- Title: Microbial water quality through a full-scale advanced wastewater treatment demonstration
 facility
- 3
- 4 Authors: Scott Miller^{1,2}, Hannah Greenwald^{1,2}, Lauren C. Kennedy^{1,2,3}, Rose S. Kantor^{1,2}, Renjing
- 5 Jiang^{1,2}, Aleksey Pisarenko⁴, Elise Chen⁴, and Kara L. Nelson^{*1,2}
- 6
- ¹Department of Civil and Environmental Engineering, College of Engineering, University of
 California, Berkeley; Berkeley, CA, 94720, United States
- ⁹ ²National Science Foundation Engineering Research Center for Re-inventing the Nation's Urban
- 10 Water Infrastructure (ReNUWIt); Berkeley, CA, 94720, United States
- ³Department of Civil and Environmental Engineering, College of Engineering, Stanford
- 12 University, Stanford, CA, 94305, United States
- ⁴Trussell Technologies, Inc.; Solana Beach, CA, 92075, United States
- 14

15 *Corresponding author email: karanelson@berkeley.edu

16 Table of Contents

17	1.	SU	PPLEMENTARY METHODS	2
18 19	1 1	.1. .2.	Calculation of Recovery Efficiencies by Primary and Secondary Concentration Additional Quantitative PCR Methods	2
20	2.	SU	PPLEMENTARY TABLES	3
21	3.	SU	PPLEMENTARY FIGURES	14
22	4.	AU	THOR CONTRIBUTIONS	
23	5.	REI	FERENCES	19
24				
25				

27 1. Supplementary Methods

28

Supplementary Methods

29 1.1. Calculation of Recovery Efficiencies by Primary and Secondary Concentration

Recovery efficiencies for primary (dead-end ultrafiltration) and secondary concentration (PEG
 flocculation and centrifugation) were calculated as follows:

- 32 33 $Primary Recovery Efficiency = \frac{TCC_{Backflush} * V_{Backflush}}{TCC_{Grab Sample} * V_{Ultrafilter Feed}}$ 34 35 $Secondary Recovery Efficiency = \frac{TCC_{Resuspended Floc} * V_{Floc Volume}}{TCC_{Backflush} * V_{Backflush}}$
- 36
- 37 Where:
- $TCC_{Backflush} = total cell counts in ultrafilter backflush water$
- $V_{Backflush}$ = volume of the ultrafilter backflush water
- $TCC_{Grab sample} = total cell counts in the raw grab sample$
- 41 $V_{\text{Ultrafilter feed}}$ = volume of water filtered by the ultrafilter
- TCC_{Resuspended floc} = total cell counts in the resuspended RO permeate floc
- 43 $V_{Floc volume}$ = volume of the resuspended RO permeate floc 44

45 1.2. Additional Quantitative PCR Methods

For qPCR inhibition analysis, we used undiluted samples with less than 100 ng of DNA per
qPCR assay well. Results of inhibition testing indicated that samples with less than 100 ng of
DNA per qPCR assay well were uninhibited; therefore, sample DNA were diluted to ensure less
than 100 ng of DNA was added to each qPCR well. Dilution of sample DNA into qPCR wells

50 varied from no dilution to 100-fold dilution. Of the 242 samples analyzed among all of the qPCR 51 assays, one sample was diluted 100-fold, four samples were diluted 20-fold, and 16 samples

- 52 were diluted 10-fold; all other samples were diluted 5-fold or less.
- 53

54 On the StepOnePlus software, we applied the same threshold to all samples within an assay. The

- 55 threshold was selected based on average threshold values determined by the instrument and
- 56 checked visually to best cross the linear portions of every standard and sample amplification
- 57 curve. **Table S2** shows the thresholds chosen for each assay.
- 58

59 For all samples with mean gene counts above their respective assay LOD, all three replicates

- amplified above the respective LOD. No sample data were removed from data analysis.
- 61
- 62 gBlockTM standards were prepared as follows: probes were prepared as 100 nm PrimeTime 5' 6-
- 63 FAM/ZEN/3' IBFQ (16S rRNA) or PrimeTime Eco 5' 6-FAM/ZEN/3' IBFQ (adenovirus and
- 64 polyomavirus) purified by HPLC. Primers for all assays were prepared as gBlocksTM Gene
- 65 Fragments, RxnReady[®] Primer Pool Oligo Mix Products purified by standard desalting.
- 66

67 2. Supplementary Tables

68

69 Table S1: Sample dates and times for dead-end ultrafiltration (for DNA and qPCR analysis),

70 and grab samples for flow cytometry and ATP. Times are shown in 24-hour format. Dead-end

71 ultrafiltration sampling for RO permeate was conducted overnight to maximize quantity of water

72 filtered due to low microbial quantities in RO permeate.

	Type of					MF/UF		
Date	Sample	Tertiary	Ozone	BAC	MF/UF	Storage Tank	RO	AOP
	Dead-end						9:00-11:00	
September 17,	Ultrafiltration	10:15-10:37		9:10-10:54			(overnight)	
2017	Grab	10:38	9:29	10:55	9:50	9:50	10:50	10:25
	Dead-end						15:30-11:55	
September 21,	Ultrafiltration						(overnight)	
2017	Grab						15:30	
	Dead-end	14:20-time		14:00-time			14:00-11:15	
September 26,	Ultrafiltration	unknown		unknown			(overnight)	
2017	Grab	14:20	14:00	14:00	13:30	13:15	14:00	14:15
							17:00-time	
	Dead-end	15:30-time		15:14-time		16:45-time	unknown	
October 10,	Ultrafiltration	unknown		unknown		unknown	(overnight)	
2017	Grab	15:24	16:10	15:14	16:45	16:45	17:00	16:30
	Dead-end							
November 7,	Ultrafiltration					_	_	_
2017	Grab	9:45	9:45	9:45	10:00*	9:50	10:05	10:00
							11:30-time	
	Dead-end						unknown	
November 14,	Ultrafiltration	11:15-11:35		10:50-12:30		11:35-13:25	(overnight)	
2017	Grab	11:15	11:55	10:50	11:35	11:05	11:30	11:30
							15:30-time	
	Dead-end						unknown	
December 14,	Ultrafiltration	14:30-14:55		14:00-15:25		14:25-16:45	(overnight)	
2017	Grab	14:30	15:25	14:00	15:05	14:25	15:30	15:35
	Ultrafiltration	5	0	5	0	3	6	0
TOTAL	Grab	6	6	6	6	6	7	6

Table S2: Summary table of gBlocksTM standards. Note that additional qPCR targets used in

- unrelated research studies are included on the gBlocks and are included here to inform
- 78 characteristics (e.g., length) of each standard.

	Standard A	Standard B	Standard C
Includes F and R Primers for what Targets?	16S rRNA Gene, Legionella pneumophila, Adenovirus, Polyomavirus	Acanthamoeba spp., Vermamoeba vermiformis, sul1, MAC	amoA, blatem
Length	740	997	748
Melting temp (degrees Celsius)	80.6	80.4	78.1
GC Content	0.5243	0.5145	0.4626
Pass IDT complexity screening?	yes	yes	yes
Primer sequences in standard verified?	yes	yes	yes

81 Table S3: Summary statistics for qPCR standard curves, including amplification efficiency,

R², and number of replicates amplifying at low end of curve.

		Human			
	16S rRNA Gene	Adenovirus	bla _{тем}	JC Polyomavirus	sul1
# of Standard Curves Run =	10	3	7	2	6
Threshold applied	0.14	0.08	0.4	0.14	0.4
Linear range (gene copies					
per qPCR well)	10 ³ - 10 ⁹	10 ¹ - 10 ⁷	10 ¹ - 10 ⁶	10 ¹ - 10 ⁷	10 ¹ - 10 ⁶
Amplification Efficiency					
Arithmetic mean	84.4	87.1	81.2	93.0	83.8
Standard deviation	7.0	8.1	3.9	1.8	6.6
Maximum	93.6	94.7	87.7	94.2	92.7
Minimum	73.3	78.6	77.3	91.8	73.9
R^2 Values					
Mean	0.996	0.998	0.998	0.999	0.998
St. Dev.	0.004	0.000	0.001	0.001	0.001
# of Replicates Amplifying >	LoD at Low End of	Curve (i.e., 10	00 copies for 1	6S, 10 copies for a	all other assays)
Arithmetic mean	3	2.3	2.4	3	2.7
Minimum	3	2	2	3	2
Maximum	3	3	3	3	3
% of All Replicates					
that Amplified	100	78	81	100	89

86 Table S4: List of all qPCR standard curve results. Each plate had one standard curve run on it 87 with three replicates at each 10-fold dilution step of the standard curve. None of the qPCR negative 88 controls for 16S rRNA gene amplified within the linear range of the standard curve. *LoD = limit 89 of detection as defined in the main manuscript methods. **qPCR negative controls were nuclease 90 free water as defined in the methods. ***Standard was accidentally not added to the 1000 gene

91 copy wells (the LoD) for the 16S rRNA gene standard curve on 3/9/19.

							Number of Standard Curve Replicates that	Number of qPCR Negative Control** Replicates		Standard Deviation
Plate	Date	1253	Effic-	194220	Y-		Amplified at	that	Avg Cq	of C _q at
#	Run	Assay	iency	Slope	intercept	R ²	the LoD*	Amplified	at LoD	LoD
105	2/9/19	blatem	87.65	-3.658	40.425	0.999	3	0	36.78	0.25
106	2/18/19	sul1	92.65	-3.511	40.214	0.998	3	0	36.75	0.57
107	2/18/19	16S	91.05	-3.557	41.728	0.999	3	3	31.22	0.06
108	2/18/19	16S	84.9	-3.746	42.534	0.998	3	3	31.3	0.26
113	2/21/19	sul1	87.13	-3.674	40.727	0.998	3	0	37.33	0.68
114	2/21/19	blatem	77.36	-4.018	42.848	0.998	2	0	38.39	0.46
115	2/24/19	16S	88.33	-3.637	41.518	0.998	3	3	30.69	0.08
120	2/26/19	sul1	82.47	-3.829	42.021	1	2	0	37.96	0.10
121	2/26/19	blatem	79.6	-3.932	42.741	0.998	2	0	38.32	0.74
122	2/26/19	16S	78.48	-3.975	44.065	0.996	3	3	32.85	0.16
125	2/27/19	sul1	77.06	-4.03	42.920	0.998	2	0	39.17	1.18
126	3/5/19	blatem	80.49	-3.899	42.048	0.996	3	0	37.94	1.04
129	3/9/19	16S	78	-3.994	44.807	0.992	3	3	***	***
130	3/7/19	sul1	88.49	-3.632	39.872	0.999	3	0	36.05	0.22
131	3/7/19	blatem	80.8	-3.889	41.534	0.997	3	0	38.12	0.67
137	3/20/19	16S	77.72	-3.979	45.240	0.994	3	3	33.74	0.06
138	3/12/19	blatem	85.198	-3.736	41.700	0.997	2	0	37.44	0.35
139	3/19/19	sul1	85.034	-3.742	40.899	0.997	3	0	37.44	0.97
140	3/19/19	16S	93.555	-3.487	41.638	0.997	3	3	31.38	0.09
		adeno-								
141	3/9/19	virus	94.682	-3.456	37.822	0.998	3	0	35.14	0.08
00000000		polyoma-		INVESTIGATION OF		100000000		18		
142	3/9/19	virus	91.75	-3.537	41.196	0.998	3	0	37.37	0.91
143	3/27/19	sul1	73.885	-4.162	44.013	0.999	1	0	39.88	NA
144	3/26/19	blatem	77.3	-4.02	43.184	0.998	2	0	39.16	1.33
145	3/27/19	16S	90.623	-3.569	43.611	0.987	3	3	33.17	0.41
		adeno-					20			0.00
146	3/26/19	virus	88.09	-3.656	39.594	0.998	2	0	36.02	0.86
147	2/20/10	virus	04 224	2 469	40.690	0.000	2	0	27 21	0.76
147	3/20/19	160	72 076	-3.400	40.000	0.999	3	2	20 21	0.70
140	3/20/19	adenc	13.210	-4.189	51.799	0.990	3	3	39.21	0.05
149	4/17/19	virus	78.6	-3.97	40 898	0 998	2	0	36.7	0.63
151	7/1/19	16S	87.648	-3.658	42.556	1	3	3	31.68	0.08

Gene Target	Reference Study	Reaction Mix	Reaction Conc. (µM)	Reaction Cycling	Temp (°C)	Time (sec)
		TaqMan [™] Environmental 2.0	(1x)	Pre-denatura	tion for 95C fo	r 10 min
16S universal	Silkie et al.	Primer (F and R)	0.9	Denaturation	95	15 s
rRNA gene	2009	Probe	0.25	Annealing	60	30 s
		Bovine serum albumen	0.05	Extension	72	60 s
		TaqMan [™] Environmental 2.0	(1x)	Pre-denatura	tion for 95C fo	r 10 min
Human adenovirus	Jothikumar	Primer (F and R)	0.9	Denaturation	95	15 s
(hexon gene)	et al. 2005	Probe	0.3	Annealing	55	30 s
		Bovine serum albumen	0.05	Extension	72	60 s
		TaqMan [™] Environmental 2.0	(1x)	Pre-denatura	tion for 95C fo	r 10 min
JC	Pal <i>et al.</i> 2006	Primer (F and R)	0.9	Denaturation	95	15 s
JC polyomavirus		Probe	0.25	Annealing	53	30 s
		Bovine serum albumen	0.05	Extension	72	60 s
		PowerUp [™] SYBR [™] Green	(1x)	UDG activation for 2 min + Pre- denaturation for 95C for 3 min		
blaTEM	Proia <i>et al.</i> 2018	Primer (F and R)	0.3	Denaturation	95	15 s
		Probe	NA	Annealing	60	20 s
		Bovine serum albumen	0.05	Extension	72	60 s
		PowerUp [™] SYBR [™] Green	(1x)	UDG activation	on for 2 min + I for 95C for 3 r	^p re- nin
sul1	Proia <i>et al.</i> 2018	Primer (F and R)	0.3	Denaturation	95	15 s
		Probe	NA	Annealing	60	30 s
		Bovine serum albumen	0.05	Extension	72	60 s

Table S5: Reaction mixes and thermal cycling conditions for gPCR assays.

Table S6: qPCR inhibition testing results. Samples are not inhibited when the difference
between measured delta(Ct) and expected delta(Ct) (see the right-most column) is less than one.

99 Sample dilutions that meet criteria for not being inhibited are shaded green in the right column.

		Expec	ted delt	a(Ct)	(MEAS based Factor	on Dilu (x1, 2,	CT valu tion 5, etc.)	ies	Measu	red delt	a(Ct)	Exp. v	s. Meas	•
Assay	Sample Type	2x	5x	10x	1x	2x	5x	10x	2x	5x	10x	2x	5x	10x
	Tertiary WW		1.54	2.71		26.67	28.56	29.79		1.89	3.12		0.35	0.41
blaTEM	RO permeate		1.54	2.71		28.32	30.25	31.36		1.93	3.04		0.39	0.33
	Tertiary WW	1.14	2.65	3.80	22.21	23.16	25.00	26.02	0.95	2.79	3.81	-0.19	0.14	0.01
sul1	RO permeate	1.14	2.65	3.80	19.73	20.74	22.58	23.65	1.01	2.85	3.92	-0.13	0.20	0.12
	Tertiary WW		1.49	2.61		18.15	18.88	19.97		0.73	1.82		-0.76	-0.79
16S	RO permeate	1.12	2.61	3.73	16.91	17.85	19.08	20.24	0.94	2.17	3.33	-0.18	-0.44	-0.40
	Tertiary WW #1	1.04	1.38	2.42		26.47		29.44			2.97			0.55
	Tertiary WW #2	1.04			30.85	32.12			1.27			0.23		
Adeno-	BAC	1.04	2.42	3.47		27.29	29.18	30.42		1.89	3.13		-0.53	-0.34
virus	RO Permeate	1.04	2.42	3.47		29.08	31.23	32.19		2.15	3.11		-0.27	-0.36
Polvoma-	Tertiary WW	1.10	2.54	3.64		29.01	30.89	31.91		1.88	2.90		-0.66	-0.74
virus	BAC	1.10	2.54	3.64						NA	NA			

100 101

103 Table S7: Summary statistics for results from the five qPCR assays. For the calculation of

104 geometric mean ("geomean") and geometric standard deviation ("GeoSD"), all samples with

results below the limit of detection ("LoD") were set to the LoD. Prevalence is equal to the total 105

number of samples detected ("Count: Detects") divided by the number of total samples ("Count: 106 Total").

107

		Geomean		Count:	Count:	Count:	Preva-
Sampling		log ₁₀		Total	Below	Above	lence
Location	qPCR Assay	(GC/mL)	GeoSD	(n)	LoD	LoD	(%)
WW Tertiary	16S rRNA gene	6.35E+05	2.10	5	0	5	100
BAC	16S rRNA gene	1.30E+05	1.99	5	0	5	100
MF/UF					6		
Storage Tank	16S rRNA gene	2.09E+03	2.71	3	0	3	100
RO	16S rRNA gene	1.88E+01	3.98	10	0	10	100
WW Tertiary	sul1	4.59E+03	4.38	5	0	5	100
BAC	sul1	1.33E+03	1.34	5	0	5	100
MF/UF							
Storage Tank	sul1	2.52E+02	2.07	3	0	3	100
RO	sul1	1.32E-01	2.50	8	0	8	100
WW Tertiary	blaTEM	9.74E+01	2.81	5	0	5	100
BAC	blaTEM	4.10E+00	17.50	4	0	4	100
MF/UF							
Storage Tank	blaTEM	8.26E-03	1.11	3	2	1	33
RO	blaTEM	2.31E-04	2.18	7	7	0	0
WW Tertiary	Adenovirus	2.91E+00	1.99	4	0	4	100
BAC	Adenovirus	3.05E-02	2.30	4	0	4	100
MF/UF							
Storage Tank	Adenovirus	6.56E-03	1.45	3	3	0	0
RO	Adenovirus	3.71E-04	3.17	9	9	0	0
WW Tertiary	Polyomavirus	1.25E+02	2.08	5	0	5	100
BAC	Polyomavirus	3.05E+00	13.40	5	1	4	80
MF/UF							
Storage Tank	Polyomavirus	8.26E-03	1.11	3	3	0	0
RO	Polyomavirus	4.32E-04	4.00	7	7	0	0

110 **Table S8: Summary statistics for total and intact cell count measurements across the** 111 **advanced treatment train.** For the calculation of geometric mean ("Geomean) and geometric

112 standard deviation ("GeoSD"), all samples with cell counts below the limit of quantification

- 113 ("LoQ") were set to the LoQ. Combined results for parallel processes (e.g., "MF/UF" = averaged
- results for MF and UF) are depicted in the table by grey shading.

					Count (n)	
	Flow Cytometry	Geomean		Count	less than	% Less
Sampling Location	Assay	log ₁₀ (cells/mL)	GeoSD	(n)	LoQ	than LoQ
WW Tertiary	Total Cell Count	6.63E+06	1.40	7	0	0
WW Tertiary	Intact Cell Count	4.77E+06	1.42	7	0	0
Ozone	Total Cell Count	4.31E+04	2.93	7	0	0
Ozone	Intact Cell Count	2.89E+04	3.06	7	0	0
BAC	Total Cell Count	6.28E+05	1.23	7	0	0
BAC	Intact Cell Count	5.57E+05	1.20	7	0	0
MF	Total Cell Count	1.55E+04	1.47	7	0	0
MF	Intact Cell Count	1.37E+04	1.40	7	0	0
UF	Total Cell Count	7.23E+04	2.79	7	0	0
UF	Intact Cell Count	4.48E+04	1.98	7	0	0
MF/UF	Total Cell Count	3.90E+04	3.08	14	0	0
MF/UF	Intact Cell Count	2.65E+04	2.26	14	0	0
MF/UF Storage Tank	Total Cell Count	4.95E+04	1.45	7	0	0
MF/UF Storage Tank	Intact Cell Count	4.30E+04	1.37	7	0	0
RO (2-stage)	Total Cell Count	3.52E+02	3.35	7	0	0
RO (2-stage)	Intact Cell Count	2.06E+02	3.27	7	0	0
RO (3-stage)	Total Cell Count	3.55E+02	3.67	7	0	0
RO (3-stage)	Intact Cell Count	2.01E+02	3.68	7	0	0
RO	Total Cell Count	3.53E+02	3.32	14	0	0
RO	Intact Cell Count	2.04E+02	3.28	14	0	0
RO Combined Permeate	Total Cell Count	5.45E+02	2.67	7	0	0
RO Combined Permeate	Intact Cell Count	3.04E+02	2.92	7	0	0
AOP	Total Cell Count	1.61E+02	2.40	6	0	0
AOP	Intact Cell Count	2.95E+01	1.32	6	2	33

118 **Table S9: Summary statistics for total and intracellular ATP measurements across the**

119 advanced treatment train. For the calculation of geometric mean ("Geomean") and geometric

120 standard deviation ("GeoSD"), all samples with cell counts below the limit of quantification

121 ("LoQ") were set to the LoQ. Combined results for parallel processes (e.g., "MF/UF" = averaged

122 results for MF and UF) are depicted in the table by grey shading.

					Count (n)	
		Geomean		Count	less than	% Less
Sampling Location	ATP Assay	log ₁₀ (nM)	GeoSD	(n)	LoQ	than LoQ
WW Tertiary	Total ATP	6.81E-01	1.34	5	0	0
WW Tertiary	Intracellular ATP	3.92E-01	1.53	5	0	0
Ozone	Total ATP	1.04E-01	3.52	6	0	0
Ozone	Intracellular ATP	2.54E-03	3.43	6	0	0
BAC	Total ATP	9.51E-02	1.39	6	0	0
BAC	Intracellular ATP	6.98E-02	1.51	6	0	0
MF	Total ATP	3.28E-03	2.33	5	0	0
MF	Intracellular ATP	8.61E-04	2.95	4	0	0
UF	Total ATP	5.90E-03	1.76	5	0	0
UF	Intracellular ATP	3.24E-03	2.08	5	0	0
MF/UF	Total ATP	-2.36E+00	2.11	10	0	0
MF/UF	Intracellular ATP	-2.75E+00	2.98	9	0	0
MF/UF Storage Tank	Total ATP	2.38E+00	2.38	5	0	0
MF/UF Storage Tank	Intracellular ATP	2.06E+00	2.06	5	0	0
RO (2-stage)	Total ATP	1.23E+00	1.23	7	0	0
RO (2-stage)	Intracellular ATP	1.84E+00	1.84	3	0	0
RO (3-stage)	Total ATP	1.63E+00	1.63	6	1	17
RO (3-stage)	Intracellular ATP	3.00E+00	3.01	3	1	33
RO	Total ATP	-3.81E+00	1.42	13	1	8
RO	Intracellular ATP	-4.12E+00	2.25	6	1	17
RO Combined Permeate	Total ATP	-3.51E+00	1.90	5	0	0
RO Combined Permeate	Intracellular ATP	-3.89E+00	2.11	5	0	0
AOP	Total ATP	-4.00E+00	1.00	5	5	100
AOP	Intracellular ATP	NA	NA	NA	NA	NA

- Table S10: Log removal values (LRV) for total and intact cell counts by flow cytometry across
- major treatment processes at the advanced treatment facility. Combined results for parallel processes (e.g., "MF/UF" = averaged results for MF and UF) are depicted in the table by grey
- shading.

Sampling	Total Cell Cour	nts		Intact Cell Counts			
Location	Average LRV	St. Dev. LRV	Count	Average LRV	St. Dev. LRV	Count	
WW Tertiary	0	0	NA	0	0	NA	
Ozone	2.23	0.41	5	2.24	0.44	5	
BAC	-1.16	0.38	6	-1.28	0.42	6	
MF	1.61	0.21	4	1.61	0.19	4	
UF	0.94	0.40	6	1.09	0.28	5	
MF/UF	1.21	0.48	10	1.32	0.36	9	
MF/UF Storage Tank	-0.19	0.39	5	-0.12	0.22	5	
RO (2-stage)	2.30	0.81	6	2.24	0.64	5	
RO (3-stage)	2.26	0.80	5	2.17	0.65	4	
RO	2.28	0.76	11	2.21	0.60	9	
RO Combined Permeate	0.04	0.63	4	0.07	0.55	4	
AOP	0.39	0.13	5	0.86	0.43	5	

- **Table S11:** Log removal values (LRV) for total and intracellular ATP across major treatment
- processes at the advanced treatment facility. Combined results for parallel processes (e.g., "MF/UF" = averaged results for MF and UF) are depicted in the table by grey shading.

Sampling	Total ATP			Intracellular ATP				
Location	Average LRV	St. Dev. LRV	Count	Average LRV	St. Dev. LRV	Count		
WW Tertiary	0	0	NA	0	0	NA		
Ozone	0.73	0.48	5	2.20	0.70	5		
BAC	0.04	0.55	6	-1.44	0.61	6		
MF	1.46	0.27	7	1.92	0.30	7		
UF	1.20	0.30	7	1.32	0.42	7		
MF/UF	1.33	0.30	10	1.59	0.47	9		
MF/UF Tank	-0.34	0.33	5	-0.36	0.39	5		
RO (2-stage)	1.87	0.35	7	1.75	0.14	7		
RO (3-stage)	1.77	0.66	7	1.89	0.87	7		
RO	1.82	0.48	9	1.82	0.51	4		
RO Combined Permeate	-0.29	0.30	6	-0.43	0.11	3		
AOP	0.44	0.18	4	NA	NA	NA		

135 Table S12. Recovery of total cell count through bulk water primary concentration 136 (ultrafiltration). Results from other studies¹⁻³ utilizing REXEED 25S filters and similar 137 ultrafiltration methods are shown as points of comparison. These other studies from literature are 138 not directly comparable but are the only studies we found that quantified recovery using 139 ultrafiltration methods.

									Microbial Recovery by			
									Primary Concentration		n	
			Microbial					Turbidity -	Sample			
		Microbial Target	Quantification	Type of	Filter	Backflushing	Water Vol.	Average	Count		Geo-	
Study	Water Type	(and if Seeded)	Method	Ultrafiltration	Blocking?	Solution	Collected (L)	(NTU)	(n)	Range	mean	GeoSD
This Study	Tertiary Wastewat	Total cell count	Flow cytometry	Dead-end	Yes	Refer to methods	30 - 121	NA	3	37 - 100	71.4	1.78
This Study	BAC Effluent	Total cell count	Flow cytometry	Dead-end	Yes	Refer to methods	34 - 336	0.171	4	55 - 253	104	1.96
This Study	MF/UF Storage Ta	Total cell count	Flow cytometry	Dead-end	Yes	Refer to methods	342 - 577	0.03	2	28 - 259	85.3	4.8
This Study	RO Permeate	Total cell count	Flow cytometry	Dead-end	Yes	Refer to methods	1,290 - 3,891	NA	10	1.5 - 102	14.5	3.69
											Avg	StDev
Smith et al.	Tap ("low	Enterococcus	mEI agar culture;									
2009	turbidity")	faecalis (seeded)	EPA 1600	Dead-end	No	Tap water	100	0.29	4		93	16
Smith et al.	Tap ("mid	Enterococcus	mEI agar culture;									
2009	turbidity")	faecalis (seeded)	EPA 1600	Dead-end	No	Tap water	100	1.5	5		71	11
Smith et al.	Tap ("high	Enterococcus	mEI agar culture;								-	
2009	turbidity")	faecalis (seeded)	EPA 1600	Dead-end	No	Tap water	100	4.3	6		78	12
Mull et al.	Surface ("low		mEI agar culture;			Same solution as						
2012	turbidity")	Enterococci	EPA 1600	Dead-end	No	herein	100	16	3		85	7
Mull et al.	Surface ("mid		mEI agar culture;			Same solution as						
2012	turbidity")	Enterococci	EPA 1600	Dead-end	No	herein	100	46	4		73	11
Mull et al.	Surface ("high		mEI agar culture;			Same solution as						
2012	turbidity")	Enterococci	EPA 1600	Dead-end	No	herein	100	92	4		86	7
Mull et al.	Surface ("low		mTEC agar culture;			Same solution as						
2012	turbidity")	Escherichia coli	EPA 1603	Dead-end	No	herein	100	16	3		85	7
Mull et al.	Surface ("mid		mTEC agar culture;			Same solution as						
2012	turbidity")	Escherichia coli	EPA 1603	Dead-end	No	herein	100	46	4		73	11
Mull et al.	Surface ("high		mTEC agar culture;			Same solution as						
2012	turbidity")	Escherichia coli	EPA 1603	Dead-end	No	herein	100	92	4		87	7
Kahler et al.	River		Methods 9222D			Same solution as						
2015	(Chattahoochee)	Escherichia coli	and 9222G	Tangential-flow	Yes	herein	50	5 - 128	4		98	11
Kahler et al.	Lake (Murphy		Methods 9222D			Same solution as						
2015	Chandler)	Escherichia coli	and 9222G	Tangential-flow	Yes	herein	50	4 - 12	5		85	38
Kahler et al.			Methods 9222D			Same solution as						
2015	Lake (Allatoona)	Escherichia coli	and 9222G	Tangential-flow	Yes	herein	50	4 - 5	3		79	12
Kahler et al.	Ground (Jefferson		Methods 9222D			Same solution as						
2015	City)	Escherichia coli	and 9222G	Tangential-flow	Yes	herein	50	2	4		87	16

3. Supplementary Figures

148

Sampling Location

149 Figure S2. Boxplots of log10 reduction values for (A) total and intact cell counts and (B)

150 total and intracellular ATP throughout the advanced treatment train. Data shown for BAC,

MF/UF, and RO are combined measurements from the respective parallel treatment process 151

152 effluents. The total number of samples taken (n) at each location is located immediately above 153 the x-axis. All samples were analyzed in technical triplicate. Log reduction values were

154 calculated by comparing the microbial abundance in the influent and effluent of each unit

155 process. Intracellular ATP was not below the detection limit for AOP and is not shown here.

2 MF/UF

Storage Tank

RO

(Primary)

8 RO

(Secondary)

RO

(Overall)

0

3

WW Tertiary

(Primary)

BAC

(Primary)

173 Sample Type
 174 Figure S5: Quantities of the 16S rRNA gene in qPCR reaction wells for RO permeate, dead-end

175 ultrafiltration field blank, and qPCR negative controls (i.e., PCR-grade water). The total number

176 of samples taken (n) at each sampling location is located above the x-axis.

177

4. Author Contributions

Table of Author Contributions

	UC Berkeley						Trussell Technologies		
	Dr. Scott Miller	Hannah Greenwald	Dr. Lauren Kennedy	Dr. Rose Kantor	Renjing Jiang	Professor Kara Nelson	Dr. Aleks Pisarenko	Elise Chen	
Conceptualization	х	х	Х	Х		х	Х	х	
Methodology	Х	Х	Х	Х	Х	x			
Software			Х	х					
Validation		Х							
Formal Analysis	Х								
Investigation	Х	Х			Х		Х	Х	
Resources						x	Х	Х	
Data Curation	Х	Х	Х	Х					
Writing - Original Draft	х								
Writing - Review & Editing		x	x	x		x	х		
Visualization	Х		Х	Х					
Supervision				Х		x			
Project Administration	x					x	х	x	
Funding Acquisition						x			

183 **5. References**

184	1.	Smith CM, Hill VR. Dead-End Hollow-Fiber Ultrafiltration for Recovery of Diverse
185		Microbes from Water. Appl Environ Microbiol. 2009;75(16):5284-5289.
186		doi:10.1128/AEM.00456-09.

- Mull B, Hill VR. Recovery of diverse microbes in high turbidity surface water samples
 using dead-end ultrafiltration. *J Micro Methods*. 2012;91(3):429-433.
 doi:10.1016/j.mimet.2012.10.001.
- Kahler A, Johnson T, Hahn D, Narayanan J, Derado G, Hill V. Evaluation of an
 Ultrafiltration-Based Procedure for Simultaneous Recovery of Diverse Microbes in Source
- 192 Waters. *Water*. 2015;7(12):1202-1216. doi:10.3390/w7031202.