Insights into the spectrum of activity and mechanism of action of MGB-BP-3

Electronic Supplementary Information

Charlotte Hind¹, Melanie Clifford¹, Charlotte Woolley¹, Jane Harmer², Leah M. C. McGee³, Izaak Tyson-Hirst³, Henry J. Tait³, Daniel P. Brooke³, Stephanie J. Dancer^{4,5}, Iain S. Hunter⁶, Colin J. Suckling³, Rebecca Beveridge³, John A. Parkinson³, J. Mark Sutton^{1,7}, Fraser J. Scott^{3*}

¹Research and Evaluation, UKHSA Porton Down, Salisbury, SP4 0JG, United Kingdom ²School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, United Kingdom

³Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1XL, United Kingdom

⁴Department of Microbiology, Hairmyres Hospital, NHS Lanarkshire, Glasgow G75 8RG United Kingdom

⁵School of Applied Sciences, Edinburgh Napier University, Edinburgh EH11 4BN, United Kingdom

⁶Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, United Kingdom

⁷Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom

*Corresponding Author: fraser.j.scott@strath.ac.uk

Table of Contents

Table S1. MICs of MGB-BP-3 against and expanded panel of Gram-positive.	Page S1
Table S2. Activity of S-MGB-245 against ESKAPE pathogens.	Page S1
Figure S1: Assessment of active transport mediated uptake using sodium azide in S. aureus.	Page S1
Table S3. gDNA and gDNA:MGB-BP-3 complex Boltzman model details that relate to figure 4 in main	Page S1
text.	0
Table S4. Calculated and measured masses for each species observed in Figure 5 for nESI-MS of DNA 51 CCCATTATATATATATATATATATATATATATATATATA	Page S2
sequence 5'-CGCATATATGCG-3' MGB-BP-3.	
Figure S2. Aromatic cross-peak region of the 250 ms, 800 MHz 2D [¹ H, ¹ H] NOESY NMR spectrum	Page S2
acquired at 1 °C of duplex d(CGCATATATGCG) ₂ in complex with 2 molar equivalents of MGB-BP-3.	1 uge 52
Table S5. 1H NMR chemical shift assignments for identified protons within the DNA duplex of sequence	Page S3
5'-d(CGCATATATGCG)-3' in ligand-bound form	1 age 55
Table S6. Comparisons of 1H NMR chemical shift data for ligand-free compared with ligand-bound DNA	Page S4
duplex of sequence 5'-(CGCATATATGCG)-3' for assignable resonances within the ligand-bound	1 "50 01
complex for identifiably distinct DNA strands with the ligand-bound form.	

Organism	Strain	MGB-BP-3	CIP
S. aureus	ATCC 9144	0.0977	1
S. aureus	NCTC 13616	0.39	64
S. aureus	USA300	0.195	64
S. aureus	1199b	0.39	8
E. faecalis	NCTC 775	0.39	2
E. faecalis	NCTC 12201	0.78	1
E. faecium	NCTC 12204	0.39	1

 Table S1. MICs of MGB-BP-3 against and expanded panel of Gram-positive. Ciprofloxacin (CIP) was included as a control antibiotic.

Table S2. Activity of S-MGB-245 against ESKAPE pathogens and potentiation results with PAβN against Gram-negative pathogens.

	S. aureus ATCC 43300	E. faecalis ATCC 51299	E.coli ATCC 25922	P. aeruginosa ATCC 27893	A. baumannii ATCC 19606	K. pneumoniae ATCC 700603
MIC ₈₀ (μM) S-MGB- 245	1.56	6.25	>100	>100	>100	>100
MIC ₈₀ (μM) S-MGB- 245 with 100 μg/mL ΡΑβΝ	NT	NT	3.13	6.25	3.13	12.5

S. aureus

S-MGB-245 only 1 mM sodium azide 10 mM sodium azide

Figure S1: Assessment of active transport mediated uptake using sodium azide in S. aureus

	Model	Equation	A1	A2	Xo	dx	Reduced Chi-Sqr	R- Square (COD)	Adj. R- Square
gDNA: MGB- BP-3 Complex	Boltzmann	y = A2 + (A1- A2)/(1 + exp((x- x0)/dx))	0.01947 ± 0.00405	0.97237 ± 0.00661	81.46442 ± 0.06105	1.20681 ± 0.05292	7.28691E- 4	0.99597	0.99581
gDNA	Boltzmann	y = A2 + (A1- A2)/(1 + exp((x- x0)/dx))	- 0.02267 ± 0.01116	0.92405 ± 0.00639	69.97987 ± 0.1574	3.44394 ± 0.14232	8.89592E- 4	0.9938	0.99355

Table S3. gDNA and gDNA:MGB-BP-3 complex Boltzman model details that relate to figure 4 in main text.

Species	m/z value	Calculated mass of neutral species (Da)								
Single Stranded [SS]	3-:1214.1 4-:910.3	(1214.1*3) + 3 = 3645.3 (910.3*4) + 4 = 3645.2								
Double Stranded [DS]	4-:1821.7 5-:1457.2	(1821.7*4) + 4 = 7290.8 (1457.2*5) + 5 = 7291.0								
Double Stranded + 2 x S- MGB-BP-3 [DS+2M]	4-:2137.2 5-:1709.6	(2137.2) + 4 = 8552.8 (1709.6*5) + 5 = 8553.0								

Table S4. Calculated and measured masses for each species observed in Figure 5 for nESI-MS of DNA sequence 5'-CGCATATATGCG-3' MGB-BP-3.

Figure S2. Aromatic cross-peak region of the 250 ms, 800 MHz 2D [¹H, ¹H] NOESY NMR spectrum acquired at 1 °C of duplex $d(CGCATATATGCG)_2$ in complex with 2 molar equivalents of MGB-BP-3 showing the 5'-3' assignment "walk" and evidence of two interchanging identities for the DNA strands. Magenta lines and labels – DNA strand "a" assignments showing nOe correlations between aromatic protons within nucleotides adjacent to one another; Black lines and labels – as for DNA strand "a" but for DNA strand "b" instead; Blue squares and labels – cross-peaks arising from a chemical exchange process which swaps the identities of proton nuclei in Strand "a" and Strand "b". Assignments are read as: nXcHd where n is "a" or "b" for DNA strands, X is the nucleotide type A, G, C or T, c is the nucleotide number within the sequence counting from the 5' terminal base as 1; Hd is the identity of the relevant aromatic proton.

					Cher	nical SI	hift Ass	ignmen	t: δ ¹Η (p	opm) ^[a]					
Atom ID	H8			H6			H5			CH_3			H1'		
	a ^[b]	b ^[b]	$\Delta \delta^{[c]}$	а	b	Δδ	а	b	Δδ	а	b	Δδ	а	b	Δδ
Base															
C1				7.704	7.634	0.070	5.935	5.895	0.04				5.778	5.740	0.038
G2	8.035	7.992	0.043										6.105	5.867	0.238
C3				7.568	7.409	0.159	5.597	5.438	0.159				5.747	5.826	-0.079
A4	8.438	8.458	-0.020										6.574	6.292	0.282
T5				7.018	7.533	-0.515				1.570	1.520	0.050	5.378	5.509	-0.131
A6	8.148	8.505	-0.357										6.626	6.625	0.001
Τ7				6.824	7.012	-0.188				1.342	1.647	-0.305	5.323	5.369	-0.046
A8	8.155	8.519	-0.364										5.184	5.490	-0.306
Т9				6.852	7.135	-0.283				1.436	1.476	-0.040	5.328	5.249	0.079
G10	7.704	7.808	-0.104										5.931	5.925	0.006
C11				7.215	7.338	-0.123	5.258	5.369	-0.111				5.656	5.648	0.008
G12	7.946	7.975	-0.029										6.185	6.185	0.000

Table S5. ¹H NMR chemical shift assignments for identified protons within the DNA duplex of sequence 5'-d(CGCATATATGCG)-3' in ligand-bound form.

^[a] ¹H NMR data assignments for data acquired on a sample cooled to 1 °C. ^[b] Chemical exchange results in two identifiable sets of resonances arising from DNA strands having different, yet interconverting identities here termed **a** and **b**. ^[c] $\Delta\delta$ corresponds to the difference between ¹H chemical shift values of resonances associated with the "**b**" strand of the DNA as $\Delta\delta = \delta^{1}H_{a} - \delta^{1}H_{b}$ in all cases of calculated proton chemical shift differences. Colour coding: chemical shift difference values are colour coded blue or red where red corresponds to base proton values and blue corresponds to sugar proton values. Bold typeface entries are for the most significant differences where $|\Delta\delta| > 0.1$ ppm.

Table S6. Comparisons of ¹H NMR chemical shift data for ligand-free compared with ligand-bound DNA duplex of sequence 5'- (CGCATATATGCG)-3' for assignable resonances within the ligand-bound complex for identifiably distinct DNA strands with the ligand-bound form.

	Chemical Shift Assignment: δ¹Η (ppm)														
Atom		H8			H6			H5		CH ₃			H1'		
ID															
	Free	$\Delta \delta_{(a-f)}{}^{[b]}$	$\Delta \delta_{(b-f)}^{[b]}$	Free	$\Delta \delta_{(a-f)}$	$\Delta \delta_{(b-f)}$	Free	$\Delta \delta_{(a-f)}$	$\Delta \delta_{(b-f)}$	Free	$\Delta \delta_{(a-f)}$	$\Delta \delta_{(b-f)}$	Free	$\Delta \delta_{(a-f)}$	$\Delta \delta_{(b-f)}$
	(f) ^[a]			(f)			(f)			(f)			(f)		
Base															
C1				7.654	0.005	-0.020	5.911	0.024	-0.016				5.760	0.018	-0.020
G2	7.976	0.059	0.016										5.916	0.189	-0.049
C3				7.413	0.155	-0.004	5.453	0.144	-0.015				5.593	0.154	0.233
A4	8.363	0.075	0.095										6.288	0.286	0.004
T5				7.204	-0.186	0.328				1.481	0.089	0.039	5.685	-0.307	-0.176
A6	8.275	-0.127	0.230										6.240	0.386	0.385
Τ7				7.206	-0.382	-0.194				1.354	-0.012	0.293	5.802	-0.479	-0.433
A8	8.272	-0.117	0.247										6.238	-1.054	-0.748
Т9				7.117	-0.265	0.018				1.298	0.138	0.178	5.822	-0.494	-0.573
G10	7.883	-0.179	-0.075										5.803	0.128	0.122
C11				7.380	-0.166	-0.042	5.420	-0.162	-0.051				5.761	-0.105	-0.133
G12	7.980	-0.034	-0.005										6.181	0.004	0.004

^[a] ¹H NMR data assignments for protons in the ligand free DNA duplex. ^[b] Chemical exchange results in two identifiable sets of resonances arising from DNA strands having different, yet interconverting identities here termed **a** and **b**. $\Delta\delta_{(a-f)}$ corresponds to the difference between ¹H chemical shift values of resonances associated with ligand-free DNA duplex subtracted from the ligand-bound "**a**" strand as $\Delta\delta = \delta^{1}H_{a} - \delta^{1}H_{f}$. $\Delta\delta_{(b-f)}$ corresponds to the difference between ¹H chemical shift values of resonances associated with ligand-free DNA duplex subtracted from the ligand-bound "**b**" strand as $\Delta\delta = \delta^{1}H_{a} - \delta^{1}H_{f}$. Colour coding: chemical shift difference values are colour coded blue or red where red corresponds to base proton values and blue corresponds to sugar proton values. Bold typeface entries are for the most significant differences where $|\Delta\delta| > 0.1$ ppm.