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APPENDIX A
MODEL ABLATIONS

We ran two ablation studies to understand factors that
influence our methods’ performance. First, we tested the
cMLP and cLSTM with different numbers of hidden units
on the Lorenz-96 data. Table 1 shows the AUROC results
from a single run for two datasets with forcing constants
F ∈ (10, 40) and time series length T = 1000, using differ-
ent numbers of hidden units, H ∈ (5, 10, 25, 50, 100). The
results reveal that both models are robust to a small number
of hidden units, but that their performance improves with
larger values of H . These findings suggest that overpa-
rameterization can help with the nonconvex optimization
objective, leading to solutions that achieve high predictive
accuracy while minimizing the penalty from the sparsity-
inducing regularizer.

Next, we tested three approaches for optimizing our
penalized objectives (Equations 8 and 15). We compared
standard gradient descent with Adam [1] to proximal gradi-
ent descent (ISTA) [2] and proximal gradient descent with a
line search (GIST) [3] on the Lorenz-96 data with T = 1000
time points. Table 2 displays AUROC results across five
initializations for two forcing constants F ∈ (10, 40), using
the cMLP with H = 10 hidden units. The results show that
the three methods lead to similar results for both F = 10
and F = 40, although we did not compare the optimizers in
other scenarios, e.g., with lower T values or with the cLSTM.

Among these optimization approaches, Adam is fastest
due to its adaptive learning rate, but it requires a parameter
for thresholding the resulting weights (while the proximal
methods lead to exact zeros). In contrast, GIST guarantees
convergence to a local minimum and is less sensitive to
the learning rate parameter, but it is also considerably
slower than Adam and ISTA. We therefore use standard
proximal gradient descent, or ISTA, in the remainder of
our experiments, because it leads to exact zeros while being
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TABLE 1
AUROC comparisons for the cMLP and cLSTM as a function of the
number of hidden units H for simulated Lorenz-96 data. Results are

calculated using a single run.

Model cMLP cLSTM

F 10 40 10 40

H = 5 96.5 91.0 91.9 86.9
H = 10 98.0 94.0 94.5 91.5
H = 25 98.4 94.3 95.6 92.3
H = 50 98.3 94.4 95.7 93.8
H = 100 98.5 94.5 95.7 95.2

more efficient than GIST. In practice, this means running
Algorithm 1 or Algorithm 4 using a fixed learning rate γ
rather than determining it by a line search.

APPENDIX B
BASELINE METHODS

The IMV-LSTM uses an attention mechanism to highlight
the model’s dependence on different parts of the input [4].
We train a separate IMV-LSTM model to predict each time
series using all the time series as inputs, using the “IMV-
Full” variant [4], and we use the attention weights from
the trained models to infer Granger causal relationships.
Similar to the original work [5], we record the empirical
mean of the attention values for each input time series for
each model, and we construct a p× p matrix of these values
for the separate IMV-LSTMs. We then sweep over a range
of threshold values to determine the most influential inputs
for each IMV-LSTM, and we trace out an ROC curve from
which we calculate AUROC values.

The LOO-LSTM baseline is based on the idea that with-
holding a highly predictive input should result in a decrease
in predictive accuracy, a direction that has been explored for
providing model-agnostic notions of feature importance [6],
[7]. We begin by training separate LSTM models to predict
each time series using all time series as inputs. We then train
separate LSTM models to predict each time series i using all
inputs except time series j, and we record the increase in
loss when the jth time series is withheld. Using the results,
we construct a p × p matrix representing the differences
in the loss, we sweep over a range of threshold values to
determine the most influential inputs for each time series,
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TABLE 2
AUROC comparisons between different optimization approaches for

the cMLP with simulated Lorenz-96 data. Results are the mean across
five initializations, with 95% confidence intervals.

F 10 40

GISTA 98.0 ± 0.2 93.8 ± 0.3
ISTA 98.0 ± 0.2 94.1 ± 1.9
Adam 98.3 ± 0.1 95.1 ± 0.2

and we trace out an ROC curve from which we calculate
AUROC values.
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