Supplementary Material

8.1 Cohort tutorial model components

8.1.1 Table I

This table contains an overview of the key model components used in the code for the Sick-Sicker example from the DARTH manuscript: "An Introductory Tutorial on Cohort State-Transition Models in R Using a Cost-Effectiveness Analysis Example". The first column gives the mathematical notation for some of the model components that are used in the equations in the manuscript. The second column gives a description of the model component with the R name in the third column. The forth gives the data structure, e.g. scalar, list, vector, matrix etc, with the according dimensions of this data structure in the fifth column. The final column indicated the type of data that is stored in the data structure, e.g. numeric (5.2,6.3,7.4), category (A,B,C), integer (5,6,7), logical (TRUE, FALSE).

Parameter	Description	R name	Data structure	Dimensions	Data type
$\overline{n_t}$	Time horizon	n_cycles	scalar		numeric
	Cycle length	cycle_length	scalar		numeric
v_s	Names of the health states	v_names_states	vector	n_states x 1	character
n_s	Number of health states	n_states	scalar		numeric
v_{str}	Names of the strategies	v_names_str	scalar		character
n_{str}	Number of strategies	n_str	scalar		character
d_c	Discount rate for costs	d_c	scalar		numeric
d_e	Discount rate for effects	d_e	scalar		numeric
$\mathbf{d_c}$	Discount weights vector for costs	v_dwc	vector	$(n_t x 1) + 1$	numeric
$\mathbf{d}_{\mathbf{e}}$	Discount weights vector for effects	v_dwe	vector	$(n_t x 1) + 1$	numeric
	Sequence of cycle numbers	v_cycles	vector	$(n_t x 1) + 1$	numeric
wcc	Within-cycle correction weights	v_wcc	vector	$(n_t x 1) + 1$	numeric
age_0	Age at baseline	n_age_init	scalar		numeric
age	Maximum age of follow up	n_age_max	scalar		numeric
M	Cohort trace	m_M	matrix	$(n_t + 1) \ge n_s$ tates	numeric
m_0	Initial state vector	v_m_init	vector	$1 \ge n$ _states	numeric
m_t	State vector in cycle t	 v_mt	vector	1 x n_states	numeric

Parameter	Description	R name	Data structure	Dimensions	Data type
	Transition rates and probabilities				
$r_{[H,S1]}$	Constant rate of becoming Sick when	r_HS1	scalar		numeric
	Healthy				
$r_{[S1,H]}$	Constant rate of getting Healthy when Sick	r_S1H	scalar		numeric
$r_{[S1,S2]}$	Constant rate of getting Sicker when Sick	r_S1S2	scalar		numeric
$r_{[S1,S2]_{trtB}}$	From Sicker to Sick under treatment B conditional on surviving	r_S1S2_trtB	scalar		numeric
$r_{[H,D]}$	Constant rate of dying when Healthy (all-cause mortality rate)	r_HD	scalar		numeric
$r_{[S1,S2]}$	Constant rate of becoming Sicker when Sick	r_S1S2	scalar		numeric
$r_{[S1,S2]_{trtB}}$	Constant rate of becoming Sicker when Sick for treatment B	r_S1S2_trtB	scalar		numeric
$p_{[H,S1]}$	Probability from Healthy to Sick conditional on surviving	p_HS1	scalar		numeric
$\mathcal{O}_{[S1,H]}$	Probability from Sick to Healthy conditional on surviving	p_S1H	scalar		numeric
$P_{[S1,S2]}$	Probability from Sick to Sicker conditional on surviving	p_S1S2	scalar		numeric
$P[S1,S2]_{trtB}$	Probability from Sicker to Sick under treatment B conditional on surviving	p_S1S2_trtB	scalar		numeric
$r_{[S1,H]}$	Hazard ratio of death in Sick vs Healthy	hr_S1	scalar		numeric
$nr_{[S2,H]}$	Hazard ratio of death in Sicker vs Healthy	hr_S2	scalar		numeric
$hr_{[S1,S2]_{trtB}}$	Hazard ratio of becoming Sicker when Sick under treatment B	hr_S1S2_trtB	scalar		numeric
Ρ	Time-independent transition probability matrix [*]	m_P	matrix	n_states x n_states	numeric
	* _trtX is used to specify for which strategy the transition probability matrix is				

Annual costs

Parameter	Description	R name	Data structure	Dimensions	Data type
	Healthy individuals	c_H	scalar		numeric
	Sick individuals in Sick	c_S1	scalar		numeric
	Sick individuals in Sicker	c_S2	scalar		numeric
	Dead individuals	c_D	scalar		numeric
	Additional costs treatment A	c_trtA	scalar		numeric
	Additional costs treatment B	c_trtB	scalar		numeric
	Vector of state costs for a strategy	v_c_str	vector	$1 \ge n_states$	numeric
	list that stores the vectors of state costs for	l_c	list		numeric
	each strategy				
	Utility weights				
	Healthy individuals	u_H	scalar		numeric
	Sick individuals in Sick	u_S1	scalar		numeric
	Sick individuals in Sicker	u_S2	scalar		numeric
	Dead individuals	u_D	scalar		numeric
	Treated with treatment A	u_trtA	scalar		numeric
	Vector of state utilities for a strategy	v_u_str	vector	$1 \ge n_states$	numeric
	List that stores the vectors of state utilities	l_u	list		numeric
	for each strategy				
	Outcome structures				
	Expected QALYs per cycle under a strategy	v_qaly_str	vector	$1 \ge (n_t + 1)$	numeric
	Expected costs per cycle under a strategy	v_cost_str	vector	$1 \ge (n_t + 1)$	numeric
	Vector of expected discounted QALYs for each strategy	v_tot_qaly	vector	$1 \ge n_states$	numeric
	Vector of expected discounted costs for each strategy	v_tot_cost	vector	$1 \ge n_\texttt{states}$	numeric
	Summary matrix with costs and QALYS per strategy	m_outcomes	table	n_states x 2	
	Summary of the model outcomes	df_cea	data frame		

Parameter	Description	R name	Data structure	Dimensions	Data type
	Summary of the model outcomes	table_cea	table		
	Probabilistic analysis structures				
	Number of PSA iterations	n_sim	scalar		numeric
	List that stores all the values of the input parameters	l_params_all	list		numeric
	Data frame with the parameter values for each PSA iteration	df_psa_input	data frame		numeric
	Vector with the names of all the input parameters	v_names_params	vector		character
	List with the model outcomes of the PSA for all strategies	l_psa	list		numeric
	Vector with a sequence of relevant willingness-to-pay values	v_wtp	vector		numeric
	Data frame to store expected costs and effects for each strategy from the PSA	df_out_ce_psa	data frame		numeric
	Data frame to store incremental cost-effectiveness ratios (ICERs) from the PSA	df_cea_psa	data frame		numeric
	For more details about the PSA structures read dampack's vignettes				