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Analyses of the SCOPA-AUT according to Rasch measurement theory (RMT) 

SCOPA-AUT data were analyzed according to the unrestricted (“partial credit”) polytomous Rasch 
model [1, 2] using RUMM2030 (Professional Edition 5.4). P-values are two-tailed and considered 
significant when <0.05 following Bonferroni adjustment.  

According to RMT [3, 4] , the probability of a certain item response is a function of the difference 
between the level of the measured construct (e.g., autonomic dysfunction) represented by the item 
and that possessed by the person.  The model separately locates persons and items on a common 
interval level logit (log-odd units) metric, ranging from minus to plus infinity (with mean item location 
set at zero). If data accord sufficiently with the model, linear measurement and invariant 
comparisons are possible [5, 6]. In the current analyses we addressed targeting, reliability, response 
category functioning, Rasch model fit, uniform and non-uniform Differential Item Functioning (DIF) 
by time of assessment (baseline vs. follow-up), age (subgroups according to median age) and gender, 
and local dependency. DIF by time of assessment was checked at the outset of these analyses and 
absence of DIF by time was taken as support for merging data from the two time points, thereby 
gaining precision in estimates [7]. Analyses include both graphical as well as statistical methods, 
which are of equal primacy.  

Good targeting means that items represent the levels of autonomic dysfunction reported by the 
sample and, conversely, that the sample distribution covers the levels of autonomic dysfunction 
represented by the items. Poor targeting compromises measurement precision, and conditions for 
scale evaluation [6]. One indicator of targeting is the average person locations relative to item 
locations (i.e., 0 logits) [6].  

Reliability was estimated through the Person Separation Index (PSI), which is conceptually analogous 
to coefficient alpha [8] and can be used to derive the number of strata (i.e., statistically distinct 
groups of persons) that can be distinguished by the scale [9-11]. In addition, we also report 
coefficient alpha.  

Whether the four ordered SCOPA-AUT response categories (never [0], sometimes [1], regularly [2] 
and often (3]) function as intended was assessed by studying response category thresholds, i.e., the 
locations where there is equal probability of responding in either of two adjacent categories. 
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Disordered thresholds imply that response categories are not functioning as expected from less to 
more [12].  

Model fit was assessed by several related approaches that concern standardized item fit residuals, 
which represent the discrepancies between observed and model-expected item responses [1]. 
Graphically, item characteristic curves (ICC) display the relationship between observed and expected 
responses at various levels of the measured variable (in this case dysautonomia). These differences 
are also quantified and expressed as standardized fit residuals with an expected value of 0 and an 
acceptable range between -2.5 and +2.5. Finally, the comparison of observed and expected 
responses can be formalized through an approximate chi-square statistic.  

DIF is an additional aspect of model fit that concerns whether items work invariantly in different 
subgroups of respondents, e.g., age and gender groups [6, 13]. DIF may be uniform or non-uniform. 
When the magnitude of DIF is constant along the latent trait (e.g., levels of autonomic dysfunction), 
it is referred to as uniform DIF, whereas non-uniform DIF represents an interaction effect between 
group (e.g., gender) and location on the latent trait. No DIF means that the item works invariantly in 
both groups (e.g., men and women). DIF was tested by 2-way ANOVA of the residuals across 
autonomic dysfunction levels (subgroups of people with similar SCOPA-AUT scores) for time of 
assessment (baseline vs. follow-up), age (<69 vs. 69+) and gender. In case of uniform DIF, this can be 
adjusted for by splitting the affected item into subgroup specific items [6, 14]. Potential DIF-induced 
group-level bias was explored by estimating effect sizes of the differences between the person 
locations (logit measures) from non-adjusted and DIF-adjusted total scores. Items without DIF in the 
original scale were first anchored by their item locations from the DIF-adjusted scale to assure that 
the two sets of person estimates were on the same metric. Intraclass correlation coefficient and 
effect sizes (ES; mean difference divided by the overall standard deviation [15]) were calculated and 
used as indicators of the practical meaning and bias caused by any detected DIF. ESs of 0.2, 0.5, and 
0.8 were regarded as small, moderate and large, respectively [16]. 

To assess local dependency, relative correlations between standardized item residuals were 
examined [17, 18]. Local independence can be violated through response dependency (item 
redundancy) and trait dependency (multidimensionality) [19]. Response dependency occurs when 
the answer to one item governs the response to another because of similarities, e.g., if two or several 
items relate to the same aspect of the variable, whereas multidimensionality occurs when one or 
several items represent a different construct than the scale as a whole [19].  Local dependency can 
lead to inflated estimates of reliability and problems with construct validity. When assessing local 
dependency, individual residual correlations should be considered relative to the average observed 
residual correlation, rather than to a uniform value [18] . Residual correlations that are high, relative 
to the overall set of correlations, indicate violation of the local independence assumption [18]. The 
critical value for relative residual correlations was identified as described by Christensen et al. [17].  

In circumstances where total scores represent a composition of subscales some local dependency 
will be expected between items addressing the same domain (i.e., items within the same subscales). 
For example, in the case of the SCOPA-AUT, its six subscales capture the complexity of dysautonomia 
and increases the validity of the scale beyond what would be achieved if only one aspect was 
represented [20, 21]. Therefore, we took account of the subscale structure of the SCOPA-AUT in the 
analysis by combining items within each domain into a subtest. In effect, this means that each 
subtest is treated as a single item in the analysis. For example, the 3-item cardiovascular SCOPA-AUT 
domain is treated as a single item with 10 response categories instead of as three unique 4-category 
items. This preserves the total domain score (9 in the case of the cardiovascular SCOPA-AUT domain) 
while absorbing the response dependency in the analysis [1]. Response dependence will be indicated 
if the reliability estimate from the analysis with six SCOPA-AUT subscales drops considerably 
compared to that from the SCOPA-AUT total scale based on all 23 separate items [18]. A subtest 
analysis absorbs local dependency, and the indices A, c, and r are estimated specific to the subtest 
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structure. The value A describes the non-error variance common to all subscales, c characterizes the 
variance that is unique to the subscales, and r is the latent correlation between the subscales. A 
subtest analysis performed on an approximate unidimensional scale will return a high value for both 
A and r, and a low value for c [20, 22].  
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