S2 Appendix

S2.A Text

We judged that five ddHCRP samples yielded a low-variance estimate of the mean predicted prob-
ability of the sequence elements while being computationally sparing (Fig A in S2 Appendix, left).
In the case of five samples, the highest coefficient of variation on an example participant’s data was
below 10% and the median was 3% (Fig A in 52 Appendix, right).
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S2.A Fig: (Left) Standard error of the mean predictive probabilities and time required to infer the
eating arrangements for different number of ddHCRP samples on the whole data of an example
participant. The red line indicates the number of samples used in the Manuscript. (Right) Distri-
bution of the coefficient of variation between five samples for the example data shown in (Left).

Qualitatively, the predictive probabilities appeared unequivocal among the five samples, as ex-
emplified in Fig B in S2 Appendix. We note that the hierarchical structure of our model contributes
to the stability of its predictions. Even though there were only five parallel samples, each of them
were used to perform smoothing in a robust, hierarchical fashion.
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S2.B Fig: Predictive probabilities from the five ddHCRP samples on an example participant’s last
200 trials in the last training session.

The response probabilities generated by the model were reproducible across runs of the 1000-
iteration random search as well. The median difference between the predictive probabilities gen-
erated from two models optimised in two different runs of the random search was .019 (Fig C in



S2 Appendix).This would correspond to a median coefficient of variation of 3.34% (not to be inter-
preted in the current case of two runs).
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S$2.C Fig: Distribution of the difference between the predictive probabilities generated by two
models fitted in parallel runs of the random search optimisation to all trials of an example subject.

S2.B Text

Though the learned parameters of the sequence model are directly related to participants’ erro-
neous responses (Figure 10 of the Manuscript), this was not true of the hyperparameters. We
computed the proportion of each error type for each participant and session. We assessed the
linear relationship between each of the hyperparameters and the proportion of each error type,
while controlling for the effect of session. Session was a significant predictor of the proportions
of all three error types (all ps < .05) because the proportion of pattern errors gradually increased
due to learning, while the proportions of recency errors and other errors reduced (Figure 9 of the
Manuscript). This is evidently a behavioral trend that is coherent with the shift in the inferred
HCRP hyperparameter values (shown in Figure 4b of the Manuscript). However, the correlations
between hyperparameter values and the proportions of either error types were not significant (all
ps > .05).

In a similar vein, we analysed the relationship between the inferred hyperparameter values and
the relative speeding of errors of different types. There was no significant effect of any hyperpa-
rameter on the relative speeding of any error type (all ps > .05). This is not surprising given that the
hyperparameters, as discussed in our response to the previous comment, are related only indirectly
to the responses. Moreover, the error rate is low in this task (~10% on average), and subtle effects
might not be identified in this small subset of the data. Future error analyses should be carried out
in studies employing sequence prediction paradigms, where participants indicate their prediction
for the upcoming element rather than reacting to it.



S2.C Text

We compared our main model, the distance-dependent hierarchical Chinese restaurant process
(ddHCRP) model, to simpler alternatives. These are inspired by classical n-gram learning solutions
and can be viewed as ablated versions of the ddHCRP. To ensure meaningful comparisons, all
models are based on the distance dependent Chinese restaurant process (ddCRP), that is, they can
express priors over the importance of the n-grams and exhibit forgetfulness.

Our first, baseline model assumes that participants only learn 2"4-order dependencies, that is,
trigrams, and ignore the bigram statistics:

p(kt|et,2;,) ~ ddCRP((X,?\,) (1)

where &, denotes the key press at time ¢, ¢,_»; denotes the context of two previous events, and o and
A are the strength and forgetting parameters, respectively. We refer to this model as the Trigram
model.

A second model assumes that participants learn a total of N, n-gram levels, independently.
Then, for prediction, it assumes that they interpolate the predictive probabilities uniformly across

levels:
N

1
p(kt|et—N:t) = Z Np(kt|et—n:t) (2
n=0
where each level is an independent ddCRP:
p(k,|et_n;,) ~ ddCRP(OL,?\,) (3)

In this model, the strength and decay rate are equal across levels (otherwise non-equal param-
eter values across the levels would, in essence, implement weighted interpolation). Since n-grams
of increasing sizes are learned in parallel by this model, but no weighting is applied to the levels,
we refer to it as the uniformly interpolated ddCRP (ddUCRP). The ddUCRP can be viewed as an
ablated version of the ddHCRP that performs smoothing without a back-off procedure that would
induce preference for levels with more evidence. It is mechanistically simpler than the HCRP and
has fewer parameters.

A third model assumes that participants commit to those n-gram levels that have accumulated
substantial observations. It then does not perform smoothing (this is inspired by the Katz back-off;
Katz, 1987):

k e —nit), lfC > 1
p(kt|€t—N:t) = 17( t| 4 ”) ' @)
p(kile;—nt1:4), otherwise

where each level is an independent ddCRP, as in[Equation 3]

This model, just like the ddUCRP, tracks a hierarchy of n-grams but it does not use all the infor-
mation in a hierarchical manner for prediction. Rather, it uses deterministic back-off in a stack of
ddCRPs - thus we call it the stacked ddCRP (ddSCRP). This model can be viewed as another ab-
lated version of the ddHCRP that performs back-off without smoothing. It is mechanistically simpler
than the HCRP, but has the same number of parameters.

For brevity, we drop the ‘dd’ from the acronyms and refer to the models as UCRP, SCRP, and
HCRP, from here on.

These various models differ particularly in their use of predictive information from deepen-
ing windows (corresponding to n-grams of increasing n) (Table A in 52 Appendix).We therefore
considered which aspect of the human behaviour might be most revealing of the differences.



A particularly salient difference between the models is their rendition of smoothing across lev-
els, so we considered the circumstance we expected to show this most clearly - namely the com-
bination of predictive information across bigrams and trigrams. That is, consider a "yellow” trial
that was preceded by "red-blue’. We might expect the "yellow’ response to be hastened by a recent
matching trigram trial ‘red-blue-yellow’. The question is the extent to which the "yellow” response
is also hastened by "X-blue-yellow” trials (wWhere "X'#'red’). That is, whether the bigram suffix also
has a trigram-independent contribution to prediction.

We computed the linear effect of the recency of the bigram suffix occurring in a previous trigram
that is not identical to the current one, on the response time at the current trial, for each participant
and epoch/session. In the first session (first five epochs), the smoothing effect was 0.4 ms per trial
(Fig D in 52 Appendix, right). This means that if the bigram suffix of the current trial was 20 trials
more recent than average, the response was faster by 8 ms, independently of trigram frequency.
The influence of the bigrams on the responses dropped to a weaker level of 0.15 ms per trial after
session 1 and remained stable throughout the training. We refer to this as the smoothing effect.

S52.A Table: Comparison of the model alternatives in terms of statistical features.

non-parametric  distance-dependence smoothing weighting

Trigram v v X X
UCRP v v v X
SCRP v v X v
HCRP v v v v

We quantified the smoothing effect exhibited by the four alternative models. All models were
fit to participants’ responses, while controlling for low-level effects, as described in the Methods
of the Manuscript. It is apparent that the trigram model and the SCRP do not capture smoothing
behavior. This is because the former does not contain bigram information, the latter soon commits
to the trigram information and ignores the bigrams. The UCRP, as well as the HCRP capture the
temporal dynamics of the smoothing effect correctly.
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$2.D Fig: The bigram-trigram smoothing effect on the predictions generated by the four alternative
models and on participants” measured response times. The dashed lines mark the smoothing effect
measured in on participants’ responses in the first and last sessions, respectively.

Even though the UCRP model captured the smoothing behavior, by virtue of fixed interpola-
tion, it did so at the cost of underestimating the trigram effect (Fig E in S2 Appendix). While the
average measured trigram effect across sessions was 20 ms, the UCRP underestimates it to only 10
ms, while the HCRP commits a milder underestimation of 15 ms.
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S2.E Fig: Trigram effect on the predictions generated by the four alternative models and on par-
ticipants’ measured response times.

We then examined the failings of the SCRP and UCRP models in more depth — looking across
all possible parameter settings in a grid, rather than just the settings that optimized overall model
fit. Thus, the SCRP is in fact able to mimic smoothing behavior if it has strong enough forgetting
because it alternates in committing to bigrams and trigrams, resulting in an overall influence of the
bigrams on the trigrams. However, such smoothing mimicry comes at the cost of stable trigram
knowledge, which is why this solution does not emerge in Fig D in 52 Appendix .

Fig F in 52 Appendix shows this dilemma by exhibiting smoothing and trigram effects for the
SCRP across parameter settings, and those for the HCRP and the human participants.In the first
training session, the SCRP can only emulate the strong smoothing effect exhibited by participants
in a very forgetful regime, essentially giving up trigram knowledge (Fig F in 52 Appendix, left). By
comparison, in the last training session (Fig F in S2 Appendix, right), the UCRP can not account
for the reduction in the smoothing effect while preserving trigram knowledge. The uniform in-
terpolation does not allow for the preferential weighting of the trigrams exhibited by the human
participants.
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S2.F Fig: Comparison of SCRP to HCRP on the first training session and comparison of UCRP
to HCRP on the last training session. Each point corresponds to a hyperparameter setting. In the
case of the Trigram and HCRP, we used the best fitting hyperparameter settings, as they serve as a
reference. The measured effects are averaged across participants.
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