)→ 1
2e
Pt/2. Since b > 0, this region gives us

all the necessary information about Yt.
This implies:

cosh(Pt/2) +
κ

P
sinh(Pt/2)→ 1

2
(1 + κ/P )ePt/2.

Therefore, the log MGF reduces to:

at/2− a

κ
ln
(
cosh(Pt/2) +

κ

P
sinh(Pt/2)

)
→ at/2− a

κ

[
− ln 2 + ln(1 + κ/P ) +

Pt

2

]
→ at/2− at

√
1− 4bs

2
=
at

2
(1−

√
1− 4bs),

If we try to represent this as a compound Poisson process log MGF, at(M(s)− 1), where M(s)
is the MGF of the jump size distribution, we find M(s) − 1 = 1

2(1 −
√
1− 4bs), i.e. M(s) =

1
2(3 −

√
1− 4bs). This immediately implies that the jump size is a mixed discrete/continuous

distribution with a point mass at zero. Therefore, the CIR process cannot recapitulate the usual
bursting limit.

At this point, we have confirmed that Yt does not converge to the exponential jump subordinator
– or, indeed, any subordinator with Poisson process arrival times. We can ask: just what does it
converge to, and can we quantitatively describe the process dynamics?

The generating function is infinitely divisible, which implies that the process is Lévy. Further, it
must be a subordinator, because we are discussing the strictly non-decreasing integral of a positive
function. Therefore, considering the characteristic function (CHF):
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lnE[eiζYt ] = at
1−√1− 4bζi

2

= −at
√−4bζi+ 1− 1

2
= −at

(√
−bζi+ 1

4
− 1

2

)

= −
√
a2b

2
t

(√
2

b

√
−bζi+ 1

4
−
√

2

b

1

2

)
= −

√
a2b

2
t

(√
−2ζi+ 1

2b
−
√

2

b

1√
4

)

= −
√
a2b

2
t

(√
−2ζi+ 1

2b
− 1√

2b

)
,

which is the characteristic function of the inverse Gaussian (IG) distribution [37] (Sec. 5.3.4):

fIG(x;A,B) =
A√
2π
eABx−3/2 exp

(
−1

2
(A2x−1 +B2x)

)
E[eiζXIG ] = exp

(
−A(

√
−2iζ +B2 −B)

)
,

implying that the integrated CIR process converges to the inverse Gaussian process with parameters

A = t
√

a2b
2 and B = (2b)−1/2. Interestingly, the correspondence between Yt and the IG process has

been derived before [38], albeit in the conceptually different context of approximate sampling from
the transition probability distribution at sparsely sampled points rather than model degeneration
under moment existence constraints.

The inverse Gaussian limit of Yt is clearly a subordinator: it is Lèvy and strictly increasing. It
is distinct from the standard bursty limit, as it has an infinite number of jumps in every finite time
interval (infinite activity). The Poisson intensity ΛN is governed by the Ornstein–Uhlenbeck SDE
with an IG background driving Lévy process [37]. In the standard nomenclature of the finance
literature [37, 39, 40], ΛN is defined as the OU-IG process, by analogy with other non-Gaussian
OU-D processes. The general analytical stationary solution of this process does not appear to
have been previously reported [39,41], although some recent studies discuss its simulation [42,43].
Therefore, we fill this lacuna in the characterization of the Ornstein–Uhlenbeck process family.

We can check whether the stationary intensity distribution is self-decomposable, using the
criterion given by Sato [44,45]. The Levy measure of the IG(A,B) process follows [37] (5.3.4):

ν(dx) =
A√
2π
x−3/2 exp

(
−1

2
B2x

)
Ix>0dx,

giving rise to the criterion integral:∫
|x|>2

ln |x|ν(dx) = A√
2π

∫
|x|>2

ln |x|x−3/2 exp

(
−1

2
B2x

)
Ix>0dx

=
A√
2π

∫
x>2

ln(x)x−3/2 exp

(
−1

2
B2x

)
dx.
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Now, ln(x)x−3/2 has a global maximum at x = e3/2 and stays positive for all x > 1, which means
this factor is bounded from below by zero and from above by 3

2e . Therefore,∫
|x|>2

ln |x|dν(x) < 3A

2e
√
2π

∫
x>2

exp

(
−1

2
B2x

)
dx =

3A

2e
√
2π

2e−B
2

B2
=

3Ae−B
2

eB2
√
2π

<∞,

which is true for all finite A,B. This guarantees that ΛN has a unique self-decomposable stationary
law [44] for every IG driver.

We can attempt to find this law [22]. First, we write down the log CHF of the limiting subor-
dinator at t = 1:

φ = lnE[eiζYN ] = a
1−√1− 4bζi

2
.

Then, we write down the differential equation [37] (5.2.2) that characterizes the stationary OU-IG
log CHF ϑ(z) = E[eizΛN ]:

1

β
φ(z) = z

dϑ(z)

dz
.

Making the transformation y = ibζ and dy = ibdζ for an upper limit of ξ := ibz:

ϑ =
1

β

∫ z

0
φ(ζ)ζ−1dζ =

a

β

∫ z

0

1−√1− 4bζi

2ζ
dζ

=
a

β

∫ ξ

0

1−√1− 4y

2 1
iby

1

ib
dy =

a

β

∫ ξ

0

1−√1− 4y

2y
dy.

We note that the integrand is the Catalan number generating function C(y) =
∑∞

n=0Cny
n, evalu-

ated for complex y [46]. Therefore, we can at least formally write down the definite integral:∫ ξ

0
C(y)dy =

∞∑
n=0

∫ ξ

0
Cny

ndy =
∞∑
n=0

1

n+ 1
Cnξ

n+1.

However, this approach does not yield computationally or theoretically useful properties. In-
stead, it is more fruitful to note that C(y) = 2F1(

1
2 , 1; 2; 4y) and exploit the following analytical

integral [47]:∫ ξ

0
C(y)dy = ξ3F2(

1

2
, 1, 1; 2; 2; 4ξ) = ξ

4

4ξ

(
ln

1 +
√
1− 4ξ

2
−
√
1− 4ξ + 1

)
= ln

1 +
√
1− 4ξ

2
−
√

1− 4ξ + 1

eϑ = exp

(
a

β

[
ln

1 +
√
1− 4ξ

2
−
√
1− 4ξ + 1

])
= exp

(
a

β

[
ln

1 +
√
1− 4bzi

2
−
√
1− 4bzi+ 1

])
= exp

(
2a

β

1−
√
1− 4bzi

2

)[
1 +
√
1− 4bzi

2

]a/β
.
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The first term is immediately recognizable as the CHF of the inverse Gaussian distribution with

parameters A =
√

a2b
β2 and B = (2b)−1/2, as above. Unfortunately, the second term is not even

a characteristic function. Therefore, the stationary MGF of ΛN cannot be simplified further; the
stationary distribution is not any easily identifiable convolution or mixture:

E[euNΛN ] = exp

(
2a

β

1−√1− 4buN
2

)[
1 +
√
1− 4buN
2

]a/β
= [e2C

∗(buN )(1− C∗(buN ))]
a/β,

where C∗(z) = zC(z).
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6 Simulation

In the current section, we discuss the strategies we adopt for simulating joint SDE–CME systems.
This problem is equivalent to simulating a CME system with a time-varying transcription rate, i.e.,
with arrivals of N described by an inhomogeneous Poisson process. The key challenge of simulation
is finding a time step τ at which the total reaction flux is equal to a sample from the standard
exponential distribution. We follow the conceptual framework outlined by Prados et al. [48], and use
an exact, special function-based solution for Γ-OU driving and an approximate, quadrature-based
solution for CIR driving.

6.1 Simulation of the Gamma Ornstein-Uhlenbeck model

We follow the mathematical finance convention for the Γ-OU process [22,49]. Specifically, a gener-
alized OU process K(t) is the solution of the SDE

dK(t) = −κK(t)dt+ dZ(t),

where κ > 0, K(0) = K0 P -almost surely, and Z is a subordinator of choice [50]. The Γ-OU

process uses the compound Poisson subordinator Z(t) =
∑NP (t)

k=0 Jk, where NP (t) is a Poisson
counting process with rate a, and independent random jump sizes Jk ∼ Exp(1/θ). The previously
reported solution [50] yields

K(t) =

NP (t)∑
k=0

e−κ(t−τk)Jk,

where τk are the jump times of NP . Note that J0 := K0 and τ0 := 0. The resulting stationary
distribution is Gamma( aκ , θ).

We consider the standard case of simulation on t ∈ [0, T ]. The number of Poisson arrivals
in this interval follows from the definition of a Poisson process: NP (T ) ∼ Poisson(aT ). It is
well-known [51] that the arrival times of a Poisson counting process on t ∈ [0, T ] are identically
distributed to the rank statistics of a uniformly distributed random variable. Therefore, given
NP (T ) total jumps, their times τk, k > 0 can be computed by drawing NP (T ) random numbers
from U(0, T ) and sorting the resulting values. The jump sizes Jk, k > 0 are computed by drawing
NP (T ) exponential random variables with mean θ. Given an initial condition, the total number of
jumps, their arrival times, and their magnitudes, the Γ-OU process path is fully determined and can
be easily computed. The approach described in the current section generalizes to any homogeneous
or inhomogeneous compound Poisson driver.

We consider a birth-death system with a single time-inhomogeneous birth rate. As in the rest
of the report, we consider nascent and mature mRNA species, with respective instantaneous counts
xN and xM . Specifically, we consider three reactions: production with rate A1 = K(t), splicing
with overall rate A2 = βxN , and degradation with overall rate A3 = γxM . Extensions to more
general schema for processing downstream of transcription are analogous. The algorithm is outlined
below.

1. Set t = 0. Initialize xN and xM .

2. Generate two uniform random variables u1 and u2.
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3. Compute time step τ that meets the criterion τ(βxN+γxM )+
∫ t+τ
t K(t′)dt′ = g(τ) = ln(1/u1).

(a) Set j = argminj τj s.t. τj > t.

(b) Check whether the criterion g(τ) > ln(1/u1) holds at the next jump in transcription rate
τj :

i. If so, use the Lambert W function to explicitly compute τ.

ii. If not, set j ← j + 1.

4. Compute instantaneous reaction rates Aµ, µ ∈ {1, 2, 3}.

5. Compute net state efflux rate A =
∑3

µ=1 aµ.

6. Select reaction index µ to be the lowest i such that
∑i

ν=1Aν > u2A.

7. Advance time: t← t+ τ.

8. Modify state variables according to the value of µ:

8.1. µ = 1, xN ← xN + 1.

8.2. µ = 2, xN ← xN − 1, xM ← xM + 1.

8.3. µ = 3, xM ← xM − 1.

9. Return to step 2.

Step 3 can be accomplished exactly by exploiting analytical results. Specifically, the random time
step τ is selected according to

∫ t+τ
t A(t′)dt′ = ln(1/u1) = Λ. Using the definition of A:

∫ t+τ

t
A(t′)dt′ =

∫ t+τ

t

3∑
µ=1

Aµ(t
′)dt′

=

∫ t+τ

t

(
K(t′) + βxN + γnm

)
dt′

= τ(βxN + γnm) +

∫ t+τ

t
K(t′)dt′

Given a particular realization, we can directly integrate K. Specifically:

∫ t+τ

t
K(t′)dt′ =

1

κ

NP (t)∑
k=0

e−κ(t−τk)Jk −
1

κ

NP (t+τ)∑
k=0

e−κ(t+τ−τk)Jk

This quantity is straightforward to evaluate. However, the specific functional form makes it
challenging to compute τ without resorting to numerical root-finding algorithms. Therefore, an
alternative approach is desired for fast computation.
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We begin by treating the simplest case. If t > τk for all k, no more jumps occur after the
current time, and K(t + τ) exponentially decays as a function of τ, with the functional form
K(t+ τ) = K(t)e−κτ. Therefore,

τ(βxN + γxM ) +

∫ t+τ

t
K(t′)dt′

= τ(βxN + γxM ) +
K(t)

κ
(1− e−κτ)

This implies the root-finding problem in τ:

Λ = τ(βxN + γxM ) +
K(t)

κ
(1− e−κτ)

0 = τ(βxN + γxM )− K(t)

κ
e−κτ +

(
K(t)

κ
− Λ

)
0 = C1τ− C2(t)e

−κτ + C3(t)

This equation has the analytical solution [52]:

τ =
1

κ
W

(
κC2

C1
eκC3/C1

)
− C3

C1
= ϕW (t), (39)

where C1, C2, and C3 are evaluated at t, whereas W is the product logarithm function, i.e. W0,
the principal branch of the Lambert W function. This solution is straightforward to compute using
standard packages, such as the MATLAB Symbolic Toolbox and the SciPy library for Python. The
alternative formulation is relevant when C1 = 0:

τ = −1

κ
ln

(
C3(t)

C2(t)

)
(40)

Parenthetically, we note the terminal case t+τ > T , i.e. that the reaction flux up to T is insufficient
to match Λ. Although the SDE dynamics are not simulated past T , and no information about K is
known past this time horizon, this is not a problem; the simulation remains exact up until T , where
it halts. Another edge case, where ϕW (t) is complex-valued, implies that the total reaction flux up
to t = ∞ is insufficient to meet Λ, and again simply leads to the termination of the simulation at
T . This edge case only occurs when C1 = 0, as the downstream reactions occur in finite time in
the converse case.

Next, we consider the first non-trivial extension: t < τk for a single k; a single jump occurs
after the current time. For convenience of notation, we define τN := τNP (T ). It remains to bound
t+ τ within the region (t, τN ) or the region (τN ,∞).

Since g(τ; t) = τ(βxN + γxM ) +
∫ t+τ
t K(t′)dt′ is guaranteed to be monotonic, we can use a

simple binary decision procedure. If g(τN − t; t) = (τN − t)(βxN + γxM )+ K(t)
κ (1− e−κ(τN−t)) > Λ,

the value of the integral up to τN is an overestimate and the solution is given by Eq. 39 evaluated
at t, i.e. ϕW (t). If the converse is true, the value is an underestimate and the solution is given by
ϕW (τN ) + (τN − t).
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This procedure can be extended to an arbitrary number of jumps after t. The implementation
requires a choice of a search procedure; we choose a simple rightward scan. Specifically, given
t < τk < τk+1 < ... < τN :

1. Assign upper bound for the integral L← k and running time tR ← t.

2. Check whether L ≤ N .

2.1. If L ≤ N , evaluate G = g(τL − t; t) = g(τk − t; t) + g(τL − τk; τk).
2.1.1. If G > Λ, the solution is given by ϕW (tR) + (tR − t).
2.1.2. If G < Λ, assign L← L+ 1 and tR ← τL.

2.1.3. Return to 2.

2.2. If L > N , the solution is given by ϕW (tR) + (tR − t).

Since K(t) is known, it is trivial to pre-compute the quantities
∫ τi+1

τi
K(t′)dt′, i ∈ {0, 1, ..., NP (T )−

1}, where τ0 := 0. Therefore, computing the term g(τL − τk; τk) requires a summation over the
pre-computed integral terms

∑L−1
i=k

∫ τi+1

τi
K(t′)dt′ and a single evaluation of the exponential-exit

product (τL − τk)(βxN + γxM ). Finally, the remainder g(τk − t; t) requires one evaluation of the
analytical integral per Gillespie time step.

With τ determined, it remains to select the specific reaction channel. The exponential-exit
weights are given by A2 = τβxN and A3 = τγxM . The weight A1 of the birth reaction is given by∫ t+τ
t K(t′)dt′, which is given by

K(t)

κ
(1− e−κτ)

if no jumps occur up within (t, t+ τ), and

K(t)

κ
(1− e−κ(τk−t)) +

M−1∑
i=k

∫ τi+1

τi

K(t′)dt′ +
K(τM )

κ
(1− e−κ(τ+t−τM ))

if t < τk < τk+1 < ... < τM < t+ τ.

6.1.1 Implementation details

Several points regarding the efficient implementation of the algorithm bear further discussion.
For computational facility, at each step of the Gillespie simulation, we set τk−1 ← t and

K(τk−1) ← K(t). This approach creates a virtual jump at the current time, and allows treat-
ing the integral

∫ τk
t K(t′)dt′ without creating a special edge case. Furthermore, to minimize the

number of times the pre-computed integrals are accessed, we compute ∆G at each step, compare
it to Λ, and decrement Λ by ∆G if the reaction flux is insufficient.

The formulation in Eq. 39 is susceptible to overflow as κC3/C1 →∞. A näıve computation at
sufficiently high values yields eκC3/C1 =∞ and τ =∞, halting the simulation. Therefore, wherever
overflow is likely to occur, it is necessary to use the appropriate approximation to W . We follow
the approach of Iacono and Boyd [53].
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As x → ∞, ln(1 + x) has the Puiseux series representation ln(x) + x−1 + O(x−2). For x
sufficiently high to produce overflow, we truncate at the first term and use ln(1 + x) ≈ ln(x).

As an initial guess, we can choose W0(x) = ln(1 + xζ(x)), where ζ(x) = 1
1+0.5 ln(1+x) ; we

note that the subscript refers to the approximation order rather than the branch of the function.
Using the Puiseux series, ζ(x) ≈ 1

1+0.5 lnx . Assuming x is high enough, we can further assume
ln(1 + xζ(x)) ≈ ln(xζ(x)) = lnx − ln(1 + 0.5 ln(x)). Higher-order approximations follow from the
iterative schema Wn+1 = Wn

1+Wn
(1 + lnx − lnWn). We use the fifth-order iterative approximation

whenever the argument of the Lambert W function is greater than 103.

6.2 Simulation of the Cox–Ingersoll–Ross model

As described in Section 3.3.1, the CIR model’s transcription rate evolves in time according to the
SDE

K̇ = aθ − κK +
√
2κθK ξ(t),

where ξ(t) is a Gaussian white noise term. Since the driving process is independent of the down-
stream reactions, we precompute CIR trajectories at discrete time points [0, h, 2h, ...] using the
exact method [54]. We can propagate the process K from time u to time t by drawing from the
non-central chi-square distribution:

K(t)|K(u) ∼ cχ2
d(λ),

where d := 2a
κ is the number of degrees of freedom and λ = 2e−κ(t−u)

θ(1−e−κ(t−u))
K(u) is the non-centrality

parameter. The scaling factor c is set to c = θ(1−e−κ(t−u))
2 . We implement the following procedure

to generate the random variable χ2
d(λ) [54]:

χ2
d(λ) = χ2

d(0) + Y (λ, Z1, Z2, U),

Y (λ, Z1, Z2, U) =

{
0, if λ+ 2 lnU ≤ 0

(Z1 +
√
λ+ 2 lnU)2 + Z2

2 , if λ+ 2 lnU > 0,

where χ2
d(0) ∼ Gamma(d/2, 2) in the shape/scale parametrization, U ∼ U(0, 1), and Z1, Z2 ∼

N(0, 1). To set the time-step h of the simulation, we first divide total simulation time Tss by 500
(the number of time points sampled for the output) and then divide by 2 until h < 10−3.

Thus, at each CME simulation time point, we increase τ in increments of h until the total
reaction flux

∫ t+τ
t K(t′)dt′ + τ(βxN + γxM ) exceeds − lnu1, where u1 ∼ U(0, 1). We compute

the contribution of
∫ t+τ
t K(t′)dt′ to the reaction flux using the trapezoidal rule [48, 55, 56]. This

approach follows the methods used for standard financial simulations [57]. Analogous schema have
previously been used in the simulation of stochastic biological systems [58, 59]; the τ calculation
procedure is equivalent to approximating the true reaction flux by a piecewise constant function
on a finely spaced grid.

6.3 Simulation results

To get a more detailed picture of model behavior, we visualized model predictions—including
autocorrelation functions (Supplementary Fig. 1) and full long-time RNA count distributions
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Supplementary Table 5: Simulation parameters

Parameter set κ a θ Tss TR
High gain 10 0.1 150 20 10

Slow reversion 0.12 0.01 15 200 50
Low gain 8.33× 10−4 0.1 0.05 60 10

Fast reversion 100 100 14.93 7.143 10
Intermediate 1 0.6765 2.3 0.7692 7.391 10
Intermediate 2 1.25 4.25 1.493 7.143 10

Representative parameter sets used to explore model predictions. Four parameter sets lie in limiting
regimes, while two lie in intermediate regimes. In all cases, β = 1.2 and γ = 0.7 were used.
Simulations tracked 104 cells until an ‘equilibration’ time Tss, and then continued until a time
Tss + TR to compute autocorrelation functions.

(Supplementary Figs. 2 and 3)—for six representative parameter sets. Supplementary Table 5
reports the parameters used to define the regimes of interest.

Autocorrelation functions quantify how a stochastic system approaches equilibrium. In our
case, they answer the question: ‘How correlated are nascent/mature RNA counts right now with
nascent/mature RNA counts some time τ in the future?’ In principle, because they depend on
model details, experimental measurements of autocorrelation functions from live-cell data can be
used to discriminate between competing models. But the autocorrelation functions of the Γ-OU and
CIR models exactly match (Supplementary Fig. 1), eliminating this as a discrimination method.

Γ-OU distribution shape predictions are shown in Supplementary Fig. 2, and CIR distribution
shape predictions are shown in Supplementary Fig. 3. Overall, the plots are consistent with
the intuition developed in the previous section: both joint and marginal distributions appear to
interpolate between Poisson-like and overdispersed. In spite of the similarities of each model’s
predictions, tail predictions significantly differ in the high gain regime (where θ and κ are both very
large), as previously discussed. This difference is somewhat larger for the mature count distribution
than for the nascent count distribution (compare the third row, second column of Supplementary
Figs. 2 and 3).

60



7 Dimensional analysis

Finally, only one qualitative gap remains: the determination of parameter equivalence classes.
Although this gap is small, it is essential for understanding steady-state behaviors and performing
model inference at equilibrium. In brief, when we collect steady-state data, we have insufficient
information to identify absolute timescales. Therefore, it is useful to consider classes of parameters
identifiable up to scaling.

The master equation of the Γ-OU model takes the form reported in Eq. 11. We can choose
an arbitrary rate scale r, for now left deliberately unspecified, and define a nondimensional time
t̂ := rt. This yields the following dimensionless form of the master equation:

∂P (xN , xM , K̂, t̂)

∂t̂
= K̂

[
P (xN − 1, xM , K̂, t̂)− P (xN , xM , K̂, t̂)

]
+ β̂

[
(xN + 1)P (xN + 1, xM − 1, K̂, t̂)− xNP (xN , xM , K̂, t̂)

]
+ γ̂

[
(xM + 1)P (xN , xM + 1, K̂, t̂)− xMP (xN , xM , K̂, t̂)

]
− ∂

∂K̂

[(
−κ̂K̂

)
P (xN , xM , K̂, t̂)

]
+ â

∞∑
n=1

(−θ̂)n ∂n

∂K̂n

[
P (xN , xM , K̂, t̂)

]
.

where the normalization to units of r is performed by dividing the equation by r. Therefore, the
following ‘natural’ variables parametrize the system:

t̂ := rt

K̂ = K/r

κ̂ = κ/r

â = a/r

θ̂ = θ/r

β̂ = β/r

γ̂ = γ/r.

An analogous analysis of the CIR-driven master equation, reported in Eq. 20, yields identical
parameter equivalence classes. Therefore, instead of considering somewhat unwieldy real timescales
(e.g., r = 1 min−1), we can use internal timescales (e.g., r = β) to investigate equilibrium states,
explicitly reducing system dimensionality by one.
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8 Inference procedure

Supplementary Table 6: Summary of the four datasets used to perform model identification. All
datasets originate from M. musculus [60, 61]. ‘Cells in meta’ denotes the number of barcodes in
each dataset’s metadata. ‘Cells in data’ denotes the number of metadata barcodes present in the
aligned count matrix. ‘Passing filter’ denotes the number of these barcodes which further pass a
knee plot filter. ‘Glutamatergic’ populations exclude the low-abundance cell subtypes L6 IT Car3
and L5 ET.

Dataset Cell type Cell subtype Cells in meta Cells in data Passing filter

B08 — — 8424 8424 7808
B08 Glutamatergic — 5357 5357 5343
B08 Glutamatergic L2/3 IT 823 823 823
B08 Glutamatergic L5 IT 2395 2395 2382
B08 Glutamatergic L6 IT 489 489 489
B08 Glutamatergic L5/6 NP 251 251 250
B08 Glutamatergic L6 CT 1333 1333 1333

C01 — — 10173 10138 9066
C01 Glutamatergic — 6676 6673 6604

F08 — — 9112 9112 8510
F08 Glutamatergic — 5904 5904 5892

H12 — — 6866 6865 6161
H12 Glutamatergic — 4508 4508 4497

8.1 Data processing

To obtain spliced and unspliced count matrices, we processed four pre-annotated mouse brain
datasets released by the Allen Institute for Brain Science [60,61]. We used kallisto|bustools 0.26.0,
dependent on kallisto 0.46.2 and bustools 0.40.0, to perform all read processing [62,63]. We down-
loaded a pre-built version of the mouse genome released by 10x Genomics (mm10, 2020-A) and used
kallisto|bustools to generate intronic and exonic references (kb ref with the option --lamanno).
Next, we pseudoaligned the dataset FASTQs using the 10x v3 cell barcode whitelist and the default
kallisto|bustools filter (kb count with the options --lamanno, -x 10xv3, and --filter bustools).
This procedure produces a set of loom files containing copy numbers for spliced and unspliced
species [64].

The solutions to our proposed models are probability laws. In order to fit real data, we need
to assume cells are are independent and identically distributed replicates. However, neuronal cell
populations have a substantial amount of internal heterogeneity [60,61]. In order to partially bypass
this challenge, we used the existing cell type annotations to extract barcodes corresponding to
glutamatergic cells and give subtypes. Throughout the analysis, we assume that these populations
are homogeneous in the appropriate statistical sense, and use them to fit probability laws. We
discuss more rigorous extensions in Section 9; simultaneously assigning biophysical parameters and
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cell types is not yet practical, but offers a useful alternative to more ad hoc clustering methods in
future work.

Finally, we use standard filtering to exclude apparent ‘empty droplets.’ Specifically, we omitted
all cells with fewer than 104 total spliced and unspliced molecule counts, based on the knee plots
shown in Supplementary Fig. 7. The resulting cell counts are summarized in Supplementary Table
6. The count matrices typically contained all of the barcodes present in the metadata, with a single
cell type (C01 glutamatergic) omitting three cells. The knee plot filter removed a small number of
cells (between 0 and 69) from each cell type or subtype.

8.2 Gene selection and approximate model identification

To analyze and interpret data on a transcriptome-wide scale, we must identify which genes may have
strong signatures of regulation by one or another mechanism. Given a single-cell RNA sequencing
dataset with counts for tens of thousands of genes, we wish to restrict analysis to a small subset of
particularly informative genes. To accomplish this, we exploit the Akaike information criterion [65].

Given a dataset, it is straightforward to use gradient descent to identify the maximum likelihood
estimate (MLE) in the three-parameter limiting regimes. We fit three models: the high-gain limit
of the Γ-OU model (Eq. 8 with a set to unity), the high-gain limit of the CIR model (Eq. 9
with a set to unity), and the slow mean-reversion limit of both models (Eq. 7 with θ set to unity).
Intuitively, genes effectively described by the first distribution should be Γ-OU-like, genes effectively
described by the second distribution should be CIR-like, and genes effectively described by the third
distribution should be largely indistinguishable with respect to these two models.

For reduced model determination, we use the ‘Akaike weights’ described by Burnham and
Anderson [65]. For a single gene, we can write down an Akaike information criterion (AIC) under
model j:

AICj = −2 logLj(Θ̂j |X) + 2qj , (41)

where Lj is model’s likelihood function, qj = 3 is the number of parameters of model j, and Θ̂j is
the MLE for the parameters of model j – i.e., the optimal values of (b, β, γ) for the first two models
and (α, β, γ) for the final model. Next, we can write down the relative model AICs:

AICmin = min
j

AICj

∆j = AICj −AICmin

(42)

Finally, we define the approximate model probabilities, or Akaike weights:

wj =
exp

(
−1

2∆j

)∑
k exp

(
−1

2∆k

) (43)

The calculation of Θ̂j is implemented in the Monod package [66]. We separately fit five glutamater-
gic cell subtypes of the mouse brain dataset B08 [60, 61], restricted to the populations with more
than 100 cells, comprising L2/3 IT, L5 IT, L6 IT, L5/6 NP, and L6 CT neurons. We used a model
with no technical noise, and fit 3,677 genes with moderate to high expression. Next, we identi-
fied the maximum likelihood estimates by minimizing the Kullback-Leibler divergence between the
models and spliced and unspliced data using gradient descent with bounds [−2, 4.2] for log10 b and
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log10 α, [−2, 2.5] for log10 β, and [−2, 3.5] for log10 γ, a set of uninformative domains spanning over
four orders of magnitude. The gradient descent algorithm was permitted to run for 15 iterations.
The first search was initialized at the method of moments estimates given in Table S2 of [66];
four further searches were started at points randomly chosen throughout the domain according
to a uniform law. The underlying integration (order-60 Gaussian quadrature) and optimization
(L-BFGS-B) algorithms were implemented in SciPy [67].

With these MLEs, we computed the AIC weights, and assigned genes with wj > thrj in all five
of the cell subtypes to model j, with thr = (0.99, 0.6, 0.4). These thresholds were chosen manually
to balance the numbers of genes per model, as the bursty regime tended to predominate. Next,
we performed goodness-of-fit testing to select genes with the best fits to their ‘optimal’ models.
We binned the spliced and unspliced count microstates using a minimum expected and observed
copy number of 5. We computed the chi-squared statistic for each fit, identified the highest rank
achieved by each gene across the cell subtypes, and sorted the gene lists by this measure. Finally, we
extracted the 35 lowest-rank genes in each list. The ‘mixture-like’ category contained only 10 genes
that met the wj threshold, all of which were analyzed. This procedure yielded a set of genes that
simultaneously achieved a superior fit with a particular reduced model and did not demonstrate
gross inconsistency with the data under this model.

8.3 Likelihood ratio computation

After using Monod to identify genes of interest, we fit the full CIR and Γ-OU models, identified the
maximum likelihood parameter estimates, and computed likelihood ratios. This calculation was
performed on the union of the five subtypes considered above, using four datasets (Supplementary
Table 6). To compute the MLEs, we fit each of the full four-parameter models to spliced and
unspliced data using gradient descent to minimize the Kullback-Leibler divergence, with bounds
[−2, 2] for the coordinates log10 θ, log10 β, log10 κ, and log10 γ, setting a = 1 at steady state. The
gradient descent procedure used 15 restarts and a maximum of 20 iterations, with the first search
initialized at the data-based method of moments (MoM) parameter estimates. The optimization
algorithm (L-BFGS-B) was implemented in SciPy [67]. The integration routines used a combination
of order-60 Gaussian quadrature and Runge-Kutta quadrature, implemented in SciPy [67] and
NumPy [68].

Based on Table 1, we used the following MoM estimates for θ, β, κ, and γ (under the constraint
⟨K⟩ = 1):

β̂ =
1

µN

γ̂ =
1

µM

κ̂ =
β

σ2
M−µM
σ2
N−µN

µN (β+γ)
µMβ − 1

− γ

θ̂ =
κ̂+ β̂

µN
(σ2N − µN )

To obtain the estimates in the units of a, we computed â := κ̂/θ̂, then divided all of the parameters

64



by â. To calculate the likelihood ratios, we evaluated the data log-likelihoods at the parameter
MLEs for each model.

In several cases, the gradient descent procedure failed to converge to a satisfactory MLE. To
avoid potentially arbitrary or biased goodness-of-fit testing relatively late in the analysis, we did
not further filter the data, beyond discarding cases with absolute log-likelihood ratios above 150.
This threshold appeared to be sufficient to discard cases of evident convergence failure, as shown
in Supplementary Figs. 8–37.

8.4 Bayesian model identification

To ensure that the likelihood ratios are accurate, and not distorted either by optimization failures
or by the omitted uncertainty in the parameter estimates, we computed Bayes factors (BFs) for a
subset of genes. The BF is defined as follows:

BF :=
P (X|CIR)
P (X|Γ-OU)

=

∫
P (Θ|CIR)P (X|Θ,CIR)dΘ∫

P (Θ|Γ-OU)P (X|Θ,Γ-OU)dΘ
, (44)

where X is data, Θ is a generic multivariate vector that parametrizes the stationary molecule
distributions under the Γ-OU and CIR models, P (Θ|·) is a prior distribution, and P (X|Θ, ·) is the
data likelihood. The BF is equal to the likelihood ratio when Θ is deterministic and localized to
the MLE.

To use this definition, we need to specify Θ. As shown in Section 7, we can set r = ⟨K⟩
and assume ⟨K⟩ = 1 without loss of generality at steady state. Next, we define a set of non-
dimensionalized parameters restricted to (0, 1):

x =
κ

κ+ β + γ

y =
θ

θ + a

z =
1

1 + β

q =
1

1 + γ
.

(45)

In this formulation, Θ = (x, y, z, q). Given a value of Θ, we can recover β from z, and γ from
q; κ can be computed from x, β, and γ. Finally, θ and a can be calculated by recalling that
⟨K⟩ := 1 = aθ/κ. We adopt a uniform prior, such that the probability density function P (Θ|·) is
constant on the domain, and restrict the analysis to [0.005, 0.995]4 to limit the effect of numerical
stiffness. We ran a single chain of non-gradient Monte Carlo sampling per sample per gene in the
12-gene set, implemented in PyMC3 [69]. To compute the log-Bayes factor defined in Eq. 44, we
evaluated the difference of the marginal log-likelihoods of the two models.
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9 Modular extensions

We have focused on a class of relatively simple models that meet the following criteria:

• Two-stage RNA processing: We model the RNA life-cycle using a model that includes splicing
of the nascent transcript and degradation of the mature transcript, but no other reactions.

• Equilibrium: We seek the ergodic distribution, or the probability law to which the process
converges as t → ∞. We presuppose the existence of such a law, so we omit a range of
phenomena, including the cell cycle.

• Homogeneity: We are typically interested in describing the copy-number distribution at a
single internally homogeneous ‘cell type.’ In the language of probability, we assume that
the parameters a, κ, θ, β, γ are constant and deterministic. In the language of statistics,
we assume that observations of every biological system we consider are independent and
identically distributed.

• Perfect sampling: We omit any variation induced by the chemistry of the experiment.

We analyze the system under these criteria for two reasons. Firstly, it is, in principle, possible to
obtain data from systems that meet some or all of these assumptions. For example, it is relatively
straightforward to obtain a single-cell sequencing dataset from a tissue expected to have negligible
cell cycle dynamics (e.g., brain or blood), identify distinct subpopulations according to a small set
of high-expression cell type markers (e.g., CD4 in CD4+ T lymphocytes), quantify unspliced and
spliced RNA, make the assumption that splicing is approximately Markovian, and fit the bivariate
model to the resulting molecule counts.

Secondly, certain narrow classes of phenomena are ‘modular’ with respect to the solutions
outlined in Section 3, as they require only slight modifications. Including some or all of these
modifications entails ‘assembling’ components of the generating function of the process of interest.
In the current section, we outline some of these phenomena, the strategies that can be used to
evaluate their probabilities, as well as preliminary proposals for inferring their biological parameters.

The Γ-OU and CIR solutions extend to arbitrary directed acyclic graphs of splicing and degra-
dation with no loss of generality. Specifically, our typical reaction system involves the following
dynamics downstream of the promoter:

N β−→M γ−→ ∅. (46)

This system corresponds to the following PDE characteristic:(
uN −

β

β − γ uM
)
e−βs +

β

β − γ uMe
−γs, (47)

which appears in Supplementary Eqs. 3 and 6 as U1. More general downstream processes can be
incorporated by defining a more general U1 according to Eqs. 12 and 13 of [9]. For example, if the
degradation of nascent transcripts competes with splicing – i.e., the system includes the reaction
N γN−−→ ∅ – the following characteristic should be used to solve the system:(

uN −
β

β + γN − γ
uM

)
e−(β+γN )s +

β

β + γN − γ
uMe

−γs. (48)
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Non-equilibrium distributions of processes started at K = xN = xM = 0 can be evaluated by taking
the integrals in Supplementary Eqs. 2 and 5 up to a finite time horizon t instead of t =∞, resulting
in the homogeneous log-generating function ϕh. Similarly, processes started at a joint distribution
with log-generating function ϕinit(uN , uM , h) can be evaluated by exploiting the independence of
increments:

ϕ(uN , uM , h, t) = ϕh(uN , uM , h, t) + ϕinit(U1(t), U2(t), U0(t)). (49)

As discussed in [70], this identity can be used to represent certain simple models of the cell cycle.
A mathematical treatment of this phenomenon requires specifying the impact of division of the cell
state. The behavior of the discrete degrees of freedom is fairly well-understood, and typical models
use simple binomial partitioning of molecules between daughter cells. However, the appropriate way
to treat the continuous degree of freedom is not clear, and it is likely that neither of the SDE models
would accurately represent cell division: DNA decondensation and nuclear dissolution contradict
the models’ basic assumptions. Therefore, the models are best applied to relatively stationary cell
populations.

Certain simple models of heterogeneity can be treated using hierarchical mixture models. Sup-
plementary Eqs. 2 and 5 demonstrate that the PGF is infinitely divisible with respect to the
average promoter strength ⟨K⟩. Therefore, if the cell-specific, time-averaged promoter strength is
a static random variable with MGF M⟨K⟩, the overall PGF takes the form M⟨K⟩(ϕ

∗), where ϕ∗

is computed assuming ⟨K⟩ = 1. Similarly, if multiple cell types with fractional abundances wj
and distinct PGFs ψj are present in the system, the overall PGF is

∑
j wjψj . These identities are

immediate consequences of these model structures, and follow from Eqs. 41 and 45 of [9]. More
generic models of heterogeneity (similar to Eq. 40 of [9]) can be defined, but do not typically afford
computable solutions.

Under the assumption of independent and identically distributed observations, a broad class
of models of technical noise can be defined and solved. From standard properties of probability
generating functions, if the number of observed molecules resulting from a single molecule of N has
the PGF ψN , the overall PGF is simply ϕ evaluated at gN = ψN and gM = ψM [71]. For example,
if each molecule of N has probability pN of being observed in silico, and each molecule ofM has
the corresponding probability pM , the stationary PGF takes the form ϕss(pNuN , pMuM ).
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10 Supplementary figures

10.1 Theory and simulation

Supplementary Fig. 1: Comparison of theoretical and simulated autocorrelation functions. First
row: autocorrelation of N counts at equilibrium. Second row: autocorrelation of M counts at
equilibrium.
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Supplementary Fig. 2: Γ-OU simulation results in six regimes, compared to steady-state solutions
obtained by numerical integration and exact closed-form solutions to limiting cases. The simula-
tions closely match the analytical results.
Top row: transcription rate time series (black line: mean of all simulation; grey line: single simu-
lation, red dashed line: expected stationary mean). Second row: nascent RNA stationary distribu-
tions (grey histogram: observed distribution; red line: expected analytical distribution; dashed blue
line: limiting regime solution). Third row: mature RNA stationary distributions. Bottom row: em-
pirical joint distribution (color: log analytical joint probability mass function (PMF); black points:
cells; normal jitter with σ = 0.05 added).

10.2 Data analysis
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Supplementary Fig. 3: CIR simulation results in six regimes, compared to steady-state solutions
obtained by numerical integration and exact closed-form solutions to limiting cases. The simulations
closely match the analytical results; the intrinsic regime converges to distributions distinct from
the corresponding Γ-OU limit.
All parameters and conventions as in Supplementary Fig. 2. Gold dashed line: OU-IG solution.
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Supplementary Fig. 4: Detail of Supplementary Fig. 3 demonstrating the performance of the
inverse-Gaussian-driven Ornstein–Uhlenbeck process solution.
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Supplementary Fig. 5: Nascent extrinsic noise fraction in different parameter regimes. Top row,
first two panels: in the slow reversion and high gain limiting regimes, as the relevant parameter
combinations are increased; α denotes a/κ, and b denotes θ/κ as elsewhere. Top row, second two
panels: as the qualitative regime variables x and y are increased (with the other held fixed). Bottom
row: as a function of both x and y, for different values of the average transcription rate ⟨K⟩.
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Supplementary Fig. 6: Average log Bayes factors in different circumstances. a. A reproduction of
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original, but with a higher average transcription rate. d. Similar to original, but with the values
of β and γ swapped. In all cases, the results look qualitatively like the results from a.
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Supplementary Fig. 7: Knee plots for data obtained from pseudoalignment (subplots: mouse
datasets; black: cell rank/molecule number relationship; red lines: filtering threshold, 104 UMIs
per cell).
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Supplementary Fig. 8: Dataset B08, Γ-OU-like genes, unspliced count data and fits (histograms:
raw marginal data; red lines: Γ-OU best fits; blue lines: CIR best fits; title: gene name and log-
likelihood ratio at MLEs; ‘rej.’: whether the gene is omitted from analysis due to log-likelihood
ratio magnitude above 150).
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Supplementary Fig. 9: Dataset B08, Γ-OU-like genes, spliced count data and fits (histograms:
raw marginal data; red lines: Γ-OU best fits; blue lines: CIR best fits; title: gene name and log-
likelihood ratio at MLEs; ‘rej.’: whether the gene is omitted from analysis due to log-likelihood
ratio magnitude above 150).
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Supplementary Fig. 10: Dataset B08, CIR-like genes, unspliced count data and fits (histograms:
raw marginal data; red lines: Γ-OU best fits; blue lines: CIR best fits; title: gene name and log-
likelihood ratio at MLEs; ‘rej.’: whether the gene is omitted from analysis due to log-likelihood
ratio magnitude above 150).
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Supplementary Fig. 11: Dataset B08, CIR-like genes, spliced count data and fits (histograms: raw
marginal data; red lines: Γ-OU best fits; blue lines: CIR best fits; title: gene name and log-
likelihood ratio at MLEs; ‘rej.’: whether the gene is omitted from analysis due to log-likelihood
ratio magnitude above 150).
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Supplementary Fig. 12: Dataset B08, mixture-like genes, unspliced count data and fits (histograms:
raw marginal data; red lines: Γ-OU best fits; blue lines: CIR best fits; title: gene name and log-
likelihood ratio at MLEs; ‘rej.’: whether the gene is omitted from analysis due to log-likelihood
ratio magnitude above 150).

Supplementary Fig. 13: Dataset B08, mixture-like genes, spliced count data and fits (histograms:
raw marginal data; red lines: Γ-OU best fits; blue lines: CIR best fits; title: gene name and log-
likelihood ratio at MLEs; ‘rej.’: whether the gene is omitted from analysis due to log-likelihood
ratio magnitude above 150).
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Supplementary Fig. 14: Dataset C01, Γ-OU-like genes, unspliced count data and fits (histograms:
raw marginal data; red lines: Γ-OU best fits; blue lines: CIR best fits; title: gene name and log-
likelihood ratio at MLEs; ‘rej.’: whether the gene is omitted from analysis due to log-likelihood
ratio magnitude above 150).
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Supplementary Fig. 15: Dataset C01, Γ-OU-like genes, spliced count data and fits (histograms:
raw marginal data; red lines: Γ-OU best fits; blue lines: CIR best fits; title: gene name and log-
likelihood ratio at MLEs; ‘rej.’: whether the gene is omitted from analysis due to log-likelihood
ratio magnitude above 150).

80



Supplementary Fig. 16: Dataset C01, CIR-like genes, unspliced count data and fits (histograms:
raw marginal data; red lines: Γ-OU best fits; blue lines: CIR best fits; title: gene name and log-
likelihood ratio at MLEs; ‘rej.’: whether the gene is omitted from analysis due to log-likelihood
ratio magnitude above 150).
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Supplementary Fig. 17: Dataset C01, CIR-like genes, spliced count data and fits (histograms: raw
marginal data; red lines: Γ-OU best fits; blue lines: CIR best fits; title: gene name and log-
likelihood ratio at MLEs; ‘rej.’: whether the gene is omitted from analysis due to log-likelihood
ratio magnitude above 150).
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Supplementary Fig. 18: Dataset C01, mixture-like genes, unspliced count data and fits (histograms:
raw marginal data; red lines: Γ-OU best fits; blue lines: CIR best fits; title: gene name and log-
likelihood ratio at MLEs; ‘rej.’: whether the gene is omitted from analysis due to log-likelihood
ratio magnitude above 150).

Supplementary Fig. 19: Dataset C01, mixture-like genes, spliced count data and fits (histograms:
raw marginal data; red lines: Γ-OU best fits; blue lines: CIR best fits; title: gene name and log-
likelihood ratio at MLEs; ‘rej.’: whether the gene is omitted from analysis due to log-likelihood
ratio magnitude above 150).
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Supplementary Fig. 20: Dataset F08, Γ-OU-like genes, unspliced count data and fits (histograms:
raw marginal data; red lines: Γ-OU best fits; blue lines: CIR best fits; title: gene name and log-
likelihood ratio at MLEs; ‘rej.’: whether the gene is omitted from analysis due to log-likelihood
ratio magnitude above 150).
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Supplementary Fig. 21: Dataset F08, Γ-OU-like genes, spliced count data and fits (histograms:
raw marginal data; red lines: Γ-OU best fits; blue lines: CIR best fits; title: gene name and log-
likelihood ratio at MLEs; ‘rej.’: whether the gene is omitted from analysis due to log-likelihood
ratio magnitude above 150).
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Supplementary Fig. 22: Dataset F08, CIR-like genes, unspliced count data and fits (histograms:
raw marginal data; red lines: Γ-OU best fits; blue lines: CIR best fits; title: gene name and log-
likelihood ratio at MLEs; ‘rej.’: whether the gene is omitted from analysis due to log-likelihood
ratio magnitude above 150).
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Supplementary Fig. 23: Dataset F08, CIR-like genes, spliced count data and fits (histograms: raw
marginal data; red lines: Γ-OU best fits; blue lines: CIR best fits; title: gene name and log-
likelihood ratio at MLEs; ‘rej.’: whether the gene is omitted from analysis due to log-likelihood
ratio magnitude above 150).
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Supplementary Fig. 24: Dataset F08, mixture-like genes, unspliced count data and fits (histograms:
raw marginal data; red lines: Γ-OU best fits; blue lines: CIR best fits; title: gene name and log-
likelihood ratio at MLEs; ‘rej.’: whether the gene is omitted from analysis due to log-likelihood
ratio magnitude above 150).

Supplementary Fig. 25: Dataset F08, mixture-like genes, spliced count data and fits (histograms:
raw marginal data; red lines: Γ-OU best fits; blue lines: CIR best fits; title: gene name and log-
likelihood ratio at MLEs; ‘rej.’: whether the gene is omitted from analysis due to log-likelihood
ratio magnitude above 150).
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Supplementary Fig. 26: Dataset C01, Γ-OU-like genes, unspliced count data and fits (histograms:
raw marginal data; red lines: Γ-OU best fits; blue lines: CIR best fits; title: gene name and log-
likelihood ratio at MLEs; ‘rej.’: whether the gene is omitted from analysis due to log-likelihood
ratio magnitude above 150).
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Supplementary Fig. 27: Dataset C01, Γ-OU-like genes, spliced count data and fits (histograms:
raw marginal data; red lines: Γ-OU best fits; blue lines: CIR best fits; title: gene name and log-
likelihood ratio at MLEs; ‘rej.’: whether the gene is omitted from analysis due to log-likelihood
ratio magnitude above 150).
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Supplementary Fig. 28: Dataset C01, CIR-like genes, unspliced count data and fits (histograms:
raw marginal data; red lines: Γ-OU best fits; blue lines: CIR best fits; title: gene name and log-
likelihood ratio at MLEs; ‘rej.’: whether the gene is omitted from analysis due to log-likelihood
ratio magnitude above 150).
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Supplementary Fig. 29: Dataset C01, CIR-like genes, spliced count data and fits (histograms: raw
marginal data; red lines: Γ-OU best fits; blue lines: CIR best fits; title: gene name and log-
likelihood ratio at MLEs; ‘rej.’: whether the gene is omitted from analysis due to log-likelihood
ratio magnitude above 150).
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Supplementary Fig. 30: Dataset C01, mixture-like genes, unspliced count data and fits (histograms:
raw marginal data; red lines: Γ-OU best fits; blue lines: CIR best fits; title: gene name and log-
likelihood ratio at MLEs; ‘rej.’: whether the gene is omitted from analysis due to log-likelihood
ratio magnitude above 150).

Supplementary Fig. 31: Dataset C01, mixture-like genes, spliced count data and fits (histograms:
raw marginal data; red lines: Γ-OU best fits; blue lines: CIR best fits; title: gene name and log-
likelihood ratio at MLEs; ‘rej.’: whether the gene is omitted from analysis due to log-likelihood
ratio magnitude above 150).
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Supplementary Fig. 32: Dataset H12, Γ-OU-like genes, unspliced count data and fits (histograms:
raw marginal data; red lines: Γ-OU best fits; blue lines: CIR best fits; title: gene name and log-
likelihood ratio at MLEs; ‘rej.’: whether the gene is omitted from analysis due to log-likelihood
ratio magnitude above 150).
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Supplementary Fig. 33: Dataset H12, Γ-OU-like genes, spliced count data and fits (histograms:
raw marginal data; red lines: Γ-OU best fits; blue lines: CIR best fits; title: gene name and log-
likelihood ratio at MLEs; ‘rej.’: whether the gene is omitted from analysis due to log-likelihood
ratio magnitude above 150).
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Supplementary Fig. 34: Dataset H12, CIR-like genes, unspliced count data and fits (histograms:
raw marginal data; red lines: Γ-OU best fits; blue lines: CIR best fits; title: gene name and log-
likelihood ratio at MLEs; ‘rej.’: whether the gene is omitted from analysis due to log-likelihood
ratio magnitude above 150).
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Supplementary Fig. 35: Dataset H12, CIR-like genes, spliced count data and fits (histograms: raw
marginal data; red lines: Γ-OU best fits; blue lines: CIR best fits; title: gene name and log-
likelihood ratio at MLEs; ‘rej.’: whether the gene is omitted from analysis due to log-likelihood
ratio magnitude above 150).
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Supplementary Fig. 36: Dataset H12, mixture-like genes, unspliced count data and fits (histograms:
raw marginal data; red lines: Γ-OU best fits; blue lines: CIR best fits; title: gene name and log-
likelihood ratio at MLEs; ‘rej.’: whether the gene is omitted from analysis due to log-likelihood
ratio magnitude above 150).

Supplementary Fig. 37: Dataset H12, mixture-like genes, spliced count data and fits (histograms:
raw marginal data; red lines: Γ-OU best fits; blue lines: CIR best fits; title: gene name and log-
likelihood ratio at MLEs; ‘rej.’: whether the gene is omitted from analysis due to log-likelihood
ratio magnitude above 150).
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Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Hen-
riksen, E. A. Quintero, Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian
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