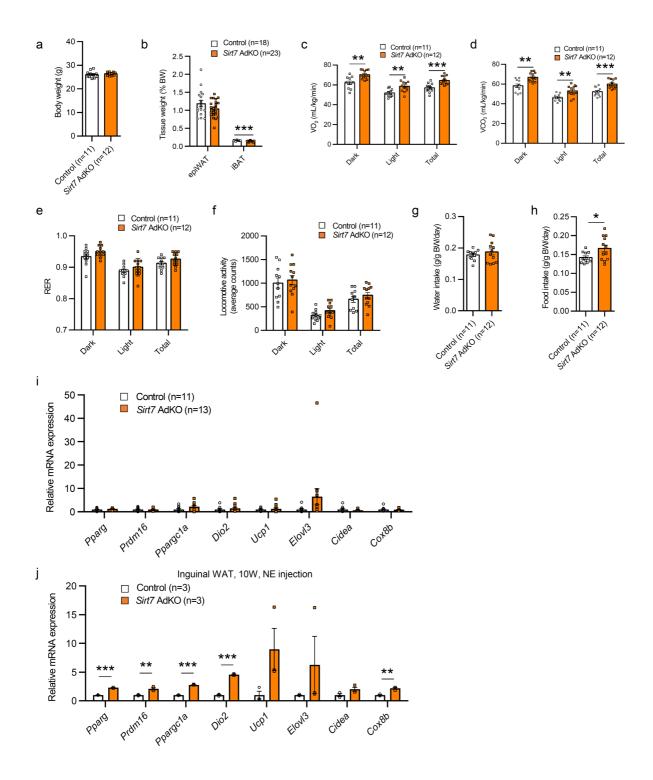
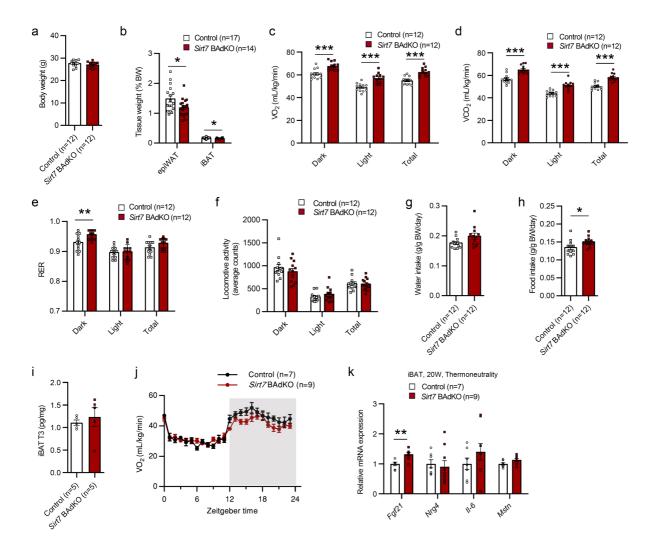

Supplementary Fig. 1 *Sirt7* KO mice display increased energy expenditure and body temperature under normal conditions.

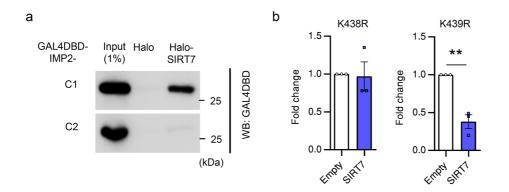
a Body temperature in 11-week-old male WT and *Sirt7* KO mice upon cold exposure at 4°C. p = 0.0328 (0 h), p = 0.0485 (3 h), p = 0.0018 (5 h). **b–d** Data of indirect calorimetry experiments and body temperature from 16-week-old female WT and *Sirt7* KO mice. VO₂ rates (**b**), energy expenditure (**c**), and body temperature at ZT10 (**d**). p = 0.0483 in (**b**); p = 0.0466 (Dark) in (**c**); p = 0.0135 in (**d**). **e–g** Data of indirect calorimetry experiments and body temperature from 2-month-old male WT and another independent line of *Sirt7* KO mice³⁵. VO₂ rates (**e**), energy expenditure (**f**), and body temperature at ZT10 (**g**). p = 0.0323 in (**e**); p = 0.0503 (Dark), p = 0.0288 (Light), p = 0.0350 (Total) in (**f**); p = 0.0242 in (**g**). Data are presented as means ± SEM. All numbers (n) are biologically independent samples. Two-way ANOVA with Bonferroni's multiple comparisons test (**b**, **e**); two-tailed Student's *t*-test (**a**, **c**, **d**, **f**, **g**). *p < 0.05, **p < 0.01. Source data are provided in Source data file.

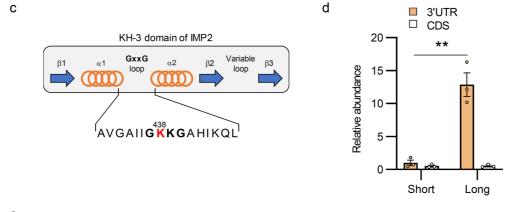

Supplementary Fig. 2 *Sirt7* KO mice exhibit excessive energy expenditure and thermogenesis in the hypometabolic state.

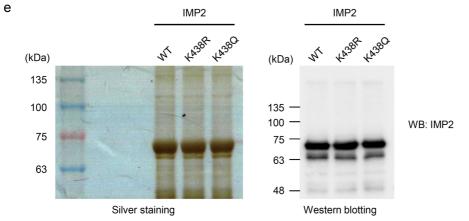
a–**d** Data of indirect calorimetry experiments from 2-year-old male WT and *Sirt7* KO mice. RER (**a**), locomotor activity (**b**), water intake (**c**), and food intake (**d**). p = 0.0488 in (**d**). **e** Realtime qPCR analysis of BAT-related genes in iBAT of 15-week-old and 2-year-old male WT mice. p = 0.0250 (*Prdm16*), p = 0.0153 (*Ppargc1a*), p = 0.0664 (*Ucp1*), p = 0.0464 (*Clstn3b*). **f** Western blot analysis of SIRT7 in iBAT of 15-week-old and 2-year-old male WT mice. p = 0.0050. **g**, **h** Data of indirect calorimetry experiments and body temperature during artificiallyinduced daily torpor in 18-week-old male WT mice. Representative pattern of energy expenditure (**g**). The mouse was placed in the chamber at 20°C for 3 days; food was removed on the second day (open arrow) in the Torpor groups. A typical daily torpor pattern started after 20 h of fasting (filled arrow). Body temperature after 24 h fasting (**h**). p = 0.0044. Data are presented as means ± SEM. All numbers (n) are biologically independent samples. *p < 0.05, **p < 0.01 by two-tailed Student's t-test. Source data are provided in Source data file.


Supplementary Fig. 3 SIRT7 suppresses energy expenditure and thermogenesis via multiple pathways.

a Real-time qPCR analysis of BAT-related genes in inguinal WAT of 15-week-old male WT and Sirt7 KO mice. b Evaluation of the mtDNA copy number in iBAT of 15-week-old male WT and Sirt7 KO mice by determining the ratio of mtDNA to nuclear DNA (nDNA). c Realtime qPCR analysis of nuclear-encoded mitochondrial transcripts in liver and iBAT of 15week-old and 1-year-old male WT and Sirt7 KO mice. The expression of the mitochondrial unfolded protein response gene Clpp is increased in hematopoietic stem cells isolated from Sirt7 KO mice⁴⁵, and the expression of genes related to mitochondrial biogenesis, namely, Mrps5, Mrpl49, Mfn1, and Polrmt, is reduced in the liver of aged Sirt7 KO mice³⁵. p = 0.0174(Mfn1) in liver, 15 weeks. p = 0.0009 (Mrps5), p = 0.0525 (Mrpl49), p = 0.0424 (Mfn1), p = 0.0424 (Mfn1)0.0005 (Polrmt) in liver, 1 year. d, e Real-time qPCR analysis of energy metabolism-related genes in liver (d) and skeletal muscle (e) of 15-week-old male WT and Sirt7 KO mice. p =0.0101 (Acaca), p = 0.0269 (Fasn) in (d); p = 0.0499 (Mel) in (e). f, g Western blot analysis ofOXPHOS complexes I-IV in liver (f) and skeletal muscle (g) of 15-week-old male WT and Sirt7 KO mice. h Real-time qPCR analysis of batokine genes in iBAT of 20-week-old male WT and Sirt7 KO mice at thermoneutrality. p = 0.0375 (Dio2). Data are presented as means \pm SEM. All numbers (n) are biologically independent samples. p < 0.05, p < 0.01, p < 00.001 by two-tailed Student's *t*-test. Source data are provided in Source data file.


Supplementary Fig. 4 SIRT7 deficiency in adipose tissue elevates the whole-body energy expenditure and body temperature.


a–**h** Data of indirect calorimetry experiments from 12-week-old male *Adipoq-Cre* control and *Sirt7* AdKO mice. Body weight (**a**), percent tissue weight calculated relative to body weight (**b**), average VO₂ (**c**), average VCO₂ (**d**), RER (**e**), locomotor activity (**f**), water intake (**g**), and food intake (**h**). p = 0.0007 (iBAT) in (**b**); p = 0.0012 (Dark), p = 0.0033 (Light), p = 0.0007 (Total) in (**c**); p = 0.0010 (Dark), p = 0.0025 (Light), p = 0.0004 (Total) in (**d**); p = 0.0279 in (**h**). **i** Real-time qPCR analysis of BAT-related genes in inguinal WAT of 12-week-old male *Adipoq-Cre* control and *Sirt7* AdKO mice. **j** Real-time qPCR analysis of BAT-related genes in inguinal WAT of 10-week-old male *Adipoq-Cre* control and *Sirt7* AdKO mice. **j** Real-time qPCR analysis of BAT-related genes in inguinal WAT of 10-week-old male *Adipoq-Cre* control and *Sirt7* AdKO mice. **j** Real-time qPCR analysis of BAT-related genes in inguinal WAT of 10-week-old male *Adipoq-Cre* control and *Sirt7* AdKO mice administered 1 mg/kg/day norepinephrine (NE) for 5 days. p = 2.7E-05 (*Pparg*), p = 0.0077 (*Prdm16*), p = 2.8E-05 (*Ppargc1a*), p = 9.7E-06 (*Dio2*), p = 0.0039 (*Cox8b*). Data are presented as means ± SEM. All numbers (n) are biologically independent samples. *p < 0.05, **p < 0.01, ***p < 0.001 by two-tailed Student's *t*-test. Source data are provided in Source data file.



Supplementary Fig. 5 Brown adipocytic SIRT7 suppresses energy expenditure and thermogenesis *in vivo*.

a–**h** Data of indirect calorimetry experiments from 12-week-old male *Ucp1-Cre* control and *Sirt7* BAdKO mice. Body weight (**a**), percent tissue weight calculated relative to body weight (**b**), average VO₂ (**c**), average VCO₂ (**d**), RER (**e**), locomotor activity (**f**), water intake (**g**), and food intake (**h**). p = 0.0428 (epiWAT), p = 0.0474 (iBAT) in (**b**); p = 0.0004 (Dark), p = 0.0001 (Light), p = 0.0001 (Total) in (**c**); p = 2.7E-05 (Dark), p = 8.3E-06 (Light), p = 5.0E-06 (Total) in (**d**); p = 0.0087 (Dark) in (**e**); p = 0.0335 in (**h**). **i** T3 level in iBAT of 12-week-old male *Ucp1-Cre* control and *Sirt7* BAdKO mice. **j**, **k** VO₂ rates of indirect calorimetry experiments (**j**) and real-time qPCR analysis of batokine genes in iBAT (**k**) from 20-week-old male *Ucp1-Cre* control and *Sirt7* BAdKO mice at thermoneutrality. p = 0.0016 (*Fgf21*). Data are presented as means ± SEM. All numbers (**n**) are biologically independent samples. Two-way ANOVA with Bonferroni's multiple comparisons test (**j**); two-tailed Student's *t*-test (**a**–**i**, **k**). *p < 0.05, **p < 0.01, ***p < 0.001. Source data are provided in Source data file.

Proteins containing KH domain

f

AKAP1; ANKHD1; ANKRD17; ASCC1; BICC1; DDX43; DDX53; DPPA5; FMR1; FUBP1; FUBP3; FXR1; FXR2; GLD1; HDLBP; HNRPK; IGF2BP1; IGF2BP2; IGF2BP3; KHDRBS1; KHDRBS2; KHDRBS3; KHSRP; KRR1; MEX3A; MEX3B; MEX3C; MEX3D; NOVA1; NOVA2; PCBP1; PCBP2; PCBP3; PCBP4; PNO1; PNPT1; QKI; SF1; TDRKH

Supplementary Fig. 6 Deacetylation of IMP2 by SIRT7 attenuates the translation of *Ucp1* mRNA.

a Mapping of the region of the interaction between IMP2 and SIRT7. Halo-SIRT7 pull-down assay with lysates of HEK293T cells expressing the indicated IMP2 deletion mutants fused with GAL4DBD. See also Fig. 8c. **b** Quantification of the acetylated IMP2 relative to IMP2 (n = 3) in the experiment of Fig. 8d. p = 0.0025. **c** Topology of the KH-3 domain and amino acid sequence around K438 of mouse IMP2. **d** Binding of IMP2 to *in vitro*-transcribed short and long *Ucp1* 3'-UTR (n = 3 independent samples per group). The *Ucp1* coding sequence (CDS) was used as a negative control. p = 0.0030. **e** Generation of recombinant protein in *E. coli* for IMP2^{WT}, IMP2^{K438R}, and IMP2^{K438Q}. To confirm that equal amounts of these recombinant proteins were used in the insect cell-free translation system, silver staining and WB were performed. This confirmation was performed once. **f** Candidate SIRT7-interacting proteins in KH domain family. The 10 proteins marked in red have been reported to be candidate SIRT7-interacting proteins ⁴⁹. See Discussion for details. WB, western blotting. Data are presented as means ± SEM. All numbers (n) are biologically independent samples. *p < 0.05, **p < 0.01 by two-tailed Student's *t*-test. Source data are provided in Source data file.

qPCR primer pairs for mouse mRNA				
Symbol	Name	Sequence		
	Name	Forward	Reverse	
Rpl19	ribosomal protein L19	AAGCCTGTGACTGTCCATTC	CTTCTTGGATTCCCGGTATC	
Pparg	peroxisome proliferator-activated receptor gamma	GGAAGACCACTCGCATTCCTT	TCGCACTTTGGTATTCTTGGAG	
Prdm16	PR domain containing 16	GGCGAGGAAGCTAGCCAAA	GGTCTCCTCCTCGGCACTCT	
Ppargc1a	peroxisome proliferative activated receptor, gamma, coactivator 1 alpha	GAAATCCGAGCGGAGCTGAA	GAATAGGGCTGCGTGCCATC	
Cebpb	CCAAT/enhancer binding protein (C/EBP), beta	CAACCTGGAGACGCAGCACAAG	CTAGCAGTGGCCCGCCGAGG	
Ebf2	early B cell factor 2	GCTGCGGGAACCGGAACGAGA	ACACGACCTGGAACCGCCTCA	
Dio2	deiodinase, iodothyronine, type II	AGTCAAGAAGGTGGCATTCG	ACAGCTTCCTCCTAGATGCCT	
Ucp1	uncoupling protein 1	GGCAACAAGAGCTGACAGTAAAT	GGCCCTTGTAAACAACAAAATAC	
Elovl3	elongation of very long chain fatty acids-like 3	TTGGGGATAGGGGGTGTGTG	TCTCCCCTCCCTCCAAGTC	
Cidea	cell death-inducing DFFA-like effector a	CTTGGGGGTGGTACCCAGTG	ATCCACGCAGTTCCCACACA	
Cox3	mitochondrially encoded cytochrome c oxidase III	GCAGGATTCTTCTGAGCGTTCT	GTCAGCAGCCTCCTAGATCATGT	
Cox8b	cytochrome c oxidase subunit 8B	GAACCATGAAGCCAACGACT	GCGAAGTTCACAGTGGTTCC	
Clstn3b	calsyntenin 3	CTCCGCAGGAACAGCAGCCC	AGGATAACCATAAGCACCAG	
S100b	S100 protein, beta polypeptide, neural	TGGTTGCCCTCATTGATGTCT	CCCATCCCCATCTTCGTCC	
Bmp8b	bone morphogenetic protein 8b	CAACCACGCCACTATGCAG	CACTCAGCTCAGTAGGCACA	
Fgf21	fibroblast growth factor 21	GCCATTCACTTTGCCTGAGC	ATCCATTCCATCAGGGCTGC	
Nrg4	neuregulin 4	ATGCCAACAGATCACGAGC	TCTTCAGTGTTCTCTGTGGCTG	
II-6	interleukin 6	CCACGGCCTTCCCTACTTCA	TTCCACGATTTCCCAGAGAACA	
Mstn	myostatin	AGTGGATCTAAATGAGGGCAGT	GTTTCCAGGCGCAGCTTAC	
Sirt7	sirtuin 7	TGCCAGGCACTTGGTTGTCT	TAGGCTCCGCTTCGCTTAGG	
Clpp	caseinolytic mitochondrial matrix peptidase proteolytic subunit	TGTTGCGGGAACGCATCGTGT	TAGATGGCCAGGCCCGCAGTT	
Mrps5	mitochondrial ribosomal protein S5	TCCCTGCATTGTGTAGCTTG	GAGCTGTCTTCACTGCCAAA	
Mrpl49	mitochondrial ribosomal protein L49	GAGCGACGAACAAAGTAGGG	TACCAAAATCCCAGAGCCAC	
Mfn1	mitofusin 1	AGGGGACCGATGGAGATAAAG	AAGAGGGCACATTTTGCTTTG	
Polrmt	polymerase (RNA) mitochondrial (DNA directed)	GCAACATGTCCTGAGGGAGT	GCACCTTCTTCACCCTCATC	
Cpt1a	carnitine palmitoyltransferase 1a, liver	CCATGATGGACCCCACAACA	TGGACAACCTCCATGGCTCA	
Acadm	acyl-Coenzyme A dehydrogenase, medium chain	GCAGCTGGCGCTGTCGGGCT	CGGCGTCAGTGGCTAGCTGATTG	
Acox1	acyl-Coenzyme A oxidase 1, palmitoyl	GGGAGTGCTACGGGTTACATG	CCGATATCCCCAACAGTGATG	
Ppara	peroxisome proliferator activated receptor alpha	TTGAAGGAGCTTTGGGAAGA	AGGAAGCCGTTCTGTGACAT	
Ucp2	uncoupling protein 2 (mitochondrial, proton carrier)	GAGGGTCCACGCAGCCTCTA	GCATGCTCTGAGCCCTTGGT	
Иср3	uncoupling protein 3 (mitochondrial, proton carrier)	GTGGCCCTGCACTACCCAAC	CGGTGTCCAGGGGAAAAGTG	
Acaca	acetyl-Coenzyme A carboxylase alpha	CCAGCTGATCCTGCGAACCT	GAACATTCCCGCAAGCCATC	
Fasn	fatty acid synthase	TCTGGGCCAACCTCATTGGT	GAAGCTGGGGGTCCATTGTG	
Me1	malic enzyme 1, NADP(+)-dependent, cytosolic	CTGGCCAGGGCAACAATTCC	TAGAGCCGGCCTTCTTGCAG	
Elovl6	ELOVL family member 6, elongation of long chain fatty acids	GGAGCAGAGGCGCAGAGAAC	GAGCGGCTTCCGAAGTTCAA	
Slc2a1	solute carrier family 2 (facilitated glucose transporter), member 1	GCTTATGGGCTTCTCCAAACT	GGTGACACCTCTCCCACATAC	
Slc2a4	solute carrier family 2 (facilitated glucose transporter), member 4	ACCCCTCATTCCCCCTGTGT	ACCCTCCTGCAGACCCCTTC	
Gck	glucokinase	CCCACAAATGCTCCCAGTCC	GTGGGAGGCCAGAAGCTGAA	
Pdk4	pyruvate dehydrogenase kinase, isoenzyme 4	CGCGCTCCTGACCCGCAGCC	GCCAGGCGGACGGGCAGCTC	
Hk1	hexokinase 1	TGCCTCTGGGCTTCACCTTC	CCACACAGTCGGTGGCTTTG	
Ucp1 3'-UTR	uncoupling protein 1, 3'-UTR	GCAACTTGGAGGAAGAGATA	GATTTCTTTGGTTGGTTTTATTC	
Ucp1 CDS	uncoupling protein 1, coding sequence	GGGCCCTTGTAAACAACAAA	GTCGGTCCTTCCTTGGTGTA	

qPCR primer pairs for mouse genome			
Symbol	Name	Sequence	
		Forward	Reverse
mt-Nd1	NADH dehydrogenase 1, mitochondrial	CCTATCACCCTTGCCATCAT	GAGGCTGTTGCTTGTGTGAC
Pecam1	platelet/endothelial cell adhesion molecule 1	ATGGAAAGCCTGCCATCATG	TCCTTGTTGTTCAGCATCAC
Cloning prim	er pairs for cDNA		
Symbol	Forward	Reverse	
lmp2	agaattcATGATGAACAAGCTGTACATTGGG	actogagTCACTTGCTGCGCTGTGGGGGCGACTCCC	
Guide oligon	ucleotides for sgRNAs		
Symbol	Forward	Reverse	
lmp2	caccgGGGAACAAGGCCACGGCCCC	aaacgGGGCCGTGGCCTTGTTCCCC	

Supplementary Table 1 Information of primers.

Name	Host & Clonality / Source & Identifier	Dilution
anti-UCP1	Rabbit Polyclonal / Abcam, ab10983	1:1000 dilution in TBST 5% BSA
anti-GAPDH	Rabbit Monoclonal (14C10) / Cell Signaling Technology, #2118	1:1000 dilution in TBST 5% BSA
Total OXPHOS Rodent WB Antibody Cocktail	Mouse Monoclonal (20E9DH10C12, 21A11AE7, 13G12AF12BB11, 1D6E1A8, 15H4C4) / Abcam, ab110413	1:250 dilution in TBST 1% skim milk
anti-Tyrosine Hydroxylase	Sheep Polyclonal / Sigma-Aldrich, AB1542	1:1000 dilution in TBST 5% BSA
anti-RNA Pol II	Mouse Monoclonal (4H8) / Active Motif, #39097	1:2000 dilution in TBST 3% skim milk
anti-SIRT7	Rabbit Monoclonal (D3K5A) / Cell Signaling Technology, #5360	1:3000 dilution in TBST 5% BSA
anti-IGFBP2(IMP2)	Rabbit Polyclonal / MBL, #RN008P	1:1000 dilution in TBST 5% BSA
anti-DYKDDDDK (FLAG) tag	Mouse Monoclonal (1E6) / Fujifilm Wako Pure Chemical Corporation, #018-22381	1:2000 dilution in TBST 3% skim milk
anti-HA tag	Rat Monoclonal (3F10) / Roche Applied Science, #11867423001	1:1000 dilution in TBST 5% BSA
anti-acetylated-lysine	Rabbit Polyclonal / Cell Signaling Technology, #9441	1:1000 dilution in TBST 5% BSA
HRP-conjugated Affinipure Goat anti-Rabbit IgG(H+L)	Goat Polyclonal / Proteintech, #SA00001-2	1:10000 dilution in TBST 5% skim milk
HRP-conjugated Affinipure Goat anti-Mouse IgG(H+L)	Goat Polyclonal / Proteintech, #SA00001-1	1:10000 dilution in TBST 5% skim milk
HRP-conjugated Affinipure Goat anti-Rat IgG(H+L)	Goat Polyclonal / Proteintech, #SA00001-15	1:10000 dilution in TBST 5% skim milk
HRP-conjugated Affinipure Rabbit anti-Sheep IgG(H+L)	Rabbit Polyclonal / Proteintech, #SA00001-16	1:10000 dilution in TBST 5% skim milk

Supplementary Table 2 Information of antibodies.

All antibodies used in this study are commercially available and have been validated by companies. The details of manufactures' validation can be found on the web site of each manufacture. See also the Reporting Summary.