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I. The exceptional arcs 

Here we mathematically show the existence and forms of the exceptional arcs (EAs). We 

begin with Eq. (1) in the main text, reproduced here  

𝐻𝐸𝑃(𝜂, 𝜁, 𝜉) = 𝜅 [
√2(𝑖 + 𝜂) 1 0

1 𝑖𝜁 + 𝜉 1

0 1 −√2(𝑖 + 𝜂)

] + 𝑖√2𝜅 (

𝑔 0 0
0 0 0
0 0 −𝑔

),   (1) 

𝜅, 𝜂, 𝜁, 𝜉, 𝑔 ∈ ℝ. Here we set 𝜅 = −1, then the characteristic polynomial 𝑝 = det(𝜔𝐈 − 𝐻𝐸𝑃) 

is 

𝑝(𝜔) = 𝜔3 + 𝜔2(𝜉 + 𝑖𝜁) − 2𝜔(𝜂 + 𝑖𝑔)[𝜂 + 𝑖(2 + 𝑔)] − 2(𝜉 + 𝑖𝜁)[𝜂 + 𝑖(1 + 𝑔)]2.  (2) 

For convenience, we define  

𝑎3 = 1, 𝑎2 = (𝜉 + 𝑖𝜁), 𝑎1 = −2(𝜂 + 𝑖𝑔)[𝜂 + 𝑖(2 + 𝑔)], 

𝑎0 = −2(𝜉 + 𝑖𝜁)[𝜂 + 𝑖(1 + 𝑔)]
2.                  (3) 

So that Eq. (2) becomes 

𝑝(𝜔) = 𝑎3𝜔
3 + 𝑎2𝜔

2 + 𝑎1𝜔 + 𝑎0.          (4) 

Differentiate 𝑝(𝜔) with respect to 𝜔 produces 

 𝑞(𝜔) = 𝑏2𝜔
2 + 𝑏1𝜔 + 𝑏0,               (5) 

where 𝑏2 = 3𝑎3, 𝑏2 = 2𝑎2, 𝑏0 = 𝑎1.  Then, the discriminant  Δ  of the characteristic 

polynomial  𝑝 is  

Δ(𝑝) = ∏ (𝜔𝑖 − 𝜔𝑗)
2
= (−1)𝑁(𝑁−1)/2 det[Syl(𝑝, 𝑞)]𝑖<𝑗 ,      (6) 

where 𝑁 = 3 for our system, and Syl(𝑝, 𝑞) is the Sylvester matrix of the polynomials 𝑝 

and 𝑞,  

Syl(𝑝, 𝑞) =

(

 
 

𝑎3 𝑎2 𝑎1 𝑎0 0
0 𝑎3 𝑎2 𝑎1 𝑎0
𝑏2 𝑏1 𝑏0 0 0
0 𝑏2 𝑏1 𝑏0 0
0 0 𝑏2 𝑏1 𝑏0)

 
 
.                   (7) 

Since we only focus on the region in which all four parameters are smaller than 1, we retain 

the terms up to the third order  

Δ(𝑝) ≈ −72𝜉2𝜁 − 144𝜉𝜂𝜁 − 27𝜉2 + 27𝜁2 + 192𝜂2𝑔 + 72𝜁2𝑔 − 64𝑔3 + 𝑖(72𝜉2𝜂 −

64𝜂3 − 144𝜉𝜁𝑔 − 72𝜁2𝜂 − 54𝜉𝜁 + 192𝜂𝑔2).                   (8) 

At the exceptional points, both the real and imaginary parts of the discriminant Δ(𝑝) are nil, 

namely  

Re[Δ(𝑝)] = 0, Im[Δ(𝑝)] = 0.                        (9) 

In the main text, 𝑔 = 0.61 for the EAs in Fig. 2(c), Eq. (9) gives  

−72𝜉2𝜁 − 144𝜉𝜂𝜁 − 27𝜉2 + 27𝜁2 + 177.12𝜂2 + 70.92𝜁2 − 14.53 = 0,    (10) 

−64𝜂3 + 72𝜉2𝜂 − 72𝜁2𝜂 − 195.84𝜉𝜁 + 71.44𝜂 = 0.          (11) 

Equations (10) and (11) give two sets of curvilinear surfaces in 𝜂𝜁𝜉 space that intersect in the 

formation of the EAs, as depicted in Fig. S1.  
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Figure S1.  (a) The accurate EAs with 𝑔 = 0.61. The orange and blue surfaces correspond 

to Re[Δ(𝑝)] = 0 and Im[Δ(𝑝)] = 0, respectively, and their intersections are highlighted in 

red, corresponding to the EAs. (b) The EAs obtained by the approximated equations (10) and 

(11).  

 

II. The EAs and the exceptional nexus 

 The non-Hermitian Hamiltonian, namely Eq. (1) in the main text, is derived from the 

model used in Ref. [1], which can produce an “exceptional nexus” (EX), i.e., an order-3 EP at 

which all order-2 EAs form the cusp singularities. When 𝑔 = 0, the EX appears at 𝜂, 𝜁, 𝜉 =

0, as shown in Fig. S2(b). Two cusp singularities are perpendicular to each other. Figures 

S2(a) and S2(c) show the behavior of these EAs when 𝑔 < 0 and 𝑔 > 0, respectively. We 

see that the EX disappears, and the two cusp singularities formed by the EAs become two 

smooth EAs. Such configurations are convenient for our investigation of state permutations, 

since they can be easily achieved and monitored by encircling one EA at a time. Comparing 

Figs. S2(a) and (c), we can see that the EAs for the 𝑔 < 0 and 𝑔 > 0 cases connect in 

different manners. When 𝑔 < 0, each EA corresponds to a definite state permutation, but it is 

not the case when 𝑔 > 0. The state permutation along the EAs can change when 𝑔 > 0, and 

thus provide the possibility to realize the various permutations in the 𝐷3 group.  
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Figure S2. The EAs for (a) 𝑔 < 0, (b) 𝑔 = 0, and (c) 𝑔 > 0. When 𝑔 = 0, the EAs kiss at 

𝜂, 𝜁, 𝜉 = 0 in the formation of an EX, which is an order-3 EP (the red star).   

 

III. Experimental setup 

We use three cuboid acoustic-cavity resonators to realize the non-Hermitian 

Hamiltonian, as shown in Fig. 2(a) of the main text. The stainless-steel cavities are filled with 

air and have a height ℎ = 110 mm and a square cross-section with a side length of 44 mm. 

The cavities are joined together by small horizontal holes with a cross-sectional area of 17 

mm2, which introduces a hopping of 𝜅 = −49.5 rad/s. The second-order mode, which has a 

cosine acoustic profile with two nodal planes, is employed to realize the onsite orbital. The 

Hermitian eigenmodes, that is, with the absence of differential loss and gain, are depicted in 

Fig. 2(b) in the main text. A small port with a radius of 2 mm is opened on the top of each 

cavity for the external excitation, and a loudspeaker is used to pump at cavity-B. These ports 

also introduce additional radiative loss, which contributes to 𝛾0 in our model.  

The realization of state permutations requires the additional loss and frequency offset to 

be precisely controlled by the relevant acoustic parameters in our experiment. In our 

experiments, the additional loss is achieved by placing small pieces of acoustic sponge at the 

bottom of specific cavities. The frequency offset is achieved by tuning the volume of the 

acoustic cavity, which is implemented by inserting a specific amount of putty. We have 

experimentally characterized the effects of sponge and putty, as shown in Fig. S3(a) and (b), 

respectively. The loss and detuning are determined by fitting the spectral responses of a single 

cavity using the Green’s function.  

  

Figure S3. (a) The linear relationship between loss and the volume of the acoustic sponge. (b) 

The linear relationship between detuning and the volume of putty. The red curves are the 

linear fit, and the blue markers represent extracted data from measurements.  

 

IV. The acquisition of eigenvalues and other system parameters from experimental 

data 
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The eigenvalues of our system can be acquired from the measured pressure response 

spectra through the Green’s function method[1–4]. The Green’s function can be expanded in 

the left and right eigenvectors |𝜓𝑗
𝑅(𝜆𝑙)⟩ and ⟨𝜓𝑗

𝐿(𝜆𝑙)| with 𝑗 = 1, 2, 3 labeling the states 

and 𝜆𝑙 denoting the parametric coordinate of the 𝑙-th step along a closed loop  

      𝐺(𝜔, 𝜆𝑙) = ∑
|𝜓𝑗
𝑅(𝜆𝑙)⟩ ⟨𝜓𝑗

𝐿(𝜆𝑙)| 

𝜔−𝜔𝑗(𝜆𝑙)
3
𝑗=1 .                     (12) 

Here 𝜔𝑗(𝜆𝑙) is the eigenvalues. The pressure responses measured at a specific parametric 

step 𝜆𝑙 inside the three coupled cavities are  

𝑃(𝜔, 𝜆𝑙) = ⟨𝑚|𝐺(𝜔, 𝜆𝑙)|𝑠⟩,                      (13) 

wherein |𝑠⟩ and |𝑚⟩ are 3×1 column vectors denoting the source and probe positions. In 

our experiment, the source is placed on the top of cavity A and three identical microphones 

pick up the pressure response at all three cavities. Therefore, |𝑠⟩ = (0 1 0)𝑇 and |𝑚⟩ = 

( 1 0 0)𝑇 , (0 1 0)𝑇  and (0 0 1)𝑇  for the probing at cavity B, A, and C, 

respectively. The measured data at the three cavities are then fitted against Eq. (13) by a 

genetic-algorithm-assisted least-square fitting. All the parameters 𝜔0, 𝛾0, 𝜅, 𝜂, 𝜁, 𝜉, 𝑔, together 

with the eigenvalues 𝜔𝑗, are thus obtained.   

 

V. The acquisition of eigenfunctions from experimental data 

The permutations of states are observed by tracing the eigenfunctions of the three states 

as they evolve along different loops. Hence the acquisition of eigenfunctions is a crucial step. 

For a three-state non-Hermitian system, the eigenfunctions can be constructed by the onsite 

modes 

|𝜓𝑗
𝑅(𝜆𝑙)⟩ = [

𝑎𝑗,𝐴(𝜆𝑙)|𝜑𝐴⟩

𝑎𝑗,𝐵(𝜆𝑙)|𝜑𝐵⟩

𝑎𝑗,𝐶(𝜆𝑙)|𝜑𝐶⟩

],                        (14) 

   ⟨𝜓𝑗
𝐿(𝜆𝑙)| = [𝑏𝑗,𝐴(𝜆𝑙)⟨𝜑𝐴|, 𝑏𝑗,𝐵(𝜆𝑙)⟨𝜑𝐵|, 𝑏𝑗,𝐶(𝜆𝑙)⟨𝜑𝐶|].       (15)  

Here, |𝜑𝐴,𝐵,𝐶⟩ is the isolated onsite mode of the individual cavity A, B, and C. Its real-space 

representation is a 7 × 1 column vector since there are seven measurement positions on each 

cavity. Thus, in the real-space representation, |𝜓𝑗
𝑅(𝜆𝑙)⟩ is a 21 × 1 column vector and  

⟨𝜓𝑗
𝐿(𝜆𝑙)| is a 1 × 21 row vector. The real parts of the 21 elements of |𝜓𝑗

𝑅(𝜆𝑙)⟩ are the 

results shown in Fig. 3(c, f, i) and Fig. 4(c, f) in the main text. 

 To obtain those results, the first step is to obtain |𝜑𝐴,𝐵,𝐶⟩ by the Green’s function 
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method mentioned before 

        𝑃𝐵(𝜔) =
⟨𝑚|𝜑𝐵⟩⟨𝜑𝐵|𝑠⟩

𝜔−[𝜔0+𝑖𝛾0+𝑖√2𝜅(1+𝑔+𝜂)]
,                   (16) 

𝑃𝐴(𝜔) =
⟨𝑚|𝜑𝐴⟩⟨𝜑𝐴|𝑠⟩

𝜔−[𝜔0+𝑖𝛾0+𝜅(𝑖𝜁+𝜉)]
,                     (17) 

𝑃𝐶(𝜔) =
⟨𝑚|𝜑𝐶⟩⟨𝜑𝐶|𝑠⟩

𝜔−[𝜔0+𝑖𝛾0−𝑖√2𝜅(1+𝑔+𝜂)]
,                  (18) 

wherein |𝑚⟩  and |𝑠⟩  now become 7 × 1  column vectors. |𝑠⟩  only has one nonzero 

element. The retrieved parameters are used in Eqs. (16-18). The data to be fitted are the 

measured pressure responses at 31 frequencies near 𝜔0 at 7 positions on each isolated 

cavity. 

 The second step is to obtain the coefficients 𝑎𝑗;𝐴,𝐵,𝐶 , 𝑏𝑗;𝐴,𝐵,𝐶. This is done by fitting the 

pressure responses of the three coupled cavities measured at totally 21 positions (7 for each 

cavity) at the same 31 frequencies 

𝑃𝑗(𝜔, 𝜆𝑙) = ⟨𝑚|𝐺(𝜔, 𝜆𝑙)|𝑠⟩ = ∑
⟨𝑚|𝜓𝑗

𝑅(𝜆𝑙)⟩⟨𝜓𝑗
𝐿(𝜆𝑙)|𝑠⟩

𝜔−𝜔𝑗
.3

𝑗=1            (19) 

Here, |𝑚⟩ and |𝑠⟩ are 21 × 1 column vectors and there is also only one nonzero element 

in |𝑠⟩. Upon attainment of the coefficients 𝑎𝑗;𝐴,𝐵,𝐶 , 𝑏𝑗;𝐴,𝐵,𝐶, the right and left eigenfunctions 

|𝜓𝑗
𝑅(𝜆𝑙)⟩ and ⟨𝜓𝑗

𝐿(𝜆𝑙)| are readily obtained. This procedure is repeated for each parametric 

step 𝜆𝑙 = (𝜂, 𝜁, 𝜉) along the designated loops. 

 Because the non-Hermitian system lives on a self-intersecting complex Riemannian 

manifold, special care must be taken to correctly identify the evolution of eigenstates. First, 

the parallel transport of states must be satisfied. Our experimental raw data, which are 

obtained using a stroboscopic approach, inevitably carry arbitrary phases that are caused by 

the acoustic excitation at each parameter point. The arbitrary phases are extracted as 

𝜃𝑗(𝜆𝑙+1) = Im[ln⟨𝜓𝑗
𝐿(𝜆𝑙)|𝜓𝑗

𝑅(𝜆𝑙+1)⟩], and then compensated at each step[4,5]. This way 

ensures that the eigenfunctions at neighboring steps satisfy the parallel transport under a 

constant 𝑈(1) gauge, which is the phase factor at the initial step 𝜃𝑗(𝜆1). Second, to obtain 

the correct connection of states at neighboring parametric points, the inner products 

|⟨𝜓𝑗
𝐿(𝜆𝑙)|𝜓𝑗

𝑅(𝜆𝑙+1)⟩| are computed for all states at all steps as an indicator. This procedure is 

necessary to identify state exchanges. In addition, the eigenvectors are intrinsically mixed due 

to the presence of non-Hermicity, meaning that the eigenfunction profiles do not stay the 

same during the encircling process. The evolution of states is therefore correctly enforced by 

comparing the inner products at each step.  
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VI. The non-Abelian Berry phase matrix 

The evolutions of states around one or multiple EPs, including their permutations, can 

be captured by the non-Abelian Berry phase matrix. For a single band, the Berry phase is a 

𝑼(1) connection between the eigenstate at different parametric locations in an adiabatic 

evolution. The formalism can be generalized for a multiband system, in which case the Berry 

phase becomes a 𝑼(𝑛)  matrix, wherein 𝑛  is the number of consecutive bands under 

consideration [6]. For our system, 𝑛 = 3 so that  

|𝜓𝑗
𝑅(𝜆ℒ)⟩ = ∑ 𝑈𝑗𝑘|𝜓𝑘

𝑅(𝜆1)⟩
𝑛=3
𝑘=1 ,                     (20) 

with 𝑈𝑗𝑘 is an element in  

 𝑼̃ = ∏ 𝑴(𝜆𝑙 , 𝜆𝑙+1)
ℒ−1
𝑙=1 ,                        (21) 

wherein 𝑀𝑗𝑘(𝜆𝑙 , 𝜆𝑙+1) = ⟨𝜓𝑗
𝐿(𝜆𝑙)|𝜓𝑘

𝑅(𝜆𝑙+1)⟩. 𝑼̃ is a unitary matrix, but in general, it does 

not take the forms of 𝑼 as shown in Eqs. (2, 4, 5, 6) in the main text. To obtain those 

specific results, the state vectors at the starting point needs to be prepared as |𝜓1
𝑅̅̅ ̅̅ (𝜆1)⟩ =

(1 0 0)𝑇 , |𝜓2
𝑅̅̅ ̅̅ (𝜆1)⟩ = (0 1 0)𝑇 , |𝜓3

𝑅̅̅ ̅̅ (𝜆1)⟩ = (0 0 1)𝑇 . (For these three state 

vectors to be valid, the encircling path must be sufficiently distant from the EP, otherwise the 

eigenvectors become skewed. This condition is always met in our calculations and 

experiments, since we do not approach the EPs.) Although it is difficult to actually prepare 

these state vectors in stroboscopic experiments, they are connected to the eigenvectors by a 

unitary transformation on the eigenvectors |𝜓𝑗
𝑅̅̅ ̅̅ (𝜆1)⟩ = 𝑷|𝜓𝑗

𝑅(𝜆1)⟩, wherein 𝑷 is given by 

𝐻̃𝐸𝑃3 = 𝑷
†𝐻𝐸𝑃3𝑷 such that 𝐻̃𝐸𝑃3(𝜆1)|𝜓𝑗

𝑅̅̅ ̅̅ (𝜆1)⟩ = 𝜔𝑗(𝜆1)|𝜓𝑗
𝑅̅̅ ̅̅ (𝜆1)⟩. By applying the same 

transformation 𝑷  to the eigenvectors |𝜓𝑗
𝑅(𝜆𝑙)⟩  (and ⟨𝜓𝑗

𝐿̅̅ ̅̅ (𝜆𝑙)| = 𝑷
†⟨𝜓𝑗

𝐿(𝜆𝑙)| ) for the 

subsequent steps 𝜆𝑙, we can then obtain the 𝑼 shown in the main text. It is easy to see that 

𝑼 and 𝑼̃ are connected by the same transformation 𝑼 = 𝑷†𝑼̃𝑷.   

 When the path is a closed loop, i.e., 𝜆ℒ = 𝜆1, 𝑼 is gauge-invariant. We can further 

obtain a phase factor, sometimes also called a multiband Berry phase 

Θ = −Im[ln(det𝑼)].                         (22) 

We remark that the phase factor Θ given by Eq. (22) is identical to the result obtained by 

tracing the cyclic evolution of a single eigenstate along an EP-encircling loop multiple times 

until the recovery of all states. The latter method was used to obtain the non-Hermitian Berry 

phase, such as in Refs. [1,2,5]. 

 

VII. The permutation of state-1 and 3  

In the main text, we show that state-1 and 3 can exchange by encircling an EA in the 𝜁𝜉 
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plane at 𝜂 = 0, which generates the 𝜇2 operation. By referring to the Cayley table of the 𝐷3 

group, it is easy to see that 𝜇2 = 𝜇3 ∘ 𝜇1 ∘ 𝜇3, which is graphically shown in Fig. S4(a). This 

process can be found in our system. By setting 𝜂 = 0.055, i.e., slightly shifting the light-blue 

plane and the blue loop in Fig. 2(c) in the main text, the evolution delineates the path shown 

in Fig. S4(b). The state exchanges take place sequentially, as shown in Fig. S4(c). By shifting 

back to 𝜂 = 0, the three exchanges occur at the same point, which are the results shown in 

Fig. 3(g-i) in the main text.  

 

Figure S4.  (a) The 𝜇2  operation can be generated by 𝜇2 = 𝜇3 ∘ 𝜇1 ∘ 𝜇3 . (b) The 

eigenvalue Riemann surfaces near a pair of EPs (red dots) on the 𝜁𝜉-plane with 𝜂 = 0.055. 

The branch cuts are depicted in black. The blue loop traverses the branch cuts three times and 

the intersecting points are marked by the blue dots. (c) Unwrapping the evolution, we can 

clearly identify the composition of 𝜇3 ∘ 𝜇1 ∘ 𝜇3.  

 

VIII. The equivalence loop of the concatenated loops  

 The operations 𝜌1 or 𝜌2 are generated by executing 𝜇1 and 𝜇3 in different sequences. 

The concatenated loops are equivalent to a single loop encircling both EA-𝛼 and 𝛽, as 

shown in Fig. S5(a). Following this loop, the evolution traverses all three sheets of the 

Riemannian surface [Fig. S5(b)]. In this case, three complete cycles are needed to recover all 

the eigenstates [1,7].  
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Figure S5.  (a) The equivalence of the two loops each encircling one EA (also see Fig. 2c, 

main text) and a big loop that encircles both EAs. (b) The eigenvalue (real parts) Riemann 

surface shows the encircling of both EA-𝛼 and 𝛽 within one loop. 

 

IX.  Parameters retrieved from the measurements 

 Here, we present the parameters in our experiments. The second longitudinal mode 

resonates at 𝑓0 = 3140 Hz so that 𝜔0 = 19729 rad/s. The intrinsic loss of each cavity is 

𝛾0 = 83.5 rad s⁄ . The parametric points along the 𝜌1 loop (which includes 𝜇1 and 𝜇3), the 

𝜌2 loop and the 𝜇2 loop are given in Tables S1–S3 accordingly. All these parameters are 

obtained using the Green’s function method as described in Supplementary Information, 

Section III. To show the validity of our fitting method, we also represent some of the fitting 

results in Fig. S6. 

 

Table S1. The parameters for the 𝜌1 loop at 𝜂 = 0.33. 

Point # 𝜁 𝜉 

1 (I) 0.00 0.00 

2 0.16 0.00 

3 (II) 0.54 0.00 

4 0.54 0.35 

5 (III) 0.54 0.51 

6  0.16 0.51 

7 0.00 0.50 

8 0.00 0.30 

9 (IV)  0.00 0.00 

10 -0.40 0.00 

11 -0.60 0.00 

12(V) -0.60 -0.16 
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13(VI) -0.60 -0.44 

14 -0.36 -0.41 

15 0.00 -0.46 

16 0.00 -0.26 

17(VII) 0.00 -0.00 

 

Table S2. The parameters for the 𝜌2 loop at 𝜂 = 0.33. 

Point # 𝜁 𝜉 

1 (I) 0.00 0.00 

2 -0.40 0.00 

3 (II) -0.60 0.00 

4 -0.60 -0.16 

5 (III) -0.60 -0.44 

6  -0.37 -0.42 

7 0.00 -0.43 

8 0.00 -0.27 

9 (IV)  0.00 0.00 

10 0.16 0.00 

11(V) 0.55 0.00 

12 0.55 0.29 

13(VI) 0.55 0.51 

14 0.16 0.50 

15 0.00 0.50 

16 0.00 0.33 

17(VII) 0.00 0.00 

 

Table S3. The parameters for 𝜇2 loop 𝜂 = 0.  

Point # 𝜁 𝜉 

1 (I) -0.22 -0.46 

2 -0.20 0.00 

3  -0.21 0.44 

4 (II) -0.57 0.40 

5  -0.79 0.40 

6 (III) -0.79 0.00 

7 (IV) -0.81 -0.44 

8 -0.61 -0.45 

9 (V) -0.22 -0.46 
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Figure S6. Selected results of measured pressure response spectra and fitting results. The 

blue markers are experimentally measured data. The red curves are fitted by using the 

Green’s function method. Excellent agreement is seen.  
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