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Supplementary Material 

Methods 

Fluency data sets 

The first fluency data set combines two previously published longitudinal data sets. 

One data set was obtained from Hills, Mata, Wilke, & Samanez-Larkin (2013) and contains 

three waves of responses to a one-minute animal fluency task. At time point one the data 

included a total of 201 participants aged 27 to 99 (Mdn = 68). For our analyses we used the 

data of the first wave, to avoid any practice effects and problems associated with participant 

attrition. The other half was obtained from the Midlife in the United States (MIDUS) 

longitudinal study. In the context of the MIDUS3 study, one-minute animal fluency data were 

recorded over the phone from 104 individuals aged 34 to 83 (Mdn = 59). To render these data 

machine-readable, we transcribed the audio recordings (see section on Fluency 

preprocessing). We excluded from both data sets in total 21 individuals who had a mini-

mental state value lower than 26 and produced fewer than 10 items, leaving 284 participants 

for analysis. We created groups of younger and older adults by splitting the data at the 

median age . This resulted in two groups of 142 individuals aged 29 to 65 years old and 66 to 

94 years old, respectively.  

The second and third fluency data sets stem from our study 1, which was collected in 

the context of another study on age-differences in decision making run at the Max Planck 

Institute (MPI) for Human Development, Berlin. We collected 10-minute fluency data for 

both animals and countries from 71 older adults and 41 younger adults. Responses were 

recorded using a microphone and transcribed by us (see section on Fluency preprocessing). 

Along with the audio recordings, we obtained data from the cognitive battery typically 

included in aging at the MPI for Human Development. This battery included measures of 

working memory span (OSPAN; Unsworth, Heitz, Schrock, & Engle, 2005), vocabulary size 
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(Lehrl, Triebig, & Fischer, 1995), numeracy (BNT; Cokely et al., 2012), maximization in 

decision making (Schwartz et al., 2002), the big five personality traits (Borkenau & 

Ostendorf, 2008), memory controllability (MCI;  Lachman, Bandura, Weaver, & Elliott, 

1995), associative recall (Shing et al., 2010), quality of life (SF-12; Ware, Kolinski, & Keller, 

1995), depression (GDS; Yesavage et al., 1983), positive and negative affect (PANAS; 

Watson, Clark, & Tellegen, 1988), and mental status (MMSE; Folstein, Folstein, & McHugh, 

1975). Participants were recruited through the internal participant database of the MPI of 

Human Development. The older adults’ group ranged from 65 to 80 years with a median age 

of 70 years, the younger adults’ age ranged from 17 to 33 with a median age of 25 years. 

Participants were paid 10€/hour for participation in this study and the study lasted roughly 

two hours. 

 

Figure S1. Age distributions in the data of Wulff et al. (2016), study 1, and study 2. The 

darker and lighter regions in the top panel represent the Hills et al. (darker) and MIDUS 

(lighter) portions of the data set. 
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The fourth fluency data set stems from our study 2 and was collected at the Max 

Planck Institute for Human Development using participants from the MPI’s internal database. 

We recorded via microphone responses to a 10-minute animal fluency task and transcribed 

the responses (see section on Fluency preprocessing). We also collected responses to the 

cognitive aging battery typically employed at the MPI.  

Study 1, 2 and 3 were approved by the internal review board of the Max Planck 

Institute for Human Development. 

 

Table S1 
Characteristics of the Fluency Data sets Included in the Analysis 

Study Younger adults Older adults Main variables Additional 
variables 

1 
N = 142 

age 29-65 
70% female 

N = 142 
Age 66-94 

70% female 

Animal fluency 
(1min) - 

2 
N = 41 

age 18-34 
48% female 

N = 71 
age 66-81 

41% female 

Animal fluency 
(10min) 

Country fluency 
(10min) 

PANAS, 
Vocabulary, 

BNT, Schwartz 
maximization, 
Big Five, MCI, 

Associative 
recall, OSPAN, 

GDS 
3 N = 36 

age 18-32 
42% female 

N = 36 
age 65-78 

63% female 

Animal fluency 
(10min) Same as study 2  

 

 

Fluency Preprocessing 

Fluency responses available as audio files were, first, transcribed using the Penn 

TotalRecall annotation software (http://memory.psych.upenn.edu/TotalRecall). In the next 

step, responses were scrutinized for category membership and spelling. For category 
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membership, we used a lenient criterion to retain as much of the original data as possible. In 

the case of animals, all nonfictional entries that described entire, nonhuman animals were 

accepted. This led us to exclude a few cases from the data, such as Godzilla, cat eye, or 

animal trainer. Similarly, in the case of countries, we accepted all existing and named 

territories such as Istrien, a region of Italy, Croatia and Slovenia, the desert Sahara or cities, 

but not nonexistent, fictional territories such as Middle-earth. Spelling was hand-corrected on 

the basis of the Merriam-Webster online dictionary. Overall 96.8% to 99% of responses were 

retained in the analysis. For details see table S2.  

 

Table S2 

Fluency Processing Statistics 

Data sets N productions unique/Na % duplicate % synonyms % removed 
 YA OA YA OA YA OA YA OA YA OA 
S1 - Animals 22 18.6 .096 .112 7.3 7.9 1.2 1.5 1 1.9 
S2 - Animals 93.1 101.8 .148b .178b 3.2 10.8 2.7 3.3 .8 .9 
S2 - Countries 77.6 80.3 .083b .108b 4.2 12.6 10.8 9.9 .5 .6 
S3 - Animals 98.1 97.5 .174 .188 5.8 9.6 3.7 4.4 2.2 3.2 

Legend 
a Ignoring duplicate productions.  
b Based on repeated random samples of 30 individuals per group.  
 

Network Inference from Fluency Data 

Networks were inferred from semantic fluency based on the community model 

devised by Goñi and colleagues (2010) and studied by Zemla and Austerweil (2018). The 

model encompasses the following two-step procedure. First, nodes and edges are included for 

every pair of responses that occurred within a distance of l responses. For instance, for the 

response sequence “dog, cat, mouse, rabbit” and a criterion of l = 2, edges would be included 

for all pairs less than three responses apart excluding only the pair dog and rabbit, which are 

three responses apart. Second, an edge is identified as a true edge if the frequency of the 

connected words occurring within l or fewer steps apart exceeded a frequency threshold 𝑡!"# 
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(the absolute minimum required frequency), as well as a frequency threshold 𝑡$%&#$'. The 

latter was derived from the probability 𝑝"()"#*'+ of those words occurring within l responses by 

chance with 𝑝"()"#*'+ calculated as  

𝑝"()"#*'+ = 𝑝"($,-,$$./ ∗ 𝑝"(0) 

where  𝑝"($,-,$$./, the probability of two words to co-occur within a fluency sequence, and  

𝑝"(0), the probability that two responses are no more than l responses apart, being calculated as 

𝑝"($,-,$$./ =
𝑓"𝑓(
𝑀𝑀 

and 

𝑝"(1) =
2

𝑁(𝑁 − 1) -𝑙𝑁 −
𝑙(𝑙 + 1)

2 0 

with 𝑓",	𝑓( denoting the number of times two responses occur across M sequence and N 

denotes the average number of productions per sequence. 𝑡$%&#$' is then defined as the 1 − 𝛼 

quantile of the binomial distribution 𝐵4𝑀, 𝑝"()"#*'+6. The model thus encompasses three 

parameters: the window size l, the minimum threshold 𝑡!"#, and probability 𝛼 to determine 

the chance-threshold 𝑡$%&#$'. Goñi et al. (2010) and Zemla and Austerweil (2018) found 

parameters to  𝑙 = 2, 𝑡!"# = 1, and 𝛼 = .05 to produce plausible networks that predicted 

human similarity judgments better than six other available methods (Zemla & Austerweil, 

2018).  

 

Macroscopic Structure of Inferred Fluency Networks and Multiverse Analysis 

 Using our network inference method, we inferred networks for younger and older 

adults for each of the four data sets. For the two data sets of study 2 this implied equating the 

groups of younger and older adults by means of bootstrap analyses. That is, the 41 younger 

adults were compared to random draws of 41 individuals from the older adults‘ group. To 
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avoid confounding influences of network size, the results were determined based on the giant 

component of the common subgraph of both groups. All estimates were derived on the basis 

of 1,000 bootstrap samples.  

Table S3 shows the numeric results for standard settings of l = 2, 𝑡!"# = 1, and 𝛼 =

.05 including group differences and associated confidence intervals. These show systematic 

group differences for two of the three characteristics considered. Specifically, younger adults 

showed higher densities (k) and lower average shortest path lengths (L) for each of the four 

data sets. Only the clustering coefficient showed a mixed pattern with one data set showing 

larger values for younger adults and three showing smaller ones as compared to older adults.  

 

Table S3 

Macroscopic Structure of Fluency-based Semantic Networks of Younger and Older Adults 

based on 1,000 Bootstrap Samples 

  Network 
 Age |N| <k> C L 
Study 1 YA 104 2.87 .32 3.05 
 OA 104 2.47 .31 3.52 
 Δ a 0 b 0.39 .01 -.46 
 CI c - (-.13, .92) (-.04, .06) (-.64, -.28) 

Study 2 - 
Animals 

YA 233.7  5.02  .30 2.82  
OA 233.7 d 3.90 d .31 d 3.16 d 

 Δ 0 1.13 -.01 -.35 
 CI - (.21, 2.04) (-.59, .03) (-.65, -.04) 

Study 2 – 
Countries 

YA 158.8  5.38  .31  2.61  
OA 158.8 d 4.61 d .35 d 2.82 d 

 Δ 0 .77 -.04 -.21 
 CI - (-.28, 1.81) (-.09, .02) (-.49, .07) 
Study 3 18-32 178 2.89 .31 3.48 
 65-78 178 2.55 .33 4.33 
 Δ 0 .36 -.03 -.84 
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 CI - (-.56, 1.28) (-.07, .02) (-1.19, -.5) 
Legend 
a Difference between younger and older adults. b Network sizes were equated to across age 
groups. c Confidence interval. b results based on 41 randomly drawn sequences of older adults 
to match the 41 sequences of younger adults.  
  

To evaluate the robustness of these results across different, possibly equally 

justifiable implementations of our inference method, we ran a multiverse analysis (Steegen, 

Turlinckx, Gelman, Vanpaemel, 2016) with a total of 27 parameter combinations. 

Specifically, we let 𝑙 = [1, 2, 3], 𝑡!"# = [0, 1, 2], and 𝛼 = [.01, .1,1]. The multiverse analysis 

presented in Figure S1 corroborates the systematic differences found for the average degree k 

and the average shortest path length L. Specifically, we observed 96% and 97% of all 

implementations to produce results for k and L, respectively, that were consistent with those 

presented in Table S1 and Figure S2. However, for the average clustering coefficient C, 

results were found to be much more inconsistent with only 62% agreeing with the majority 

pattern in Table 1 of larger clustering for older adults as compared to younger adults. 

Conversely, 38% of implementations indicated larger clustering for the opposite pattern, 

smaller clustering for older as compared to younger adults. These analyses indicate that we 

should place less confidence in the observed group differences for clustering as compared to 

those observed for degree and shortest path length.  
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Figure S2. Multiverse analysis. Figures shows the comparison of younger and older adults’ 

inferred macroscopic networks characteristics across 27 implementations of our inference 

method for each of the four data sets. Violins illustrate the distribution of the differences 

between younger and older adults divided by the bootstrap standard error for the 27 

implementations on the basis of 1,000 bootstrap samples. Vertical lines indicate quartile 

boundaries.    

 

Similarity Ratings Using Tablets 

A total of 36 younger and 36 older adults participated in the study. The older adults’ 

age ranged from 65 to 78 years with a median age of 70 years, the younger adults’ age ranged 

from 18 to 32 with a median age of 23.5. Groups were matched in terms of education. 
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Participants were paid 10€/hour for participation in the lab session, which lasted roughly 2 

hours, and a flat fee of 10€ for providing the similarity ratings. 

Participants in our study provided similarity ratings to a total of 1,953 unique pairs of 

animals. The set of pairs was created based on the fluency responses from study 2. 

Specifically, we selected a list of 66 animals that were retrieved by at least 33% of younger 

and older adults. From these we eliminated the words fish, bear, and insects to avoid 

category-token judgments, leaving 63 animals words and (63*62)/2 = 1953 possible word 

pairs for similarity judgments. These 63 words covered 41% and 41.3% of all responses of 

younger and older adults, respectively. We added a set of 315 word pairs sampled evenly 

from the main set to estimate the reliability of similarity ratings.  

Participants provided similarity ratings via a Google Nexus Tablet that they took 

home after attending the first lab session including the semantic fluency task and the 

cognitive battery. Participants provided similarity ratings on a scale from 1 to 20. Instructions 

on the similarity ratings were minimal so as not to influence individuals in any particular 

way. Participants were asked to conduct sessions of 30 minutes in the morning and the 

evening of every day during the study. On average, younger adults completed the study in 8.9 

days, older adults in 6.9 days. The responses to the reliability set revealed that individuals 

were highly reliable in their similarity ratings. Specifically, younger and older adults showed 

average correlations of r = .76 and r = .74, respectively, which we found not to be affected 

whether or not the pair of animals was presented in the same order (i.e., bear-mouse vs. 

mouse-bear). 

 In contrast to our approach to derive networks using fluency data, the similarity rating 

data have three major advantages. First, they permit the construction of weighted networks, 

in which edges can represent the strength of similarity between two animals. Second, it is not 

necessary to induce common subgraphs as all networks will by design contain all animals as 
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nodes. Third, they permit the construction of networks on the level of the individual, 

permitting us to evaluate differences between younger and adults with respect to within-

group individual differences and, thus, to draw inferences using standard statistical 

procedures. To derive individual-level networks from similarity ratings, we first mapped 

individuals’ similarity minimum and maximum ratings to the range of 0 and 1. This was 

necessary to account for the fact that individuals appear to have used the rating scale slightly 

differently, with rating spans (max minus max rating) ranging from 20 to as low as 14.  

After ratings had been normalized we created five networks for each individual that 

included edges for animal pairs with similarity larger than 0, .1, .2, .3, and .4, respectively. 

Eliminating some subset of edges was necessary in order to determine the clustering 

coefficient and using multiple criteria allowed us to assess the robustness of our approach. 

We characterized each individual’s macroscopic network structure using the average degree 

k, i.e., the number of neighbors of a node, the average strength, s, i.e., the average edge 

weights to a node’s neighbors, the average shortest path length and the average clustering 

coefficient. For clustering we used the following formula for for weighted networks (Barrat, 

Barthélemy, Pastor-Satorras, & Vespignani, 2004):  

𝐶2 =
1
𝑁> 𝑐"2

"
=
1
𝑁>

1
𝑠"(𝑘" − 1)

>
(𝑤"( +𝑤"*)

2(,%"
 

with 𝑤"( being the weight of the edge between nodes i and j, 𝑠" being strength of node i, 

defined as the sum of edge weights over all of its neighbors j, 𝑘" being degree of node i, and 

N being the number of nodes in the network. 

 The results presented in Table S4 show that older and younger adults differed 

systematically with regard to all four network characteristics. Younger adults showed across 

all threshold levels larger connectivity in terms of node degree and strength, larger clustering 

coefficients, and shorter average shortest path lengths. Confidence intervals indicate at least 

two reliable effects per structural property, mainly for the three lower thresholds. For higher 
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thresholds, the differences seem to be overall small suggesting that age differences 

manifested primarily in remote regions in the networks. Furthermore, with larger thresholds 

networks effectively shrink in size due to node islands, resulting in more volatile results.     

 

Table S4 

Comparison of Weighted Networks Based on Similarity Ratings Across Five Threshold Levels 

Threshold Group k s C L 
0 Younger adults 50.7 (11.8) 16.0 (5.89) .870 (.135) .588 (.179) 
 Older adults 37.0 (17.1) 12.5 (7.61) .750 (.191) .732 (.375) 
 Difference 

CI 
13.7 
(7, 20.5) 

3.5 
(.4, 6.5) 

.121   
(.045, .196) 

-.146 
(-.281, -.010) 

.1 Younger adults 42.4 (14.4) 15.5 (6.12) .773 (.163) .603 (.208) 
 Older adults 29.0 (17.1) 12.0 (7.67) .676 (.183) .774 (.443) 
 Difference 

CI 
13.3 
(6.2, 20.5) 

3.4 
(.3, 6.6) 

.097 
(.018, .176) 

-.174, 
(-.332, -.017) 

.2 Younger adults 28.5 (13.0) 13.6 (6.05) .636 (.128) .648 (.312) 
 Older adults 21.2 (14.2) 11.0 (7.35) .587 (1.68) .804 (.476) 
 Difference 

CI 
7.2 
(1, 13.4) 

2.6 
(-.5, 5.6) 

.050  
(-.018, .118) 

-.154 
(-.336,  .027) 

.3 Younger adults 20.1 (9.88) 11.5 (5.38) .571 (.115) .679 (.312) 
 Older adults 16.1 (10.5) 9.7 (6.65) .528 (.161) .772 (.373) 
 Difference 

CI 
4.1 
(-.6, 8.7) 

1.8 
(-.9, 4.5) 

.044 
(-.020, .108) 

-.080 
(-.249, .090) 

.4 Younger adults 14.6 (6.72) 9.58 (4.43) .543 (.113) .672 (.320) 
 Older adults 12.6 (8.78) 8.47 (6.18) .496 (.173) .777 (.274) 
 Difference 

CI 
1.9 
(-1.6, 5.5) 

1.1 
(-1.4, 3.5) 

.048 
(-.019, .115) 

-.093 
(-.248, .062) 

 

Controlling for Education and Gender 

 In our assessment of similarity rating networks, younger and older adults were not 

perfectly matched in terms of gender and education level, which may have possibly 

confounded the effect of age group. To test whether difference in education and gender 

between the age groups may have contributed to the structural differences presented in the 

main analyses, we ran separate regressions predicting each network property using age group, 
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education level (college level education yes/no), and gender as predictors in linear regression 

separately for each edge similarity cutoff value in [0, .1, .2, .3, .4]|. Figure S3 shows the 

estimates and associated 95% confidence intervals. The results show that age group still has 

substantial effects on each of the network properties for small cutoff values despite 

controlling for education and gender. They also show noticeable effects of education on most 

network properties, but no effects of gender. These analyses demonstrate that the effects of 

age group on network structure are not driven by group differences education and gender.  

 

Figure S3. Effects of age group, education, and gender on network structure. Points and 

horizontal lines reflect the regression estimates and associated 95% confidence intervals for 

models predicting network structure using age group, education, and gender separately for 

each of the three characteristics—degree, clustering, and shortest path length—in weighted 
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and unweighted networks and the five different cutoff values [0, .1, .2, .3, .4, .5] for edge 

similarity. 

 

Individual Versus Aggregate Networks 

 The individual-level similarity rating data provide an opportunity for assessing the 

effect of aggregation on the comparison of younger and older adult network structures. We 

calculated group-wise aggregate networks by averaging the edge weights of all younger and 

older adults, respectively. Figure S4 shows the network characteristics of the resulting 

aggregate networks compared to the characteristics observed for individuals. We found that 

group-wise aggregate networks overestimate the network characteristics of both younger and 

older individuals. On average, the aggregate characteristics were higher than those of 69.7% 

of individuals. The overestimation was most pronounced for the clustering coefficient 

(81.9%), followed by the average shorted path length (75%) and degree (70.8%). Only for 

strength (51.4%) were individuals accurately represented by the aggregate network. Notably, 

the aggregate networks still reflected the group differences observed based on the individual 

networks. Thus, although aggregate networks were biased towards larger degrees, clustering 

coefficients, and average shortest path lengths, they seemed to be biased in roughly equal 

amounts for the two groups, retaining their relative position to one another.  

The relatively benign aggregation bias may result from the fact that in this case all 

networks include, by design, the same set of nodes. When analyses aggregate not only across 

the presence and absence of edges, as in this case, but also across the presence and absence of 

nodes, as in the case of verbal fluence or free association networks, then aggregation biases 

will likely be more severe.  
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Figure S4. The effect of aggregation. The figure shows the network characteristics under wmin 

= .1 for each individual (small, open circles) and the respective group averages (large, solid 

circles). The horizontal bars show the same characteristics for group-wise, aggregate 

networks created by averaging the edge weights of individual networks separately for 

younger and older adults.  
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