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S1 Variables and Notation

In this manuscript, we generally denote vectors and collections differently, even though
mathematically they are very similar objects. Vectors, such as the probability vector πm or
the generator matrix G are bolded. On the other hand, collections, which represent groups
of, in some sense, independent objects, such as the trajectory s1:N which is all states sn
grouped together are denoted with the colon notation i : j to denote the range on indices
from i to j.
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Description Variable Units
The number of pulses N -
Length of pulse period τ ns
The macrotime of the n-th pulse tn ns
The microtime of the n-th pulse µn ns or null
The measurement of the n-th pulse (µdn, µ

a
n) wn (ns,ns)

Number of states (weak limit in the nonparametric sense) M -
The m-th state σm -
The state at the nth pulse sn -
The system state transition probability matrix Πσ -
The m-th row of Πσ πm -
Initial state probability vector π0 -
Concentration hyperparameter for π1:M and π0 α -
Base distribution over states in the iHMM β -
Concentration hyperparameter for β γ -
Donor relaxation rate λd ns−1

Acceptor relaxation rate λa ns−1

FRET rate of m-th state λmFRET ns−1

Probability of donor becoming excited by a pulse πex -
Excitation event at time n an -
Direct acceptor excitation coefficient ka -
Efficiency of the donor channel ηd -
Efficiency of the acceptor channel ηa -
Probability of no detector leakage in donor channel ϕdd -
Probability of no detector leakage in acceptor channel ϕaa -
Probability of donor channel laser background photon pbd -
Probability of acceptor channel laser background photon pba -
Probability of donor channel uniform background photon pdd -
Probability of acceptor channel laser background photon pda -
Donor channel IRF delay mean µIRFd ns
Donor channel IRF delay variance νIRFd ns2

Acceptor channel IRF delay mean µIRFa ns
Acceptor channel IRF delay variance νIRFa ns2

The collection of all learned parameters (shorthand) ϑ -

Table S1: Table of Variables and Units. For the convenience of the readers, we include
a table with the quantities discussed in this paper and their corresponding symbols.
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S2 Likelihood for Pulsed Illumination

In order to perform inference over the parameters as described in the main text [1], we use
the likelihood described in Eq. 6 of the main text [1]

L = p(w|ρstart,Πσ,Gψ) ∝ ρstartΠ
σ
1Π

σ
2 . . .Π

σ
Nρ

T
norm, (S1)

where ρstart is a vector collecting all the initial probabilities. Gψ is the photophysical gen-
erator matrix given in Eq. 4 of the first companion manuscript [2]. Moreover, Πσ

n is the
reduced system state propagator for the n-th interpulse period given by

Πσ
n = Πσ ⊙Dσ

n, (S2)

where ⊙ denotes element-by-element product. Here, Dσ
n is the detection matrix with ele-

ments
(Dσ

n)sn→σj = p(wn|sn,Gψ) = ρgroundQ
ψ
n(sn)ρ

T
norm, (S3)

as described in Sec. 3 of the main text [1]. Here, ρground is the probability vector where
both donor and acceptor are in the ground state. Futhermore, Qψ

n(sn) is the photophysical
propagator for n-th interpulse period.

The photophysical propagators take different forms depending on the observation during
an interpulse period. To derive the explicit forms of these photophysical propagators, we
start from the explicit from of the photophysical generator matrix Gψ for a given system
state, sn, as

Gψ =

 ∗ λex(t) λdirect(t)
λd ∗ λFRETsn

λa 0 ∗

 , (S4)

where λex, λdirect, λd, λa and λFRETsn , respectively, denote donor excitation, direct acceptor
excitation, donor relaxation, acceptor relaxation and FRET rates. As such, the propagators
for empty and nonempty pulses are obtained by replacing the photophysical generator matrix
in the generic propagators described in Sec. 2.5.1 of the first companion manuscript [2]

Qψ
n = exp

(∫ δpulse

0

dδGnon
ψ (δ)

)
exp

(
(τ − δpulse)G

dark
ψ

)
, (S5)

Qψ
n = exp

(∫ δpulse

0

dδGnon
ψ (δ)

) (∫ δIRF

0

dϵn exp
[
(µn − δpulse − ϵn)G

dark
ψ

]
Grad
ψ

× exp
[
(τ − µn + ϵn)G

dark
ψ

]
f(ϵn)

)
, (S6)

for empty and nonempty pulses, respectively. The different generator matrices above are
the reduced forms of Gnon, Gdark and Grad introduced in the first companion manuscript [2]
Sec. 2.3, now containing only photophysical transitions. In what follows, we will derive these
reduced generator matrices and calculate different terms involved in the likelihoods above.
We then proceed to take into account the background and instrument response function
(IRF) in the likelihoods.
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S2.1 Excitation

To construct the likelihood for a pulse, we begin by considering the laser pulse itself where
we expect no transition other than fluorophore excitation occurring during this period. This
assumption is reasonable since pulse duration is too short (often of the order of 100 ps)
compared to fluorophore lifetimes. Therefore, the generator matrix for this period is derived
from Eq. S4 by setting λd = λa = λFRET = 0, leading to

Gnon
ψ =

∗ λex(t) λdirect(t)
0 0 0
0 0 0

 . (S7)

Therefore, the first term in propagators Eq. S5-S6 is obtained as

Πpulse
ψ = exp

∫ δpulse

0

∗ λex(t) λdirect(t)
0 0 0
0 0 0

 dt
 , (S8)

where Πnon
ψ represents the nonradiative propagator matrix during the laser pulse.

The above expression can be further simplified by taking into account the fact that
both excitation rates are proportional to the pulse intensity with different constants of pro-
portionality [3]. Consequently, we can write λdirect = kaλex, where ka is the ratio of the
proportionality constants. The resulting propagator is thus

Πpulse
ψ = exp

∫ δpulse

0

∗ λex(t) kaλex(t)
0 0 0
0 0 0

 dt
 . (S9)

This integral and the subsequent matrix exponential can be solved analytically, with the
result

Πpulse
ψ =

1− πex − kaπex πex kaπex
0 0 0
0 0 0

 , (S10)

where

πex =
1

1 + ka

(
1− exp

(
−(1 + ka)

∫ δpulse

0

λex(t)dt

))
, (S11)

where πex and kaπex are the probabilities that the donor or acceptor is directly excited by
the pulse, respectively. This quantity is the same for all the pulses because the molecule is
immobilized.

Now, using the obtained propagator for the pulse we can find the photophysical state
probability vector immediately after the pulse ρpulse. It is given by

ρpulse = ρgroundΠ
pulse
ψ =

(
1− πex − kaπex, πex, kaπex

)
, (S12)

where ρground is the photophysical state probability vector at the beginning of the pulse when
both fluorophores are in the ground state by assumption (2) in Sec. 3 of the main text [1].
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S2.2 Photophysics

Next, we compute the remaining terms in propagators of Eqs. S5-S6. To do so, we first
calculate the generator matrices in those terms, namely, Gdark

ψ for no photon detection, and

Grad
ψ for photon detection. These two generators describe events after the laser pulse and

before the next laser pulse where no fluorophore excitation may take place and thus we have
λex = λdirect = 0.

Now, for an empty interpulse period where there is no photon detection, there is still a
chance for emitted photons that are not detected quantified by detector efficiencies ηd and
ηa for donor and acceptor channels, respectively. Therefore, we can write (see Sec. 2.5.1 in
the first companion manuscript [2])

Gdark
ψ =

 0 0 0
(1− ηd)λd −λd − λFRETsn λFRETsn

(1− ηa)λa 0 −λa

 . (S13)

For nonempty interpulse periods, only radiative transitions associated with the detected
photon are possible at that detection moment, therefore we further set the nonradiative
transition rates λFRET = 0. If a photon is detected in the donor channel, the radiative
propagator is thus

G
rad(D)
ψ =

 0 0 0
ηdϕddλd 0 0

ηd(1− ϕaa)λa 0 0

 , (S14)

and for the acceptor channel

G
rad(A)
ψ =

 0 0 0
ηa(1− ϕdd)λd 0 0
ηaϕaaλa 0 0

 , (S15)

where (1 − ϕdd) and (1 − ϕaa) denote the crosstalk probabilities for donor and acceptor
channels, respectively.

Now, if we ignore the background and the IRF for the moment, using the obtained
generators above, the elements of the detection matrix (Dσ

n)sn→σj for an empty pulse, a
nonempty pulse with a donor photon, and a nonempty pulses with an acceptor photon are,
respectively, given as

(Dσ
n)sn→σj(∅, ∅) =ρpulse exp(τG

dark
ψ )ρTnorm, no photon,

(S16)

(Dσ
n)sn→σj(µ, ∅) =ρpulse exp(µnG

dark
ψ )G

rad(D)
ψ exp((τ − µn)G

dark
ψ )ρTnorm, donor photon

(S17)

(Dσ
n)sn→σj(∅, µ) =ρpulse exp(µnG

dark
ψ )G

rad(A)
ψ exp((τ − µn)G

dark
ψ )ρTnorm, acceptor photon

(S18)

where we ignored the integrals due to IRF in Eq. S5-S6. Moreover, ∅ and µ as the first
input, respectively denote no photon and a photon with arrival time µ from the donor
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channel. The same applies to the second input but for the acceptor channel. These elements
can be analytically solved as

(Dσ
n)sn→σj(∅, ∅) =

ρpulse

 1 0 0
A(τ) exp(−(λd + λFRETsn )τ) B(τ)

(1− ηa)(1− exp(−λaτ)) 0 exp(−λaτ)

ρTnorm, (S19)

(Dσ
n)sn→σj(µ, ∅) =

ρpulse

 0 0 0
ηdϕddλd exp(−(λd + λFRETsn )µ) + ηd(1− ϕaa)λaB(µ) 0 0

ηd(1− ϕaa)λa exp(−λaµ) 0 0

ρTnorm, (S20)

(Dσ
n)sn→σj(∅, µ) =

ρpulse

 0 0 0
ηa(1− ϕdd)λd exp(−(λd + λFRETsn )µ) + ηaϕaaλaB(µ) 0 0

ηaϕaaλa exp(−λaµ) 0 0

ρTnorm, (S21)

where τ is the interpulse period and

A(t) =
(1− ηd)λd + (1− ηa)λ

FRET
sn

λd + λFRETsn

(1− exp(−(λd + λFRETsn )t)), (S22)

B(t) =
λFRETsn

−λd − λFRETsn + λa
( exp(−(λd + λFRETsn )t)− exp(−λat)). (S23)

These can be further simplified by making the assumption that interpulses period is
long in comparison to the fluorophore lifetimes (assumption (2) above). In essence, we take
τ → ∞. Therefore, the elements of the detection matrix when no photon is detected becomes

lim
τ→∞

(Dσ
n)sn→σj(∅, ∅) = ρpulse

 1 0 0
(1−ηd)λd+(1−ηa)λFRET

sn

λd+λFRET
sn

0 0

(1− ηa) 0 0

ρTnorm. (S24)

Now, since ρnorm = [1, 1, 1], these matrices can be reduced to vectors by incorporating ρTnorm
as

(Dσ
n)sn→σj(∅, ∅) = ρpulse

 (1−ηd)λd+(1−ηa)λFRET
sn

λd+λFRET
sn

(1− ηa)

 , (S25)

(Dσ
n)sn→σj(µ, ∅) = ρpulse

 0
ηdϕddλd exp(−(λd + λFRETsn )µ) + ηd(1− ϕaa)λaB(µ)

ηd(1− ϕaa)λa exp(−λaµ)

 , (S26)

(Dσ
n)sn→σj(∅, µ) = ρpulse

 0
ηa(1− ϕdd)λd exp(−(λd + λFRETsn )µ) + ηaϕaaλaB(µ)

ηaϕaaλa exp(−λaµ)

 . (S27)
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Additionally, it is sometimes convenient to consider the likelihood of only detecting a
donor or acceptor photon, regardless of the photon arrival time. We find this by marginalizing
over the arrival times, and denote these marginalized likelihoods by

(D̂σ
n)sn→σj(d) =

∫ ∞

0

(Dσ
n)sn→σj(t, ∅)dt = ρpulse

 0
ηdϕdd(1− εFRETsn ) + ηd(1− ϕaa)ε

FRET
sn

ηd(1− ϕaa)

 ,

(S28)

(D̂σ
n)sn→σj(a) =

∫ ∞

0

(Dσ
n)sn→σj(∅, t)dt = ρpulse

 0
ηd(1− ϕdd)(1− εFRETsn ) + ηdϕaaε

FRET
sn

ηaϕaa

 ,

(S29)

where εFRETsn = λFRETsn /(λd + λsnFRET ) is the FRET efficiency for the system state sn. Here,

D̂σ
n denotes marginalization over arrival times.
In what follows, we will describe how to include the IRF and background into the derived

detection matrices in this section.

S2.3 Instrument Response Function

The IRF refers to the delay between a photon arrival to a detector and the arrival time
reported by the detector due to the electronics. We incorporate it by concluding that the
reported arrival time trep is the sum of two random variables, tarrive and tIRF , as follows

trep = tarrive + tIRF . (S30)

As it is a sum of two random variables the resulting distribution of trep is a convolution of
the photon arrival time distribution with the IRF distribution. Here, we assume that the
IRF is distributed according to

tIRF ∼ Normal(µIRF , νIRF ), (S31)

with each channel having a unique mean µIRF and variance νIRF . Moreover, the distribution
of tarrive is described by (Dσ

n)sn→σj derived in the previous section.
Now, we can obtain the likelihood in the presence of the IRF by calculating the convo-

lution implied by Eq. S30. That is obtained as follows

(Dσ
n)
IRF
sn→σj

(µ, ∅) = ρpulse

 0
ηdϕddλdfd(µ, λd + λFRETsn ) + ηd(1− ϕaa)λaBfd(µ)

ηd(1− ϕaa)λafd(µ, λa)

 , (S32)

(Dσ
n)
IRF
sn→σj

(∅, µ) = ρpulse

 0
ηa(1− ϕdd)λdfa(µ, λd + λFRETsn ) + ηaϕaaλaBfa(µ)

ηaϕaaλafa(µ, λa)

 , (S33)
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where

Bfd(t) =
λFRETsn

−λd − λFRETsn + λa
(fd(t, λd + λFRETsn )− fd(t, λa)), (S34)

fd(t, λ) =
1

2
exp

(
λ

2
(2µIRFd + λνIRFd − 2t)

)
erfc

(
µIRFd + λνIRFd − t√

2νIRFd

)
, (S35)

Bfa(t) =
λFRETsn

−λd − λFRETsn + λa
(fa(t, λd + λFRETsn )− fa(t, λa)), (S36)

fa(t, λ) =
1

2
exp

(
λ

2
(2µIRFa + λνIRFa − 2t)

)
erfc

(
µIRFa + λνIRFa − t√

2νIRFa

)
, (S37)

where erfc(·) = 1 − erf(·) is the complementary error function. Moreover, note that
(Dσ

n)
IRF
sn→σj

(∅, ∅) = (Dσ
n)sn→σj(∅, ∅) since there is no photon and thus no IRF effect.

S2.4 Background

In this section, we proceed to include background emissions in our formulation following
Sec. 2.6 of the first comapnion manuscript [2]. The background photons come from extra
light sources present in the environment in addition to the FRET pair. Such source of photon
is, in general, characterized by two components: 1) photon emission probabilities for each
channel; and 2) distribution of photon arrival times over the interpulse window.

Here, we first assume pd and pa to be the probability that a photon is emitted in the
donor and acceptor channels, respectively. Further, let gd(t) and ga(t) be probability density
functions that describe the distribution of background photons’ arrival times within the
interpulse window for the donor and acceptor channels, respectively. Moreover, note that
if the source is such that there is some relationship between donor and acceptor photons,
we would additionally require a joint probability distribution gda(td, ta), but in the case of
background, we assume that the channels are independent. Therefore, the distribution over
measurements for this source is

pbg(wn) =



(1− pd)(1− pa) wn = (∅, ∅)

pdgd(µd)(1− pa) wn = (µd, ∅)

(1− pd)paga(µa) wn = (∅, µa)

pbdpbagd(µd)ga(µa) wn = (µd, µa).

(S38)

In the presence of a background source, we run into the complication that, in most single
photon pulsed illumination setups, only the first photon arriving to a detector channel is
recorded. This means that there is a competition between photons from different sources,
namely, donor fluorophore, acceptor fluorophore, and background, to first reaching the detec-
tor. In many cases, this effect can be ignored, but here we take it into account for generality.
In this case, we can write the likelihood in the presence of background but absence of the
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IRF, (Dσ
n)
bg
sn→σj

, as follows

(Dσ
n)
bg
sn→σj

(wn) =

pbg(∅, ∅)(Dσ
n)sn→σj(∅, ∅) wn = (∅, ∅)

pbg(∅, ∅)(Dσ
n)sn→σj(µd, ∅) + pbg(µd, ∅)(Dσ

n)sn→σj(∅, ∅) +md(µd, ∅) wn = (µd, ∅)

pbg(∅, ∅)(Dσ
n)sn→σj(∅, µa) + pbg(∅, µa)(Dσ

n)sn→σj(∅, ∅) +ma(∅, µa) wn = (∅, µa)

pbg(∅, µa)(Dσ
n)sn→σj(µd, ∅) + pbg(µd, ∅)(Dσ

n)sn→σj(∅, µa) wn = (µd, µa)

+pbg(µd, µa)(D
σ
n)sn→σj(∅, ∅) +Md(µd, µa) +Ma(µd, µa),

(S39)

where pbg is given by Eq. S38 and (Dσ
n)sn→σj is the likelihood for signal photons, i.e., photons

from fluorophores. Further, md, ma, Md and Ma correspond to the cases where both back-
ground and signal photon are present, but only the smaller arrival time is detected. These
are derived by finding the distribution of the minimum arrival times between the competing
photons as follows

md(t, ∅) =pd(1− pa)

[
(gd(t)(D̂

σ
n)sn→σj(d) + (Dσ

n)sn→σj(t, ∅)− gd(t)

(∫ t

0

(Dσ
n)sn→σj(s, ∅)ds

)
−
(∫ t

0

gd(s)ds

)
(Dσ

n)sn→σj(t, ∅)
]
, (S40)

ma(∅, t) =(1− pd)pa

[
ga(t)(D̂

σ
n)sn→σj(a) + (Dσ

n)sn→σj(t, ∅)− ga(t)

(∫ t

0

(Dσ
n)sn→σj(s, ∅)ds

)
−
(∫ t

0

ga(s)ds

)
(Dσ

n)sn→σj(t, ∅)
]
, (S41)

Md(td, ta) =pdpa

[
gd(td)(D̂

σ
n)sn→σj(d) + (Dσ

n)sn→σj(td, ∅)− gd(t)

(∫ td

0

(Dσ
n)sn→σj(s, ∅)ds

)
−
(∫ td

0

gd(s)ds

)
(Dσ

n)sn→σj(td, ∅)
]
ga(ta), (S42)

Ma(td, ta) =pdpagd(td)

[
ga(ta)(D̂

σ
n)sn→σj(a) + (Dσ

n)sn→σj(ta, ∅)− ga(ta)

(∫ ta

0

(Dσ
n)sn→σj(s, ∅)ds

)
−
(∫ ta

0

ga(s)ds

)
(Dσ

n)sn→σj(ta, ∅)
]
, (S43)

where (D̂σ
n)sn→σj is the marginalized element introduced in Eq. S28.

Using this general method of incorporating additional light sources into our framework,
we can add the two most prominant background sources observed in the data: 1) laser
photons which are distributed the same as laser pulse and termed laser background; and 2)
uniform background which are uniformly distributed over the interpulse window and termed
uniform background. In what follows, we will discuss the inclusion of these two backgrounds
in our model.
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S2.4.1 Laser background

The primary goal of this section is constructing a general method for adding background
photons originating from the laser source to our pulsed illumination framework. These
photons arrive to the detector distributed according to the intensity of the laser pulse across
the interpulse window. Moreover, since the pulse width is extremely narrow, it can be
effectively considered as a delta function. Therefore, using our description for a generic
background source (Eq. S38), we can describe this laser background as

pbg(wn) =



(1− pbd)(1− pba) wn = (∅, ∅)

pbdδ(µd)(1− pba) wn = (µd, ∅)

(1− pbd)pbaδ(µa) wn = (∅, µa)

pbdpbaδ(µd)δ(µa) wn = (µd, µa)

, (S44)

where we used gd\a(µd\a) = δ(µd\a) for laser photons.
Since the laser photons arrive exactly at the beginning of the interpulse window, they

are going to naturally win the competition between multiple present photons from different
sources. This in turn simplifies the terms md, ma, Md, and Ma in Eq. S40-S43 for laser
photons as follows

ml
d(µd, ∅) =pbd(1− pba)(D̂

σ
n)sn→σj(d)δ(µd), (S45)

ml
a(∅, µa) =(1− pbd)pba(D̂

σ
n)sn→σj(a)δ(µa), (S46)

M l
d(µd, µa) =pbdpba(D̂

σ
n)sn→σj(d)δ(µd)δ(µa), (S47)

M l
a(µd, µa) =pbdpba(D̂

σ
n)sn→σj(a)δ(µd)δ(µa). (S48)

Here, the marginalized terms (D̂σ
n)sn→σj (defined in Eq. S28) account for the probability of

receiving a signal photon from the fluorophore, even if it is not detected due to the laser
background photon arriving first.

Now, by substituting Eq. S44-S48 in Eq. S39 we can derive the likelihood model of the
photons reaching to the detector in the presence of laser photons. To derive the reported
arrival time likelihood model, we still need to add the IRF effect. To do so, we need to
convolve the IRF with the delta function that describes the laser photon distributions across
the interpulse window. This results in the IRF itself which is given by a Normal distribution∫

dωδ(t− ω)Normal(ω;µIRF , νIRF ) = Normal(t;µIRF , νIRF ), (S49)

where ω is an auxiliary variable. As such, using the (Dσ
n)
IRF
sn→σj

in Eqs. S32-S33 and the
background terms as described above, we obtain the likelihood model in the presence of
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laser background (Dσ
n)
laser
sn→σj

as

(Dσ
n)
laser
sn→σj

(∅, ∅) =(1− pbd)(1− pba)(D
σ
n)sn→σj(∅, ∅), (S50)

(Dσ
n)
laser
sn→σj

(µd, ∅) =(1− pbd)(1− pba)(D
σ
n)
IRF
sn→σj

(µd, ∅)
+ pbdNormal(µd;µ

IRF
d , νIRFd )(1− pba)(D

σ
n)sn→σj(∅, ∅)

+ pbd(1− pba)(D̂
σ
n)sn→σj(d)Normal(µd;µ

IRF
d , νIRFd ), (S51)

(Dσ
n)
laser
sn→σj

(∅, µa) =(1− pbd)(1− pba)(D
σ
n)
IRF
sn→σj

(∅, µa)
+ (1− pbd)pbaNormal(µa;µ

IRF
a , νIRFa )(Dσ

n)sn→σj(∅, ∅)
+ (1− pbd)pba(D̂

σ
n)sn→σj(a)Normal(µa;µ

IRF
a , νIRFa ), (S52)

(Dσ
n)
laser
sn→σj

(µd, µa) =(1− pbd)pbaNormal(µa;µ
IRF
a , νIRFa )(Dσ

n)
IRF
sn→σj

(µd, ∅)
+ pbdNormal(µd;µ

IRF
d , νIRFd )(1− pba)(D

σ
n)
IRF
sn→σj

(∅, µa)
+ pbdpbaNormal(µd;µ

IRF
d , νIRFd )Normal(µa;µ

IRF
a , νIRFa )

× ((D̂σ
n)sn→σj(d) + (D̂σ

n)sn→σj(a)). (S53)

S2.4.2 Uniform background

Finally, we incorporate uniform background, which represents the combination of all ambient
light sources that emit photons with a constant rate, independent of the laser pulses. We
introduce uniform background after the IRF as the arrival time distribution of these photons
is not affected by the IRF, remaining uniform over the entire interpulse window. Once again,
using the form for a generic light source from Eq. S38, we describe uniform background as

pdbg(wn) =



(1− pdd)(1− pda) wn = (∅, ∅)

pdd(1/τ)(1− pda) wn = (µd, ∅)

(1− pdd)pda(1/τ) wn = (∅, µa)

pddpda(1/τ)
2 wn = (µd, µa)

. (S54)

Combining this source with (Dσ
n)
laser
sn→σj

from the previous section in the same way as
described in Eq. S39, we arrive at our final expression for the detection matrices as

(Dσ
n)sn→σj(wn) =

pdbg(∅, ∅)(Dσ
n)
laser
sn→σj

(∅, ∅) wn = (∅, ∅)

pdbg(∅, ∅)(Dσ
n)
laser
sn→σj

(µd, ∅) + pdbg(µd, ∅)(Dσ
n)
laser
sn→σj

(∅, ∅) +mu
d(µd, ∅) wn = (µd, ∅)

pdbg(∅, ∅)(Dσ
n)
laser
sn→σj

(∅, µa) + pdbg(∅, µa)(Dσ
n)
laser
sn→σj

(∅, ∅) +mu
a(∅, µa) wn = (∅, µa)

pdbg(∅, µa)(Dσ
n)
laser
sn→σj

(µd, ∅) + pdbg(µd, ∅)(Dσ
n)
laser
sn→σj

(∅, µa) wn = (µd, µa)

+pdbg(µd, µa)(D
σ
n)
laser
sn→σj

(∅, ∅) +Mu
d (µd, µa) +Mu

a (µd, µa).

(S55)
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Unlike for the laser background, the terms mu
d , m

u
a, M

u
d , and Mu

a are no longer simple to
compute. Therefore, here, we present their approximate form

mu
d(t, ∅) ≈ pdd(1− pda)

[
1

τ
(D̂σ

n)
laser
sn→σj

(d)− 1

τ

(∫ t

0

(Dσ
n)
laser
sn→σj

(s, ∅)ds
)

+

(
1− t

τ

)
(Dσ

n)
laser
sn→σj

(t, ∅)
]
, (S56)

mu
a(∅, t) ≈ (1− pdd)pda

[
1

τ
(D̂σ

n)
laser
sn→σj

(a)− 1

τ

(∫ t

0

(Dσ
n)
laser
sn→σj

(s, ∅)ds
)

+

(
1− t

τ

)
(Dσ

n)
laser
sn→σj

(t, ∅)
]
, (S57)

Mu
d (td, ta) ≈ pddpda

[
1

τ
(D̂σ

n)
laser
sn→σj

(d)− 1

τ

(∫ td

0

(Dσ
n)
laser
sn→σj

(s, ∅)ds
)

+

(
1− t

τ

)
(Dσ

n)
laser
sn→σj

(td, ∅)
]
1

τ
, (S58)

Mu
a (td, ta) ≈ pddpda

1

τ

[
1

τ
(D̂σ

n)
laser
sn→σj

(a)− 1

τ

(∫ ta

0

(Dσ
n)
laser
sn→σj

(s, ∅)ds
)

+

(
1− t

τ

)
(Dσ

n)
laser
sn→σj

(ta, ∅)
]
. (S59)

Here, we derived the most general likelihood for smFRET under pulsed illumination and
used it in our analysis. However, as mentioned earlier, this likelihood can be much simpli-
fied to an approximate form by ignoring the terms associated to the competitions between
photons reaching to the detectors in (Dσ

n)
laser
sn→σj

(Eqs. S50-S53) and (Dσ
n)sn→σj (Eq. S59).
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S3 Model Structure and Priors

After deriving the likelihood, in this section, we present our priors to derive the parametric
and nonparametric posteriors. The parameters are arranged according to their hierarchical
dependency, meaning that if a parameter depends on another, it will necessarily come after
it. Parameters whose priors’ parameters are set by hand rather than by another parameter
are highlighted with a (∗).

S3.1 Parametric Model

π0 ∼ Dirichlet(1, 1, . . . , 1), (∗)
πm ∼ Dirichlet(1, 1, . . . , 1), m ∈ {1, . . . ,M}, (∗)
s1 ∼ Categorical(π0),

sn|sn−1 ∼ Categorical(πsn−1), n ∈ {2, 3, . . . , N},
πex ∼ Beta(1, 1), (∗)
an ∼ Categorical(1− πex − kaπex, πex, kaπex), n ∈ {1, . . . , N},
λd ∼ Gamma(1, 1), (∗)
λa ∼ Gamma(1, 1), (∗)

λFRETσm ∼ Gamma(1, 1), m ∈ {1, . . . ,M}, (∗)
wn ∼ p(w|an, λd, λa, λFRETsn ), n ∈ {1, . . . , N},

where the distribution p(w|an, λd, λa, λFRETsn ) is the likelihood derived in Section S2 with
ρpulse set by the auxiliary parameter an.
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S3.2 Nonparametric Model

γ ∼ Gamma(1, 1), (∗)

β ∼ Dirichlet
( γ
M
, . . . ,

γ

M

)
,

α ∼ Gamma(1, 1), (∗)
κ ∼ Beta(ϕ, 1), (∗)

π0 ∼ Dirichlet(αβ),

dm =

{
(dm)i = 1 i = m

(dm)i = 0 i ̸= m
,

πm ∼ Dirichlet(α((1− κ)β + κdm)), m ∈ {1, . . . ,M},
s1 ∼ Categorical(π0),

sn|sn−1 ∼ Categorical(πsn−1), n ∈ {2, 3, . . . , N},
πex ∼ Beta(1, 1), (∗)
an ∼ Categorical(1− πex − kaπex, πex, kaπex), n ∈ {1, . . . , N},
λd ∼ Gamma(1, 1), (∗)
λa ∼ Gamma(1, 1), (∗)

λFRETσm ∼ Gamma(1, 1), m ∈ {1, . . . ,M}, (∗)
wn ∼ p(w|an, λd, λa, λFRETsn ), n ∈ {1, . . . , N},

where the distribution p(w|an, λd, λa, λFRETsn ) is the likelihood derived in Section S2 with
ρpulse set by the auxiliary parameter an.
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S4 Sampling from the Posterior: Gibbs Algorithm Steps

The central object of interest in the Bayesian paradigm is the posterior

p(ϑ|w1:N) ∝ L(w1:N |ϑ)p(ϑ). (S60)

where ϑ denotes the set of all unknowns including ρstart, rates in Gψ, and transition proba-
bilities in Πσ. Furthermore, p(ϑ) denotes the set of priors given in Sec. S3.

In order to infer the unknown parameters, we draw numerical samples from the pos-
terior. One way of doing this is through Markov Chain Monte Carlo (MCMC) methods,
where samples from the posterior are drawn iteratively to construct a Markov chain. In this
implementation, we utilize the Gibbs algorithm, where individual parameters x are sampled
from their conditional posterior distributions in each MCMC iteration

p(x|ϑ/{x}, w1:N), (S61)

where x is some model parameter and ϑ/{x} represents the set of all model parameters
without x. In the following, we present our Gibbs sampling steps for each parameter.

S4.1 Photophysical rates

A photophysical rate, λ, is sampled from the conditional posterior

p(λ|ϑ/{λ}, w1:N) ∝ L(w1:N |ϑ)p(λ), (S62)

where prior p(λ) is the same for all the photophysical rates

p(λ) = Gamma(λ; 1, 1). (S63)

This particular conditional posterior does not have a closed form, so the photophysical rates
are sampled through a Metropolis-Hasting (MH) procedure. We do so by proposing new
values for rates as follows

λ∗ ∼ Gamma

(
ϕ,
λ

ϕ

)
, (S64)

where ϕ is a parameter tuned to improve mixing. Subsequently, the proposal is accepted
with probability given by

α = min

{
1,
L(w1:N |λ∗)Gamma(λ∗; 1, 1)Gamma(λ;ϕ, λ

∗

ϕ
)

L(w1:N |λ)Gamma(λ; 1, 1)Gamma(λ∗;ϕ, λ
ϕ
)

}
, (S65)

where L(wn|λ) is the likelihood for individual pulse derived in Sec. S2.

S4.2 Excitation Probability

To allow for direct sampling of the excitation probabilities and simplify the pulse likelihood
functions derived in Sec S2, we sample the photophysical state an immediately after the
pulse. By doing so, we effectively set ρpulse to be a certain photophysical state.
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Since the photophysics of the individual pulses are assumed independent, we can sample
each of the an individually from their conditional posterior

p(an|ϑ/{an}, w1:N) ∝ Ln(wn|ϑ)p(an) = Ln(wn|ϑ)Categorical(an;ρpulse), (S66)

where, as derived in Sec. S2.1,

ρpulse =
(
1− πex − kaπex, πex, kaπex

)
. (S67)

Since an represents the photophysical state immediately after the pulse, it has three photo-
physical states ψ1, ψ2, and ψ3 that represent both donor and acceptor being in the ground
state, the donor being excited and the acceptor being in the ground state, and the donor
being in the ground state and acceptor being excited, respectively. Therefore, we sample

an ∼

Categorical

(
Ln(wn|an = ψ1)ξ1∑3
i=1 Ln(wn|an = ψi)ξi

,
Ln(wn|an = ψ2)ξ2∑3
i=1 Ln(wn|an = ψi)ξi

,
Ln(wn|an = ψ3)ξ3∑3
i=1 Ln(wn|an = ψi)ξi

)
.

(S68)

Now, the excitation probability πex is sampled from the conditional posterior

p(πex|ϑ/{πex}, w1:N) ∝ L(w1:N |ϑ)p(πex) = L(w1:N |ϑ)Beta(πex; 1, 1), (S69)

which has likelihood-prior conjugacy because of our choice to also sample the photophysical
trajectory a1:N . Intuitively, the number of times that the photophysical trajectory records the
donor being excited is the number of “successes” of a Bernoulli random variable. Therefore,
we can directly sample πex from the following probability density

πex ∼ Beta(1 +
N∑
i=1

1{ai = ψ2}, 1 +N −
N∑
i=1

1{ai = ψ2}), (S70)

where
∑N

i=1 1{ai = ψ2} is the number of times that that the photophysical trajectory is in
ψ2.

S4.3 System State Trajectory

Sampling of the system state trajectory is done through a standard forward filtering backward
sampling algorithm, which we briefly describe here [4]. First, we sample an initial probability
vector π0 that is informed by the prior and the first system state of the previous trajectory.

π0 ∼ Dirichlet(α((1− κ)β + κdm + n0·), (S71)

where α((1− κ)β + κdm is the prior of the transition probabilities modified with the sticky
hyperparameter and nm is a vector with value one at the index corresponding to s1 and zero
otherwise.
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Next, we construct a forward filter by propagating forward using the transition matrix
while taking into account observations. The first time level of the forward filter is given by,

A1i = π0i × L1(w1|s1 = σi), i = 1, . . . ,Mσ. (S72)

This allows us to then move forward by computing for each n from one to N ,

Ani = Ln(wn|s1 = σi)
M∑
i=1

πimAn−1,i, i = 1, . . . ,Mσ, n = 1, . . . , N. (S73)

Finally, we sample the transition by recursively sampling the system state starting at the
end and moving towards the first pulse in the following way

sN ∼ Categorical(AN), (S74)

sn|sn+1 ∼ Categorical(bn), (S75)

where

bni =
πi,sn+1An+1,i∑M
j=1 πj,sn+1An+1,j

, i = 1, . . . ,Mσ, n = 1, . . . , N. (S76)

S4.4 Transition probabilities

The transition probabilities are sampled as vectors πm that represent transition probabilities
out of state m from the conditional posterior

p(πm|ϑ/{πm}, w1:N) ∝ L(w1:N |ϑ)p(πm) (S77)

= L(w1:N |ϑ)Dirichlet(πm;α((1− κ)β + κdm)), (S78)

where α((1−κ)β+κdm) is the prior of the transition probabilities modified with the sticky
hyperparameter.

These transition probability vectors are updated through likelihood-prior conjugacy with
the state trajectory. Using the closed form of the conditional posterior, we sample each πm

through
πm ∼ Dirichlet(α((1− κ)β + κdm) + nm·), (S79)

where nm· is a vector which collects the number of each transition out of system state σm.

S4.5 Base Distribution

The sampling of the base distribution and the other hyperparameters are heavily inspired
by the work of Emily Fox et. al. [5], and it is highly recommended for those interested in a
more in-depth discussion of sticky iHMMs to read their work.

To sample the base distribution, we first sample auxiliary parameters D and W. We
start with D. For each i, j = 1, . . . ,M , we set

Mij =

nij−1∑
k=0

Bernoulli

(
αβi

j + αβi

)
. (S80)
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Next we sample W, which intuitively represents the number of times a self-transition
occurred because of the influence of the sticky hyperparameter.

Wii = Binomial

(
Mii,

κ

κ+ βi(1− κ)

)
. (S81)

Finally, define D = D−W. We can now directly sample the base distribution through

β ∼ Dirichlet(γζ +
M∑
i=1

Dij), (S82)

where ζ is an M dimensional vector with all elements set to 1
M
.

S4.6 Optional Hyperparameters

Many of these sampling steps draw on auxiliary parameters D, W, and D described in the
previous section for sampling the base distribution.

S4.6.1 Transition probabilities concentration hyperparameter

To sample the concentration parameter α, we sample additional auxiliary parameters, r and
s, which are vectors of size M . Define n·j =

∑M
i=1 nij as the total number of transitions into

system state σj. We then sample

ri ∼ Beta(1 + α, nj), (S83)

si ∼ Bernoulli

(
n·j

n·j + α

)
. (S84)

We can then sample

α ∼ Gamma(α +
M∑
i=1

M∑
j=1

Dij −
M∑
i=1

s, 1−
M∑
i=1

log(ri)). (S85)

S4.6.2 Sticky hyperparameter

Naturally the sticky hyperparameter is updated by taking the number of times self transitions
occur due to the stickiness (found in W) and using those as successes to update a Beta
distribution. The sampling step is given as

κ ∼ Beta

(
1 +

M∑
i=1

Wii, ϕ+
M∑
i=1

M∑
j=1

Dij −
M∑
i=1

Wii

)
, (S86)

where ϕ is a preset parameter that controls the ”stickiness” of the HMM.
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S4.6.3 Base distribution concentration hyperparameter

The base distribution concentrion parameter γ requires sampling additional parameters c
and p. Additionally, define K as the number of elements of D that are greater than zero.
Next, we sample

c ∼ Beta

(
γ + 1,

M∑
i=1

M∑
j=1

Dij

)
, (S87)

p ∼ Bernoulli

(
K

(
∑M

i=1

∑M
j=1Dij)(1− log(c))

)
. (S88)

If p = 1, we sample γ as
γ ∼ Gamma(1 +K, 1− log(c)), (S89)

and otherwise we sample
γ ∼ Gamma(K, 1− log(c)). (S90)
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S5 Estimation of pre-set Parameters

Parameters associated with photon detection such as crosstalk, IRF, detection efficiency,
and direct acceptor excitation are preset according to the experimental conditions. Both the
label and detector quantum efficiencies are combined into ηd and ηa. We preprocess only two
parameters: IRF, by fitting IRF data to a Gaussian distribution; and background emission,
which we deterimine individually.

S5.1 IRF

IRF data was obtained using water scattering, i.e., shining the laser at a sample of water
and recording the microtimes. The resulting distribution records the instrument response
function, since the photons from water scattering do not experience delays due to lifetime.
The expression for IRF fit using MATLAB’s pre-built curve fitting tools.

Figure S1: IRF curve fitting. We fit a Guassian distribution to the IRF calibration data
obtained by water scattering.

S5.2 Background

The probability of receiving a background photon is considered constant over the course
of the experiment. Let this probability be πo. Consider a period of time with no emitting
sample with pulses 1, . . . , N . Let bn be a label for all the pulses where bn = 1 if a background
photon is received in one channel and bn = 0 otherwise. Given that a background photon
is received, it can either come from a laser source or a uniform source. Let the probability
that arrives in the laser source πb. Let ck be a label for all background photons received with
ck = 1 if a photon is from the laser source, and cn = k if it is from the uniform source. In
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this case, we model background by

bn ∼ Bernoulli(πo), (S91)

ck|bn = 1 ∼ Bernoulli(πb), (S92)

tk ∼ ckNormal(µIRF , σ
2
IRF ) + (1− ck)Uniform([0, T ]). (S93)

Since the bn are known, we can directly obtain a maximum likelihood estimate for πo. Let
K =

∑N
i=1 bn. Then the estimate is given by

π∗
o =

K

N
. (S94)

We can then obtain an estimate for πb through

π∗
b = argmax

πb

(
K∏
i=1

(
πbNormal(tk;µIRF , σ

2
IRF ) + (1− πb)Uniform([0, T ])

))
. (S95)

The laser, pb, and dark, pd, background probabilities are then

pb = π∗
0π

∗
b , (S96)

pd = π∗
0(1− π∗

b ). (S97)

An identical calculation is done for each channel.
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S6 Parameters Used for Synthetic Data Generation

Here, we detail the parameters used to produce synthetic data. Since the synthetic data
algorithm incorporates crosstalk, detector efficiency, IRF, and background emissions, all of
these must be set. In Table S6, the parameters not included are set according to Table S6.

Quantity Value Assigned Notes
λσ1→σ2 40 s−1 Ref. [6]
λσ2→σ1 40 s−1 Ref. [6]
λFRETσ1

0.5 ns−1 from experimental data
λFRETσ2

0.1 ns−1 from experimental data
πex 5× 10−4 Ref. [6]
λd 0.35 ns−1 similar to ATTO 532 [7]
λa 0.25 ns−1 similar to ATTO 647N [7]
µIRF 2.9 ns from experimental data
σ2
IRF 0.001 ns2 from experimental data
ϕda 0.03 from experimental data
ϕad 0.01 from experimental data
pbd 0.05πex from experimental data
pba 0.045πex from experimental data
pdd 0.05πex from experimental data
pda 0.005πex from experimental data
ηd 0.38 experimental data and Ref. [7]
ηa 0.19 experimental data and Ref. [7]

Table S2: Parameter values for system with two states. Most of these values were
motivated by the experimental smFRET traces gathered for this paper.

Quantity Value Assigned Notes
λσ1→σ2 1200 s−1 informed by 1mm MgCl2 HJ dynamics [8]
λσ2→σ1 1200 s−1 informed by 1mm MgCl2 HJ dynamics [8]
λσ2→σ3 1200 s−1 informed by 1mm MgCl2 HJ dynamics [8]
λσ3→σ2 1200 s−1 informed by 1mm MgCl2 HJ dynamics [8]
λFRETσ1

0.1 ns−1 from experimental data
λFRETσ2

0.4 ns−1 from experimental data
λFRETσ3

0.8 ns−1 from experimental data
πex 7.5× 10−3 highest value obtained from experimental data

Table S3: Parameter values for system with three system states Values that are not
specified here are identical to those in Table S6 since they are set by the experimental setup
and do not change from time trace to time trace.
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S7 Additional Parameter Estimates

The following figures depict the posterior distributions over all the parameters not presented
in the main text.

S7.1 Synthetic Data with Two System States

Figure S2: Learned parameters for synthetic data with two system states. The
panels are as follows: a) donor relaxation rate; b) acceptor relaxation rate; c-d) FRET rates;
e-h) system state transition probabilities for the visited states; i) excitation probability; and j-
l) hyperparameters of the nonparameteric scheme, which we sample to improve mixing of the
MCMC chain. The shaded regions and red lines, respectively, represent the 95% confidence
interval and ground truths. The ground truth is not included for hyperparameters which are
not physical quantities. The same convention is followed in the remaining figures.
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S7.2 Synthetic Data with Three System States

Figure S3: Learned Parameters for Synthetic Data with three System States. The
panels are as follows: a) donor relaxation rate; b) acceptor relaxation rate; c-e) FRET rates;
f-n) system state transition probabilities for the visited states; o) excitation probability; and
p-r) hyperparameters of the nonparameteric scheme, which we sample for improved mixing
of MCMC chain. The figure conventions are the same as those in Fig. S7.1.
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S7.3 Experimental Data: 1mm

Figure S4: Learned Parameters for 1mm MgCl2 Experimental data. The panels
are as follows: a) donor relaxation rate; b) acceptor relaxation rate; c-d) FRET rates; e-h)
system state transition probabilities; i) excitation probability; and j-l) hyperparameters of
the nonparameteric scheme, which we sample for improved mixing of MCMC chain. The
figure conventions are the same as those in Fig. S7.1.
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S7.4 Experimental Data: 3mm

Figure S5: Learned Parameters for 3mm MgCl2 Experimental data. The panels
are as follows: a) donor relaxation rate; b) acceptor relaxation rate; c-d) FRET rates; e)-h)
system state transition probabilities for the visited states; i) excitation probability; and j-l)
hyperparameters of the nonparameteric scheme, which we sample for improved mixing of
MCMC chain. The figure conventions are the same as those in Fig. S7.1.
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S7.5 Experimental Data: 5mm

Figure S6: Learned Parameters for 5mm MgCl2 Experimental data. The panels
are as follows: a) donor relaxation rate; b) acceptor relaxation rate; c-d) FRET rates; e-h)
system state transition probabilities for the visited states; i) excitation probability; and j-l)
hyperparameters of the nonparameteric scheme, which we sample for improved mixing of
MCMC chain. The figure conventions are the same as those in Fig. S7.1.
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S7.6 Experimental Data: 10mm

Figure S7: Learned Parameters for 10mm MgCl2 Experimental data. The panels
are as follows: a) donor relaxation rate; b) acceptor relaxation rate; c)-d) FRET rates; e)-h)
system state transition probabilities for the visited states; i) excitation probability; and j)-l)
hyperparameters of the nonparameteric scheme, which we sample for improved mixing of
MCMC chain. The figure conventions are the same as those in Fig. S7.1.
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Single photon smFRET. I. theory and conceptual basis. bioRxiv, 2022.

[3] Katsumasa Fujita, Minoru Kobayashi, Shogo Kawano, Masahito Yamanaka, and Satoshi
Kawata. High-resolution confocal microscopy by saturated excitation of fluorescence.
Phys. Rev. Lett., 99:228105, Nov 2007.

[4] L.R. Rabiner. A tutorial on hidden markov models and selected applications in speech
recognition. Proceedings of the IEEE, 77(2):257–286, 1989.

[5] Emily B. Fox, Erik B. Sudderth, Michael I. Jordan, and Alan S. Willsky. A sticky
HDP-HMM with application to speaker diarization. The Annals of Applied Statistics,
5(2A):1020 – 1056, 2011.

[6] Zeliha Kilic, Ioannis Sgouralis, Wooseok Heo, Kunihiko Ishii, Tahei Tahara, and Steve
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