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General simulation details

All molecular dynamics (MD) simulations were performed in the Large-scale Atomic/Molecular

Massively Parallel Simulator (LAMMPS).S1 The simulations of the one- and two-dimensional

models were performed in the canonical (NVT) ensemble at a temperature T = 300K, using

a Langevin thermostat with a friction coefficient γ = 0.01 fs−1. The integration time step

was 1 fs. We simulated a single particle with mass m = 40 g mol−1, representing an argon

atom. 50000 trajectories were sampled for every model system presented in the main text or

in the SI. We checked whether a transition occurred every 1 ps for simulations without re-

setting, and every 0.1 ps for all simulations with resetting except those with rate r = 8 ps−1,

for which we checked every 0.05 ps.

The simulations of an isolated alanine dipeptide molecule were performed at 300K using

a time step of 2 fs with a Nosé-Hoover chains thermostatS2 and a temperature damping
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parameter of 100∆t. The condition for the FPT was checked every 100 time steps. We

used the AMBER99SB force field. Available GROMACS input files for this systemS3 were

converted to LAMMPS format using Intermol.S4 With them, we obtain a free energy dif-

ference between the conformers of ∼ 9 kJ mol−1, which is in reasonable agreement with

reference values.S5 The FPT distributions with and without resetting were obtained from

10000 trajectories each. For the trajectories without resetting, 307 trajectories did not show

a transition within 4µs. They are not plotted in the probability density of Fig. 1 but are

included in calculating the mean FPT and speedup. We note that, as a result, the speedup

gained by resetting that we report for alanine dipeptide is a lower bound.

Implementation of stochastic resetting

Stochastic resetting (SR) was implemented in the input files as explained below. A stopping

mechanism after the first transition was also incorporated through the LAMMPS input. The

initial velocities, and their values after each reset event, were sampled from the Maxwell-

Boltzmann distribution at the relevant temperatures using Python. For Poisson resetting,

waiting times between resets were also sampled using Python, from an exponential distri-

bution, f (τ) = re−rτ , where r is the restart rate. Below, we give a simplified example of

the implementation for a two-dimensional simulation with only three reset events for clarity.

The initial position in this example is fixed at (1, 0) Å and the first transition (passage) is

defined as crossing x = 0 Å. Full example input files are given in the corresponding GitHub

repository.S6

variable resetTimes index 9 133 22 # Waiting times between resets in ps

variable initialX equal 1

variable initialY equal 0

variable initialVx index -0.00113 0.00278 0.00650

variable initialVy index 0.00120 0.00233 -0.000394
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variable reactionCoordinate equal "x[1]" # The x coordinate of the particle

variable passageCriterion equal 0

label mainLoop

variable a loop 3 # Loop over total number of reset events

label innerLoop

variable b loop ${resetTimes}

run 1000 # Run for 1ps and check whether a transition occurred

if "(${reactionCoordinate} < ${passageCriterion})" then &

"jump SELF break"

next b

jump SELF innerLoop

set atom 1 x ${initialX} y ${initialX} vx ${initialVx} vy ${initialVy} # Reset...

next a

next Vx

next Vy

next resetTimes

jump SELF mainLoop

label break

print "ALL DONE"
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Laplace transforms for the inverse Gaussian distribution

We used Eq. 1 for the inverse Gaussian probability density function. The expression for its

analytical Laplace transform is given in Eq. 2. We used the parameters L = 1000, V = 1 ps−1

and D = 12500 ps−1, which lead to a mean FPT of 1ns and a coefficient of variation (COV)

of 5. In the context of drift diffusion, L is the initial distance from the boundary, V is the

drift velocity and D is the diffusion constant.

f(τ) =
L√

4πDτ 3
exp

(
−(L− V τ)2

4Dτ

)
(1)

f̃(s) = exp

(
L

2D
·
(
V −

√
V 2 + 4Ds

))
(2)

To evaluate the Laplace transform of the inverse Gaussian distribution numerically, sim-

ulations of first-passage times (FPT) were performed in Python using ScipyS7 . Trajectories

at a reset rate r∗ were obtained in the following way: At each step, we sampled a new passage

time τpassage and a new reset time τreset from their corresponding distributions. If we found

τpassage < τreset, it meant that there has been a passage before the next reset time. τpassage

was added to the overall simulation time and the simulation was stopped. Otherwise, it

meant that the process was restarted before a transition occurred. τreset was then added to

the overall simulation time and we proceeded to sample new values of τreset and τpassage. We

continued this procedure until we encountered a successful passage, τpassage < τreset.

Model potentials

Here we present the exact equations and parameters of the chosen model potentials. The

parameters are given such that spatial distances are in Å and potential energies are in units

of 1 kBT for a temperature of 300K.

The one dimensional double-well is described by Eq. 3, with A = 1×10−4, B = 1, C = 1.
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V (x) = Ax2 +B exp
(
−Cx2

)
(3)

The form of the two dimensional potential introduced by Gimondi et al.S8 is given in

Eq. 4. Most of the parameters are taken as chosen there: x1 = 2.5, x2 = −2.5, σ1 = 1.3,

σ2 = 1.3, y1 = 0, y2 = 0, λ2 = 1. To make the right basin broader, we used a larger value of

λ1 = 2000, and a smaller coefficient for the y-coordinate harmonic spring. In order to achieve

an accessible mean FPT in the absence of resetting, we slightly increased the coefficient for

the x-coordinate harmonic spring, and lowered the barrier and chose A1 = A2 = 41.

V (x, y) = −
2∑

i=1

Ai exp

(
−(x− xi)

2

2σ2
i

− (y − yi)
2

2λ2
i

)
+ 6.7x2 + 8.4× 10−4y2 (4)

The modified Wolfe-Quapp potential is of the form given in Eq. 5. We modified the

original potentialS9 by replacing the x coordinate with a rescaled x′ = x/15, increasing the

coefficients of the linear terms in both coordinates, and multiplying the resulting potential

by a factor of 1.5. These modifications were done in order to achieve two remote, distinct

sub-states with similar stability in the lower basin.

V (x, y) = 1.5
(
x′4 + y4 − 2x′2 − 4y4 + 1.5x′ + 1.2y + x′y

)
(5)

Derivation of Eq. 1 of the main text

Here, we will derive Eq. 1 from the main text, which connects the mean FPT at reset rates

r, ⟨τ⟩r, to the FPT distribution at some reset rate r∗, denoted by fr∗(τ). We begin with

Eq. 6, derived by Reuveni,S10 which connects the FPT distribution without resetting of a

random process, f(τ), to its mean FPT with Poisson resetting at rate r, through

⟨τ⟩r =
1− f̃(r)

rf̃(r)
, (6)
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which is identical to Eq. 1 of the main text for r∗ = 0. This equation holds for any

distribution f(τ), including the special case f(τ) = fr∗(τ). Consequently, we may treat the

process with reset rate r∗ as if it is an unbiased random process and ask what happens when

adding a resetting procedure with rate r′ to it. We rewrite the equation above for this special

case in Eq. 7. The new notation emphasizes that r′ is independent of r∗ and receives any

values r′ ≥ 0, as opposed to r in Eq. 1 of the main text, which only receives r ≥ r∗. We

signify the two independent resetting procedures by two subscripts in the left-hand side of

the equation.

⟨τ⟩r∗,r′ =
1− f̃r∗(r

′)

r′f̃r∗(r′)
(7)

What is the distribution of the resulting resetting times? We combined two resetting

procedures, each an individual Poisson process with reset times sampled from an exponential

distribution, with a rate r∗ or r′. Due to the additive property of Poisson processes, this

results in another Poisson process, with rate r = r∗ + r′.S11 Thus, the combined effect is

equivalent to the introduction of a single resetting rate r = r∗ + r′, meaning ⟨τ⟩r∗,r′ =

⟨τ⟩r∗+r′ = ⟨τ⟩r. Substituting this fact into Eq. 7 yields Eq. 1 of the main text,

⟨τ⟩r =
1− f̃r∗(r − r∗)

(r − r∗) f̃r∗(r − r∗)
. (8)

Inference by extrapolation procedure

In this section we will describe in detail the inference procedure used in the main text to

obtain the unbiased mean FPT values. We will also present alternative procedures we tested

and compare their results. All procedures are based on the FPT distribution with Poisson

resetting at reset rate r∗, obtained from simulations.

The chosen procedure (which we denote as method A) begins with predicting the mean

FPT at eight equally spaced rates in the vicinity of r∗, ⟨τ⟩r∗+i∆r, i = 1, 2, ..., 8, which was
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done using Eq. 8 (Eq. 1 of the main text). The results given in the main text use a spacing

∆r = 0.4r∗ between adjacent points. Next, the first four derivatives are evaluated at r = r∗

using a forward finite difference method, through

(
dn⟨τ⟩r
drn

)
r=r∗

=

∑8
i=0 Cn,i⟨τ⟩r∗+i∆r

(∆r)n
, (9)

where n is the order of the derivative and Cn,i are coefficients given in table S1.S12 These

derivatives are used to obtain an approximate fourth-order Taylor expansion of ⟨τ⟩r around

r = r∗,

⟨τ⟩r = ⟨τ⟩r∗ +
4∑

n=1

(
dn⟨τ⟩r
drn

)
r=r∗

· (r
∗ − r)n

n!
+O

(
(r∗ − r)5

)
. (10)

The estimated unbiased mean FPT ⟨τ⟩0 is simply the value of this function at r = 0.

Table S1: Coefficients for the finite difference approximations.

i 0 1 2 3 4 5 6 7 8
C1,i −49

20
6 −15

2
20
3

−15
4

6
5

−1
6

0 0
C2,i

469
90

−223
10

879
2

−949
18

41 −201
10

1019
180

− 7
10

0
C3,i −801

80
349
6

−18353
120

2391
10

−1457
6

4891
30

−561
8

527
30

−469
240

C4,i
1069
80

−1316
15

15289
60

−2144
5

10993
24

−4772
15

2803
20

−536
15

967
240

We examined the sensitivity of the extrapolation to the selection of ∆r, and found less

sensitivity than in other methods. Fig.S1 (a) shows the predicted ⟨τ⟩0 against 1/r∗ for

different selected values of ∆r, for the inverse Gaussian distribution with ⟨τ⟩0 = 1000 ps

using the analytical Laplace transform in Eq. 8. It demonstrates that ∆r values of different

orders of magnitude yield similar predictions.

We also examined fitting directly the mean FPT values at different rates. We will refer to

this method as method B. Here, we used a Padé approximant of the form ⟨τ⟩r = ar3+br2+cr+d
er2+fr+1

,

which diverges in the limit r → ∞ as does ⟨τ⟩r. We fitted the function numerically using

ScipyS7 and substituted r = 0 to obtain the unbiased mean FPT.

A third method, which we denote as method C, uses a known connection between the

mean of a distribution and its Laplace transform, ⟨τ⟩ = −
(

df̃(s)
ds

)
s=0

. We rewrite Eq. 6 as
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f̃(r) = 1
1+r⟨τ⟩r and obtain f̃(r) for several rates r > r∗ using ⟨τ⟩r>r∗ . Then, we fit numerically

a Padé approximant to these selected values of the Laplace tranform. We use the function

f̃(s) = a+bs2+cs
a+ds3+es2+fs

, which fulfills two general properties of Laplace transforms, f̃(0) = 1

and lims→∞ f̃(s) = 0. Finally, we evaluate the unbiased mean FPT using the derivative of

the fitted function at zero, ⟨τ⟩0 = f−c
a
.

Fig. S1 (b) compares between the methods. Though methods B and C do not require

equal spacing, here we used eight equally spaced points as needed for method A. Additional

tests did not show any better performance for different spacings or number of points. We

used ∆r = r∗ since methods B and C proved to be more sensitive to the selection of ∆r, and

performed well for this value. These methods gave similar predictions to those of method A

for most values of r∗, but deviated for others. Since the predictions of method A improved

systematically as r∗ → 0, as opposed to the predictions of methods B and C, we choose to

present this method in the main text.

Figure S1: (a) Predictions of ⟨τ⟩r=0 against 1/r
∗ using method A, for different values of ∆r.

(b) Predictions of ⟨τ⟩r=0 against 1/r
∗ using method A, B and C. The predictions were made

using exact values ⟨τ⟩r∗+i∆r for the inverse Gaussian distribution.
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Sensitivity to initial conditions and FPT definition

As discussed in the main text, we checked the sensitivity of the method to the definition of

the FPT and to the distribution of initial spatial positions. The results presented in the main

text are for FPT defined as the first crossing of a fixed value x1 close to the minimum of the

target basin. We performed additional simulations with different values of x1, and obtained

the FPT distributions for these values. The mean and coefficient of variation (COV) of the

unbiased simulations in each case are given in table S2, along with the maximum speedups

we obtained. The value of x1 selected for the results presented in the main text is marked

in bold. For all model systems, x1 = 0 is the peak of the barrier.

Table S2: Mean and COV of the FPT distributions with no resetting for the three models
in the main text, with different values defining the first-passage threshold between states.
Also included are the maximum speedups gained for both Poisson and sharp resetting.

Model
Passage

value (Å)

Mean
FPT (ps)

COV
Speedup

Poisson Sharp
One dimensional double-well 0 850 3.58 20.2 18.7

-1 1050 3.28 16.0 14.5
-2 1175 3.07 13.9 12.7
-3 1325 2.92 10.5 12.1
-4 1475 2.82 10.2 9.3

Gimondi et al. 0 875 1.54 9.1 9.9
-1/3 1075 1.44 8.9 10.1
-2/3 1125 1.44 8.2 9.4
-1 1125 1.44 8.0 9.0
-4/3 1225 1.41 6.0 6.9

Modified Wolfe-Quapp 0 1050 1.44 2.0 2.2
1/3 1100 1.43 1.9 2.0
2/3 1125 1.43 1.9 1.9
1 1125 1.43 1.9 1.9
4/3 1125 1.41 1.9 1.9

The results are similar for different choices of x1. The change in the mean and COV is less

than 50% for the one dimensional potential and less than 10% for the modified Wolfe-Quapp

potential. The obtained speedups are almost identical for all cases of the modified Wolfe-

Quapp potential and very similar for the case of the potential of Gimondi et. al. For the one

S-9



dimensional double-well, the speedup was doubled when defining the passage value as the

top of the barrier. It should be noted that we only simulated transitions at a single restart

rate, that was expected to give the optimal speedup with Poisson resetting according to the

unbiased distribution and Eq. 8. It isn’t necessarily the optimal rate for sharp resetting, and

greater speedups should be expected for sharp resetting when optimizing the restart rate.

The results of the main text used fixed spatial initial conditions. This is equivalent to

sampling the positions initially, and after each reset, from a delta function distribution. We

examined the influence of the choice of distribution by simulating trajectories with positions

sampled from the Boltzmann distribution at the beginning of the simulations and after each

reset event. The results are given in table S3.

Table S3: Mean and COV of the FPT distributions with no resetting for the three models in
the main text, with initial positions sampled from the Boltzmann distribution. Also included
are the expected maximum speedups for both Poisson and sharp resetting.

Model
Mean
FPT (ps)

COV
Speedup

Poisson Sharp
One dimensional double-well 6525 1.24 3.5 3.7

Gimondi et al. 1350 1.27 3.3 3.3
Modified Wolfe-Quapp 1750 1.12 1.5 1.5

The mean FPT is greater than the one achieved with fixed initial positions, and the

COV is lower. As expected, the speedups are lower as well, because there is a significant

probability to initiate the simulations very far from the barrier. Nevertheless, The COV

remained greater than one and speedup was obtained using stochastic resetting in all model

systems. This verifies that the acceleration gained by SR is not dependent on using a single

specific initial condition.
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