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ABSTRACT Förster resonance energy transfer (FRET) using pulsed illumination has been pivotal in leveraging lifetime infor-
mation in FRET analysis. However, there remain major challenges in quantitative single-photon, single-molecule FRET (smFRET)
data analysis under pulsed illumination including 1) simultaneously deducing kinetics and number of system states; 2) providing
uncertainties over estimates, particularly uncertainty over the number of system states; and 3) taking into account detector
noise sources such as cross talk and the instrument response function contributing to uncertainty; in addition to 4) other exper-
imental noise sources such as background. Here, we implement the Bayesian nonparametric framework described in the first
companion article that addresses all aforementioned issues in smFRET data analysis specialized for the case of pulsed illumi-
nation. Furthermore, we apply our method to both synthetic as well as experimental data acquired using Holliday junctions.
WHY IT MATTERS?
In the first companion article of this series, we developed
new methods to analyze noisy single-molecule Förster
resonanceenergy transferdata.Thesemethodseliminate
the requirement of a priori specifying the dimensionality
of the physical model describing a molecular complex's
kinetics. Here, we apply these methods to experimentally
obtained datasets with samples illuminated by laser
pulses at regular time intervals. In particular, we study
conformational dynamics of Holliday junctions.
INTRODUCTION

Among the many fluorescencemethods available (1–7),
single-molecule Förster resonance energy transfer
(smFRET) has been useful in probing interactions and
conformational changes on nanometer scales (8–12).
This is typically achieved by estimating FRETefficiencies
(and system states) at all instants of an smFRET trace
and subsequently estimating transition rates. Further-
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more, among different FRET modalities, FRET effi-
ciencies are most accurately determined under pulsed
illumination (13–15), where the FRET dyes are illumi-
nated by short laser bursts at known times.

Under this illumination procedure, photon arrival
times are recorded with respect to the immediately pre-
ceding pulse, thereby facilitating an accurate estima-
tion of fluorescence lifetimes as well as FRET rates.
As such, in this article, we will focus on single-photon
smFRET analysis under pulsed illumination.

Under pulsed illumination, information on kinetic pa-
rameters present in smFRET data is traditionally learned
by binned photon methods, thereby eliminating lifetime
informationaltogether (16–18);bulk correlativemethods
(19–21); and single-photon methods (14,22,23). Howev-
er, these methods are parametric, i.e., require fixing the
number of system states a priori, and necessarily only
learn system kinetics even though information on the
number of system states is encoded in the data.

In this article, we implement a general smFRET anal-
ysis framework that was presented in Sec. 2.5.1 of the
first companion manuscript (24) for the case of pulsed
illumination to learn full distributions. In other words,
probability distributions over parameters take into ac-
count uncertainties from all existing sources such as
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cross talk and background. These parameters include
the system transition probabilities and photophysical
rates, that is, donor and acceptor relaxation and
FRET rates, with special attention paid to uncertainty
arising from sources such as inherent stochasticity in
photon arrival times and detectors. As our main
concern is deducing the number of system states using
single-photon arrivals while incorporating detector
effects, we leverage the formalism of infinite hidden
Markov models (iHMMs) (25–30) within the Bayesian
nonparametric (BNP) paradigm (25,26,31–38). The
iHMM framework assumes an a priori infinite number
of system states with associated transition probabili-
ties, where the number of system states warranted by
input data is enumerated by those states most visited
over the course of the system state trajectory.

Next, to benchmark our BNP-FRET sampler, we
analyzed synthetic and experimental smFRET data ac-
quired using a single confocal microscope with pulsed
illumination optimized to excite donor dyes.

In particular, we employ a broad range of experi-
mental data acquired from Holliday junctions (HJs)
with an array of different kinetic rates due to varying
buffer concentration of MgCl2 (39–42).
MATERIALS AND METHODS

Terminology convention

To be consistent throughout our three-part article, we
precisely define some terms as follows.

1. A macromolecular complex under study is always
referred to as a system.

2. The configurations through which a system transi-
tions are termed system states, typically labeled
using s.

3. FRET dyes undergo quantum mechanical transi-
tions between photophysical states, typically
labeled using j.

4. A system-FRET combination is always referred to
as a composite.

5. A composite undergoes transitions among its su-
perstates, typically labeled using 4.

6. All transition rates are typically labeled using l.
7. The symbol N is generally used to represent the

total number of discretized time windows, typi-
cally labeled with n.

8. The symbol wn is generally used to represent the
observations in the n-th time window.
Forward model and inverse strategy

In this section, we first briefly illustrate the adaptation
of the general formalism described in our first compan-
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ion article (24) to the pulsed illumination case. Next, we
present a specialized inference procedure. The details
of the framework not provided herein can be found in
the supporting material.

As before, we consider a molecular complex labeled
with a donor-acceptor FRET pair. As the molecular
complex transitions through its Ms system states in-
dexed by s1:Ms

, laser pulses (optimized to excite the
donor) separated by time t may excite either the donor
or acceptor to drive transitions among the photophysi-
cal states, j1:Mj

, as defined in the first companion
article (24). Such photophysical transitions lead to
photon emissions that may be detected in either donor
or acceptor channels. The set of N observations, e.g.,
photon arrival times, from N pulses are recorded as

w ¼ fw1;w2;.;wNg: (1)

Here, each individual measurement is a pair wn ¼
ðmd

n;m
a
nÞ, where md

n and ma
n are the recorded arrival times

(also known as microtimes) after the n-th pulse in both
donor and acceptor channels, respectively. In cases
where there is no photon detection, we denote the ab-
sent microtimes with md

n ¼ B and ma
n ¼ B for donor

and acceptor channels, respectively.
As is clear from Fig. 1, smFRET traces are inherently

stochastic due to the nature of photon excitation, emis-
sion, and noise introduced by detector electronics. To
analyze such stochastic systems, we begin with the
most generic likelihood derived in Eq. 51 of the first
companion article (24),

LfrstartQ1.Qn.QNr
T
norm; (2)

where rstart is the initial probability vector for the sys-
tem-FRET composite to be in one of Mf ¼ ðMs �MjÞ
superstates, and rnorm is a vector that sums the ele-
ments of the propagated probability vector. Here, we
recall that Qn is the transition probability matrix be-
tween pulses at tn and tnþ1, characterizing system-
FRET composite transitions among superstates.

The propagators Qn above adopt different forms de-
pending on whether a photon is detected or not during
the associated period. Their most general forms are
derived in the section on illumination features in the
first companion article (24). However, these propaga-
tors involve computationally expensive integrals, and
thus we make a few approximations here as follows:
1) we assume that the system state remains the
same over an interpulse period since typical system ki-
netic timescales (typically 1 ms or more) are much
longer than interpulse periods (z100 ns) (41,43), and
2) the interpulse period (z100 ns) is longer than the
donor and acceptor lifetimes (z a few ns) (41,43)
such that they relax to the ground state before the
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FIGURE 1 Events over a pulsed illumination experiment pulse win-
dow. Here, the beginning of the n-th interpulse window of size t is
marked by time tn. The FRET labels originally in state GG (donor
and acceptor, respectively, in ground states) are excited by a high in-
tensity burst (shown in green) to the state EG (only donor excited) for
a very short time, dpulse. If FRET occurs, the donor transfers its energy
to the acceptor and resides in the ground state, leaving the FRET la-
bels in the GE state (only acceptor excited). The acceptor then emits
a photon to be registered by the detector at microtime mn. When using
ideal detectors, the microtime is the same as the photon emission
time as shown in (a). However, when the timing hardware has jitter
(shown in red), a small delay εn is added to the microtime as shown
in (b). For convenience, we have reproduced this figure from our first
companion article (24).
next pulse. Furthermore, we will demonstrate a special-
ized sampling scheme under these physically moti-
vated approximations.

The immediate implications of the first assumption
are that the system transitions may now, to a good
approximation, only occur at the beginning of each
pulse. Consequently, the evolution of the FRET pair be-
tween two consecutive pulses is now exclusively pho-
tophysical, as the system state remains the same
during interpulse times. As such, the system now
evolves in equally spaced discrete time steps of size
t, where the system state trajectory can be written as

s1:N ¼ fs1; s2;.; sn;.; sN� 1; sNg;
where sn is the system state between pulses n and
nþ 1. The stochastic evolution of the system states
in such discrete steps is then determined by the transi-
tion probability matrix designated by Ps. For example,
in the simplest case of a molecular complex with two
system states s1:2, this matrix is computed as follows:

Ps ¼ exp

�
t

� � ls1/s2

ls2/s2 �
��

¼
�
ps1/s1 ps1/s2

ps2/s1 ps2/s2

�
;

(3)

where the matrix in the exponential contains transition
rates among the system states and the � represents
the negative row sum.

Next, by assumption two, we can further suppose
that the fluorophores always start in the ground state
at the beginning of every pulse. As a result, we treat
pulses independently and write the probability of obser-
vation wn as

pðwnjsn;GjÞ ¼ rgroundQ
j
n ðsnÞrT

norm; (4)

where rground denotes the probability vector when the
FRET pair is in the ground state at the beginning of
each pulse, Gj is the generator matrix with only photo-
physical transition rates, and Qj

n ðsnÞ is the photophysi-
cal propagator for the n-th interpulse period.

We further organize the observation probabilities of
Eq. 4 into a newly defined detection matrix Ds

n with its
elements given by ðDs

nÞsn/sj
¼ pðwnjsn;GjÞ. Here, we

note that the index j does not appear on the right-
hand side because the system state does not change
during an interpulse window, resulting in the indepen-
dence of observation probability from the next system
state, snþ1. The explicit formulas for the observation
probabilities are provided in the supporting material.

Now, using the matrix Ds
n , we define the reduced

propagators for each interpulse period as

Ps
n ¼ Ps1Ds

n; (5)

where 1 denotes the element-by-element product.
Finally, using these simplified propagators, we can

write the likelihood for an smFRET trace under pulsed
illumination as

L ¼ pðwjrstart;Ps;GjÞfrstartP
s
1P

s
2.Ps

Nr
T
norm; (6)

as also introduced in the section on illumination fea-
tures in the first companion article (24). This form of
the likelihood is advantageous in that it allows empty
pulses to be computed as a simple product, greatly
reducing computational cost.
Biophysical Reports 2, 100088, December 14, 2022 3



a

b

FIGURE 2 Analysis on synthetic data for a
system with two system states. In (a), we
show a section of synthetic data produced
with the values in Table S2. Furthermore, the
system state trajectory is shown in blue. Below
this, the arrival times of donor and acceptor
photons md

n and ma
n are shown in green and

red, respectively. In (b), we plot the bivariate
distribution over escape rates and FRET effi-
ciencies. The ground truth is shown with red
dots corresponding to an escape rate of 40
s�1 and FRET efficiencies of 0.22 and 0.59.
lesc εFRET . As seen, the BNP-FRET sampler
clearly distinguishes two system states with
maximum a posteriori (MAP) estimates for
the associated escape rates of z38þ7

� 7 and
z40þ7

� 7 s�1 and for FRET efficiencies of
z0:21þ0:03

� 0:03 and z0:59þ0:03
� 0:03. We have

smoothed the distributions using kernel den-
sity estimation for illustration purposes only.
In the following, we first illustrate a parametric
inference procedure assuming a given number of sys-
tem states. We next generalize the procedure devel-
oped to the nonparametric case to deduce the
number of system states along with the rest of
parameters.
Inference procedure: Parametric sampler

With the likelihood at hand, we construct the posterior
as follows
;

pðrstart;Ps;GjjwÞ ¼ P
s1:N

pðrstart;Ps;Gj; s1:NjwÞ
f
P
s1:N

pðwjPs;Gj; s1:NÞpðrstartÞpðGjÞpðPsÞpðs1:Njrstart;PsÞ; (8)
pðrstart;Ps;GjjwÞfpðwjrstart;Ps;GjÞpðrstartÞpðGjÞpðPsÞ
(7)

where we assume that the unknown parameters,
including the initial probability vector, rstart , the photo-
physical transition rates in the generator matrix Gj,
and the transition probabilities among system states
4 Biophysical Reports 2, 100088, December 14, 2022
in propagator Ps are independent, allowing us to
conveniently write the prior on these parameters as a
product (the last three terms on right hand side).
Here, we can sample the set of unknowns using the
above posterior with the Gibbs sampling procedure
described in the first companion article (see the section
describing inverse strategy in (24)). However, a compu-
tationally more convenient inference procedure that al-
lows direct sampling is accomplished by writing the
posterior of Eq. 7 as a marginalization (sum) over state
trajectories as follows
where s1:N ¼ fs1; s2.; sNg denotes a system state
trajectory. Now, we can use the nonmarginal
posterior

pðrstart;Ps;Gj; s1:NjwÞfpðwjPs;Gj; s1:NÞpðrstartÞ
pðGjÞpðPsÞpðs1:Njrstart;PsÞ

(9)



to sample the trajectory s1:N , which, in turn, allows
direct sampling of the elements of propagator Ps

described shortly. For priors on rstart and rates in Gj,
we, respectively, use Dirichlet and Gamma distributions
similar to Eqs. 65 and 66 of the first companion article
(24). We sample the system state trajectory s1:N by
recursively sampling the states using a forward filtering
backward sampling algorithm described in section
S4.3.

Finally, for each row in the propagator Ps, we use a
Dirichlet prior

pm � DirichletðabÞ;m ¼ 1; 2;.;Ms; (10)

where Ms is the number of system states and pm

denotes the m-th row of the propagator. Here, the hy-
perparameters a and b are, respectively, the concentra-
tion parameter and a vector of length Ms described in
the first companion article (see Section 3.2.2 of (24)).
We can now directly generate samples for the transi-
tion probability vectors pm of length Ms via prior-likeli-
hood conjugacy as (see section S4.3)

pm � Dirichletðnm þabÞ;m ¼ 1; 2;.;Mmax
s ;

where the vector nm collects the number of times each
transition out of system state sm occurs obtained using
the system state trajectory.

After constructing the posterior, we can make infer-
ences on the parameters by drawing samples from
the posterior. However, as the resulting posterior has
a nonanalytical form, it cannot be directly sampled.
Therefore, we develop a Markov chain Monte Carlo
sampling procedure (37,38,44–47) to draw samples
from the posterior.

Our Markov chain Monte Carlo sampling scheme fol-
lows a Gibbs sampling technique, sweeping through
updates of the set of parameters in the following
order: 1) photophysical transition rates including donor
relaxation rates ld (inverse of donor lifetime), acceptor
relaxation rate la (inverse of acceptor lifetime), FRET
rates lFRETs1:Ms

for each system state, and excitation rate
(inverse of excitation probability pex) using the Metrop-
olis-Hastings(MH) step; 2) transition probabilities be-
tween system states, p1:Ms

, by directly drawing
samples from the posterior; 3) the system states trajec-
tory, S , using a forward-backward sampling procedure
(48); and 4) the initial probabilities, rstart , by taking
direct samples. In the end, the chains of samples
drawn can be used for subsequent numerical analysis.

Inference procedure: Nonparametrics sampler

The smFRET data analysis method illustrated above
assumes a given number of system states, Ms. How-
ever, in many applications, the number of system
states is not specified a priori. Here, we describe a
generalization of our parametric method to address
this shortcoming and estimate the number of system
states simultaneously along with other unknown
parameters.

We accomplish this by modifying our previously intro-
duced parametric posterior as follows. First, we suppose
an infinite number of system states ðMs /NÞ for the
likelihood introduced previously and learn the transition
matrixPs. The number of system states can then be in-
terpreted as those appreciably visited over the course of
the trajectory.

To incorporate this infinite system state space
into our inference strategy, we leverage the iHMMs
(25,26,28–30) from the BNP repertoire, placing a hierar-
chical Dirichlet process prior over the infinite set of sys-
tem states as described in the first companion
article (the inverse strategy section in (24)). However,
as detailed in the first companion manuscript (the in-
verse strategy section in (24)), dealing with an infinite
number of random variables, though feasible, is not
computationally efficient, and we approximate this in-
finite value with a large number, Mmax

s , reducing our hi-
erarchical Dirichlet process prior to

b� Dirichlet

�
g

Mmax
s

;.;
g

Mmax
s

�
;

pm � DirichletðabÞ ;m ¼ 1;.;Mmax
s :

Here, b denotes the base probability vector of length
Mmax

s serving itself as a prior on the probability transi-
tion matrixPs, and pm is the m-th row ofPs. Moreover,
g is a positive scalar hyperparameter of the Dirichlet
process prior often chosen to be one. As such, we
ascribe identical weights across the state space a pri-
ori for computational convenience (28,29,49).

Now, equipped with the nonparametric posterior,
we proceed to simultaneously make inferences on
transition probabilities, excited-state escape rates,
and the remaining parameters. To do so, we employ
the Gibbs sampling scheme detailed in the inverse
strategy section in the first companion article (24),
except that we must now also sample the system
state trajectory s1:N . More details on the overall sam-
pling scheme are found in section S4 of the support-
ing material.
RESULTS

The main objective of our method is to learn full distri-
butions over 1) transition probabilities among Mmax

s

system states determining, in turn, the corresponding
system transition rates and the effective number
of system states, and 2) photophysical transition rates,
Biophysical Reports 2, 100088, December 14, 2022 5
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FIGURE 3 Analysis on synthetic data for
three system states. In (a), we have a section
of synthetic data produced with the values
from Table S3. The system state trajectory is
seen in blue. Below this, the arrival times of
donor and acceptor photons md

n and ma
n are

shown in green and red, respectively. In (b),
we plot the distribution over escape rates
and FRET efficiencies εFRET . The red dots
show ground truths corresponding to escape
rates of 1,200, 2,400, and 1,200 s�1 and FRET
efficiencies of 0.22, 0.53, and 0.7. From our
maximum a posteriori (MAP) estimate, lesc
εFRET we clearly see three system states with
escape rates of 1; 100þ60

� 60 , 2; 300þ131
� 128 , and

1; 050þ80
� 80 s

�1.
including FRET rates lFRET1:M , and fluorophores' relaxation
rates (inverse of lifetimes) la and ld.

To sample from distributions over these parameters,
the BNP-FRET sampler requires input data comprised
of photon arrival time traces from both donor and
acceptor channels as well as a set of precalibrated
input parameters including camera effects such as
cross talk matrix and detection efficiency (see Sec.
2.4 and example V of the first companion article
(24)); background emission (see the section on back-
ground in the first companion article and Section
S2.4); and the instrument response function (IRF)
(see illumination features sectoin in the first compan-
ion article (24) and Section S2.3).

Here, we first show that our method samples poste-
riors over a set of parameters employing realistic syn-
thetic data generated using the Gillespie algorithm
(50) to simulate system and photophysical transitions
while incorporating detector artefacts such as cross-
talk (see the synthetic data generation section in the
first companion article (24)). The list of parameters
used in data generation for all figures is provided in
Section S6. Furthermore, prior hyperparameters used
in the analysis of synthetic and experimental data are
listed in Section S3.

We first show that our method works for the simplest
case of slow transitions compared with the interpulse
period (25 ns) with two system states using synthetic
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data (see Fig. 2). Next, we proceed to tackle more
challenging synthetic data with three system states
and higher transition rates (Fig. 3). We show that our
nonparametric algorithm correctly infers system transi-
tion probabilities and thus the number of system states
(see Fig. 3).

After demonstrating the performance of our method
using synthetic data, we use experimental data to
investigate the kinetics of HJs under different MgCl2
concentrations in buffer (see Fig. 4).
Simulated data analysis

To help validate BNPs on smFRET single-photon data,
we start with a simple case of a two-state system and
select kinetics similar to those of the experimental
data sets, c.f., the HJ in 10 mM MgCl2, with escape rates
of 40 s�1 for both system states (51). The generated
system state trajectory and photon traces over a period
of 500 ms from both channels are shown in Fig. 2 a.

Fig. 2 b shows the bivariate posterior distribution
over FRET efficiencies, εFRET , defined as εFRET ¼
lFRET=ðlFRET þldÞ, and system escape rates, i.e., ob-
tained by computing the logarithm of the propagator
matrix, with two peaks corresponding to the two sys-
tem states most visited by the sampler. Furthermore,
the ground truths, designated by red dots, fall
within the posterior with a relative error of less than
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FIGURE 4 The bivariate posterior for the
conformational transition rates lesc and FRET
efficiencies εFRET for experimental data ac-
quired in the presence of different HJ
concentrations. Here, we show our bivariate
posteriors where red dots show MAP esti-
mates. In (a), we show the posterior for a sam-
ple with 1 mM MgCl2. We report escape rates
of 1; 530þ500

� 550 and 1; 240þ420
� 420 s�1 in this case.

The posterior for a sample with 3 mM MgCl2
is shown in (b). We report escape rates of
140þ38

� 38 and 142þ32
� 32 s�1 for this case. In (c),

we show our posterior for a sample with
5 mM MgCl2. Here, we report escape rates of
64þ9

� 9 and 80þ10
� 10 s�1. The posterior in (d) is for

a sample with 10 mM MgCl2. We report
escape rates of 39þ17

� 12 and 41þ23
� 12 s

�1.
3% from the posterior modes. The results for the re-
maining parameters, including donor and acceptor
transition rates, FRET transition rates, and system tran-
sition probabilities, are presented in Section S7.

To showcase the critical role played by BNPs, we
also consider the more difficult case of a sample
with three system states and faster system state ki-
netics ranging over 1,200–2,500 s� 1. We do so by simu-
lating photon traces in both donor and acceptor
channels over a period of �150 ms. A 50 ms section
of the synthetic photon trace is shown in Fig 3 a.

Using direct photon arrivals from the generated
photon trace, we find that the most probable system
state trajectories sampled by BNP-FRET visit the cor-
rect number of system states, as shown in Fig 3 b, while
inferring all other parameters. Furthermore, the BNP-
FRET sampler estimates the system transition rates
and thus the escape rates (i.e., sum of transition rates
out of a given state) where the ground-truth escape
rates differ from the posterior peaks by a relative
average error of less than 8%. The results for the re-
maining parameters are provided in Section S7.
Experimental data analysis: HJ

In this section, we benchmark our method over a wide
range of kinetic rates employing experimental data ac-
quired using HJ under varying buffer MgCl2 concentra-
tions (15,51).
HJs are four-way double-helical DNA junctions exist-
ing in various structural configurations (41,52,53).
When not interacting with multivalent metal ions, elec-
trostatic repulsion between negatively charged phos-
phate groups of the four helical arms forces HJs to
assume a wide configuration where the arms lie along
the two diagonals of a square. However, in the pres-
ence of ions, such as Mg2þ, interaction with the phos-
phate groups results in electrostatic screening.
This reduced repulsion induces transitions to what is
believed to be primarily two compact stacked configu-
rations/conformations. The transitions between both
conformations necessitates passing through the inter-
mediate open configuration. Since, at high ion concen-
trations, displacing ions away from the phosphate
group becomes increasingly difficult, in this scenario,
we anticipate smaller transition rates between both
conformations.

The HJ kinetic rates have been studied using both
fluorescence lifetime correlation spectroscopy (15)
and HMM analysis (54) on diffusing HJs assuming a
priori a pair of high and low FRET system states.
As expected, these previous studies show kinetic
rates decreasing with increasingMgCl2 concentrations
(41,43) and correspondingly longer dwells.

Here, our method, free from averaging and binning
that are otherwise common in HMM analysis, is partic-
ularly well suited to learn the rapid kinetics at low
Mg2þ concentrations. We apply our BNP-FRET to data
Biophysical Reports 2, 100088, December 14, 2022 7



acquired from HJs at 1, 3, 5, and 10 mMMgCl2 concen-
trations and sample the photophysical transition rates
and the system transition probabilities.

The acquired bivariate posterior distributions over
the FRET efficiencies and escape rates (computed via
the logarithm of the system transition probability ma-
trix Ps) are presented in Fig. 4. Moreover, estimates
for the other parameters can be found in Section S7.
We note that our results are obtained on a single-mole-
cule basis with a photon budget of 104--105 photons.

For all four concentrations (see Fig. 4), our BNP-
FRET sampler most frequently visited only two
system states, while this was given as an input to the
other analysis methods (15,54). Moreover, both
escape rates are found to have similar values with
an average of approximately 1,400s�1 (1 mM MgCl2),
140s�1 (3 mM MgCl2), 72s�1 (5 mM MgCl2), and
41 s�1 (10 mMMgCl2). These escape rates are in close
agreement with values reported by fluorescence life-
time correlation spectroscopy and H2MM methods
(15,54) of z1; 300 s�1 (1 mM MgCl2), z170 (3 mM
MgCl2), z100 (5 mM MgCl2), and z60 s�1 (10 mM
MgCl2), which lie well within the bounds of our poste-
riors shown in Fig. 4 while simultaneously, and self-
consistently, learning a number of system states.
Experimental data acquisition

In this section, we describe the protocol for preparing
the surface-immobilized HJ sample labeled with a
FRET pair and the procedure for recording smFRET
traces from individual immobilized molecules. The
sample preparation and recording of data follow previ-
ous work (55).

Sample preparation

The HJ used in this work consists of four DNA strands
whose sequences are as follows:

R-strand: 50-CGA TGA GCA CCG CTC GGC TCA ACT
GGC AGT CG-30

H-strand: 50-CAT CTT AGT AGC AGC GCG AGC GGT
GCT CAT CG-30

X-strand: 50-biotin-TCTTT CGA CTG CCA GTT GAG
CGC TTG CTA GGA GGA GC-30

B-strand: 50-GCT CCT CCT AGC AAG CCG CTG CTA
CTA AGA TG-3'

For surface immobilization, the X-strand was labeled
with biotin at the 50 end. For FRET measurements, the
donor (ATTO-532) and acceptor (ATTO-647N) dyes
were introduced into the H- and B-strands, respectively.
In both cases, the dyes were labeled to thymine nucle-
otide at the 6th position from the 50 ends of the respec-
tive strands (shown as T). All DNA samples (labeled or
unlabeled) were purchased from JBioS (Shinjuku-ku,
8 Biophysical Reports 2, 100088, December 14, 2022
Japan) in the high-performance liquid chromatography
purified form and were used without any further
purification.

The HJ complex was prepared by mixing 1 mM solu-
tions of R-, H-, B-, and X-strands in TN buffer (10 mM
Tris-HClwith 50 mMNaCl, pH 8) at a 3:2:3:3 molar ratio,
annealing the mixture at 94�C for 4 minutes, and grad-
ually cooling it down (2�C–3�C min�1) to room temper-
ature (25�C ). For smFRET measurements, we used
a sample chamber (SecureSeal, GBL621502, Grace
Bio-Labs, Bend, OR, USA) with a biotin-PEG-SVA (biotin-
poly(ethylene glycol)-succinimidyl valerate)-coated cover-
slip. The chamber was first incubated with streptavidin
(0.1 mg mL�1 in TN buffer) for 20 min. This was followed
by washing the chamber with TN buffer (3 times) and in-
jection of 1 nM HJ solution (with respect to its H-strand)
for 3–10 s. After this incubation period, the chamber
was rinsed with TN buffer (3 times) to remove unbound
DNA, and it was filled with TN buffer containing
1 mM (or 5 mM) MgCl2 and 2 mM Trolox for smFRET
measurements.
smFRET measurements

The smFRET traces from individual HJs were recorded
using a custom-built confocal microscope (Eclipse Ti,
Nikon, Tokyo, Japan) equipped with the Perfect Focus
System, a sample scanning piezo stage (Nano control
B16-055), and a time-correlated single-photon counting
module (SPC-130EM, Berlin, Germany).

The broadband light generated by a supercontinuum
laser operating at 40 MHz (SC-400-4, Fianium, South-
ampton, UK) was filtered with a band-pass filter (FF01-
525/30, Semrock, West Henrietta, NJ, USA) for exciting
the donor dye, ATTO-532. This excitation light was
introduced to the microscope using a single-mode op-
tical fiber (P5-460B-PCAPC-1, Thorlabs, Newton, NJ,
USA) and directed onto the sample using a dichroic
mirror (ZT532/640rpc, Chroma, Cambridge, MA, USA)
and a water immersion objective lens (Nikon Plan
Apo IR 60�, numerical aperture: 1.27).

The excitation light was focused onto the top
surface of the coverslip, and, during measurements,
the focusing condition was maintained using the
Perfect Focus System. The fluorescence signals were
collected by the same objective, passed through the
dichroic mirror, and guided to the detection assembly
(Thorlabs DFM1/M) using a multimode fiber (Thorlabs
M50L02S-A). Note that this multimode fiber (core diam-
eter: 50 mm) also acts as the confocal pinhole. In the
detection assembly, the fluorescence signals from the
donor and acceptor dyes were separated using a
dichroic mirror (ZT633rdc, Chroma Technology, Bellows
Falls, VT, USA), filtered using band-pass filters (Chroma
ET585/65m for donor and Semrock FF02-685/40 for



acceptor), and detected using separate hybrid detectors
(Becker and Hickl HPM-100-40-C).

For each detected photon, its macrotime (absolute
arrival time from the start of the measurement) was re-
corded with 25.2 ns resolution and its microtime (rela-
tive delay from the excitation pulse) was recorded with
6.1 ps resolution using the time-correlated single-
photon counting module operating in time-tagging
mode. A router (Becker and Hickl HRT-41) was used
to process the signals from the donor and acceptor
detectors.

For recording smFRET traces from individual HJs,
we first imaged a 10 � 3 mm area of the sample using
the piezo stage by scanning it linearly at a speed of
1 mm s�1 in the x direction and with an increment of
0.1 mm in the y direction. Individual HJs appeared as
isolated bright spots in the image.

Next, we fitted the obtained donor and acceptor in-
tensity images with multiple 2D Gaussian functions
to determine the precise locations of individual HJs.
Note that, during this image acquisition, the laser exci-
tation power was kept to a minimum (�1 mW at the
back aperture of the objective lens) to avoid photo-
bleaching the dyes. In addition, we also employed an
electronic shutter (Suruga Seiki, Shizuoka, Japan) in
the laser excitation path to control the sample excita-
tion as required.

Using the precise locations of individual HJs ob-
tained, we recorded 30 s-long smFRET traces for
each molecule by moving them to the center of the
excitation beam using the piezo stage. For each trace,
the laser excitation was blocked (using the shutter)
for the first 5 s and was allowed to excite the sample
for the remaining 25 s. Note that the smFRET traces
were recorded using 40 mW laser excitation (at the
back aperture of the objective lens) to maximize the
fluorescence photons emitted from the dyes. We auto-
mated the process of acquiring smFRET traces from
different molecules sequentially and executed it using
a program written in house on Igor Pro (Wavemetrics,
Portland, OR, USA).
DISCUSSION

The sensitivity of smFRET under pulsed illumination
has been exploited to investigate many different mo-
lecular interactions and geometries (8–11,56). Howev-
er, quantitative interpretation of smFRET data faces
serious challenges including an unknown number of
system states and robust propagation of uncertainty
from noise sources such as detectors and background.
These challenges ultimately mitigate our ability to
determine full distributions over all relevant unknowns
and, traditionally, have resulted in data pre- or postpro-
cessing compromising the information otherwise
encoded in the rawest form of data: single-photon
arrivals.

Here, we provide a general BNP framework for
smFRET data analysis starting from single-photon ar-
rivals under a pulsed illumination setting. We simulta-
neously learn transition probabilities among system
states as well as determine photophysical rates by
incorporating existing sources of uncertainty such as
background and cross talk.

We benchmark our method using both experimental
and simulated data. That is, we first show that our
method correctly learns parameters for the simplest
case with two system states and slow system transi-
tion rates. Moreover, we test our method on more chal-
lenging cases with more than two states using
synthetic data and obtain correct estimations for the
system state transition probabilities and thus the
number of system states along with the remaining pa-
rameters of interest. To further assess our method's
performance, we analyzed experimental data from
HJs suspended in solutions with a range ofMgCl2 con-
centrations. These data were previously processed us-
ing other techniques assuming a fixed number of
system states by binning photon arrival times (15).

Despite multiple advantages mentioned above for
BNP-FRET, BNPs always come with an added computa-
tional cost as they take full advantage of information
from single-photon arrival times and all existing sources
of uncertainty. For this version of our general BNP
method simplified for pulsed illumination, we further
reduced the computational complexity by grouping
empty pulses together. Therefore, the computational
complexity increased only linearly with the number of
input photons as the photons are treated independently.

The method described in this paper assumes a
Gaussian IRF. However, the developed framework is
not limited to a specific form for the IRF and can be
used for data collected using any type of IRF by modi-
fying Eq. 4. Furthermore, the framework is flexible in ac-
commodating different illumination techniques such
as alternating color pulses, which are typically used
to directly excite the acceptor fluorophores. This can
be achieved by simple modification of the propagator
Qj

n in Eq. 4. A future extension of this method could
relax the assumption of a static sample by adding
spatial dependence to the excitation rate as we
explored in previous works (35,47,57). This would allow
our method to learn the dynamics of diffusing mole-
cules, as well as their photophysical and system state
transition rates.
Code availability

The BNP-FRET software package is available on Github
at https://github.com/LabPresse/BNP-FRET.
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SUPPORTING MATERIAL

Supporting material can be found online at https://doi.org/10.1016/j.
bpr.2022.100088.
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1Center for Biological Physics, Department of Physics,
Arizona State University, Tempe, AZ, USA

2Department of Mathematics and Statistical Science,
Arizona State University, Tempe, AZ, USA

3Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa,
Wako, Saitama 351-0198, Japan

4Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced
Photonics (RAP), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
5Department of Mathematics, University of Tennessee Knoxville,

Knoxville, TN, USA
6School of Molecular Sciences, Arizona State University,

Phoenix, AZ, USA

Last updated: November 1, 2022

Contents

S1 Variables and Notation S1

S2 Likelihood for Pulsed Illumination S3
S2.1 Excitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S4
S2.2 Photophysics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S5
S2.3 Instrument Response Function . . . . . . . . . . . . . . . . . . . . . . . . . . S7
S2.4 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S8

S2.4.1 Laser background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S10
S2.4.2 Uniform background . . . . . . . . . . . . . . . . . . . . . . . . . . . S11

S0



S3 Model Structure and Priors S13
S3.1 Parametric Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S13
S3.2 Nonparametric Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S14

S4 Sampling from the Posterior: Gibbs Algorithm Steps S15
S4.1 Photophysical rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S15
S4.2 Excitation Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S15
S4.3 System State Trajectory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S16
S4.4 Transition probabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S17
S4.5 Base Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S17
S4.6 Optional Hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . S18

S4.6.1 Transition probabilities concentration hyperparameter . . . . . . . . . S18
S4.6.2 Sticky hyperparameter . . . . . . . . . . . . . . . . . . . . . . . . . . S18
S4.6.3 Base distribution concentration hyperparameter . . . . . . . . . . . . S19

S5 Estimation of pre-set Parameters S20
S5.1 IRF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S20
S5.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S20

S6 Parameters Used for Synthetic Data Generation S22

S7 Additional Parameter Estimates S23
S7.1 Synthetic Data with Two System States . . . . . . . . . . . . . . . . . . . . S23
S7.2 Synthetic Data with Three System States . . . . . . . . . . . . . . . . . . . . S24
S7.3 Experimental Data: 1mm . . . . . . . . . . . . . . . . . . . . . . . . . . . . S25
S7.4 Experimental Data: 3mm . . . . . . . . . . . . . . . . . . . . . . . . . . . . S26
S7.5 Experimental Data: 5mm . . . . . . . . . . . . . . . . . . . . . . . . . . . . S27
S7.6 Experimental Data: 10mm . . . . . . . . . . . . . . . . . . . . . . . . . . . . S28

Bibliography S29

S1 Variables and Notation

In this manuscript, we generally denote vectors and collections differently, even though
mathematically they are very similar objects. Vectors, such as the probability vector πm or
the generator matrix G are bolded. On the other hand, collections, which represent groups
of, in some sense, independent objects, such as the trajectory s1:N which is all states sn
grouped together are denoted with the colon notation i : j to denote the range on indices
from i to j.
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Description Variable Units
The number of pulses N -
Length of pulse period τ ns
The macrotime of the n-th pulse tn ns
The microtime of the n-th pulse µn ns or null
The measurement of the n-th pulse (µdn, µ

a
n) wn (ns,ns)

Number of states (weak limit in the nonparametric sense) M -
The m-th state σm -
The state at the nth pulse sn -
The system state transition probability matrix Πσ -
The m-th row of Πσ πm -
Initial state probability vector π0 -
Concentration hyperparameter for π1:M and π0 α -
Base distribution over states in the iHMM β -
Concentration hyperparameter for β γ -
Donor relaxation rate λd ns−1

Acceptor relaxation rate λa ns−1

FRET rate of m-th state λmFRET ns−1

Probability of donor becoming excited by a pulse πex -
Excitation event at time n an -
Direct acceptor excitation coefficient ka -
Efficiency of the donor channel ηd -
Efficiency of the acceptor channel ηa -
Probability of no detector leakage in donor channel ϕdd -
Probability of no detector leakage in acceptor channel ϕaa -
Probability of donor channel laser background photon pbd -
Probability of acceptor channel laser background photon pba -
Probability of donor channel uniform background photon pdd -
Probability of acceptor channel laser background photon pda -
Donor channel IRF delay mean µIRFd ns
Donor channel IRF delay variance νIRFd ns2

Acceptor channel IRF delay mean µIRFa ns
Acceptor channel IRF delay variance νIRFa ns2

The collection of all learned parameters (shorthand) ϑ -

Table S1: Table of Variables and Units. For the convenience of the readers, we include
a table with the quantities discussed in this paper and their corresponding symbols.
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S2 Likelihood for Pulsed Illumination

In order to perform inference over the parameters as described in the main text [1], we use
the likelihood described in Eq. 6 of the main text [1]

L = p(w|ρstart,Πσ,Gψ) ∝ ρstartΠ
σ
1Π

σ
2 . . .Π

σ
Nρ

T
norm, (S1)

where ρstart is a vector collecting all the initial probabilities. Gψ is the photophysical gen-
erator matrix given in Eq. 4 of the first companion manuscript [2]. Moreover, Πσ

n is the
reduced system state propagator for the n-th interpulse period given by

Πσ
n = Πσ ⊙Dσ

n, (S2)

where ⊙ denotes element-by-element product. Here, Dσ
n is the detection matrix with ele-

ments
(Dσ

n)sn→σj = p(wn|sn,Gψ) = ρgroundQ
ψ
n(sn)ρ

T
norm, (S3)

as described in Sec. 3 of the main text [1]. Here, ρground is the probability vector where
both donor and acceptor are in the ground state. Futhermore, Qψ

n(sn) is the photophysical
propagator for n-th interpulse period.

The photophysical propagators take different forms depending on the observation during
an interpulse period. To derive the explicit forms of these photophysical propagators, we
start from the explicit from of the photophysical generator matrix Gψ for a given system
state, sn, as

Gψ =

 ∗ λex(t) λdirect(t)
λd ∗ λFRETsn

λa 0 ∗

 , (S4)

where λex, λdirect, λd, λa and λFRETsn , respectively, denote donor excitation, direct acceptor
excitation, donor relaxation, acceptor relaxation and FRET rates. As such, the propagators
for empty and nonempty pulses are obtained by replacing the photophysical generator matrix
in the generic propagators described in Sec. 2.5.1 of the first companion manuscript [2]

Qψ
n = exp

(∫ δpulse

0

dδGnon
ψ (δ)

)
exp

(
(τ − δpulse)G

dark
ψ

)
, (S5)

Qψ
n = exp

(∫ δpulse

0

dδGnon
ψ (δ)

) (∫ δIRF

0

dϵn exp
[
(µn − δpulse − ϵn)G

dark
ψ

]
Grad
ψ

× exp
[
(τ − µn + ϵn)G

dark
ψ

]
f(ϵn)

)
, (S6)

for empty and nonempty pulses, respectively. The different generator matrices above are
the reduced forms of Gnon, Gdark and Grad introduced in the first companion manuscript [2]
Sec. 2.3, now containing only photophysical transitions. In what follows, we will derive these
reduced generator matrices and calculate different terms involved in the likelihoods above.
We then proceed to take into account the background and instrument response function
(IRF) in the likelihoods.
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S2.1 Excitation

To construct the likelihood for a pulse, we begin by considering the laser pulse itself where
we expect no transition other than fluorophore excitation occurring during this period. This
assumption is reasonable since pulse duration is too short (often of the order of 100 ps)
compared to fluorophore lifetimes. Therefore, the generator matrix for this period is derived
from Eq. S4 by setting λd = λa = λFRET = 0, leading to

Gnon
ψ =

∗ λex(t) λdirect(t)
0 0 0
0 0 0

 . (S7)

Therefore, the first term in propagators Eq. S5-S6 is obtained as

Πpulse
ψ = exp

∫ δpulse

0

∗ λex(t) λdirect(t)
0 0 0
0 0 0

 dt
 , (S8)

where Πnon
ψ represents the nonradiative propagator matrix during the laser pulse.

The above expression can be further simplified by taking into account the fact that
both excitation rates are proportional to the pulse intensity with different constants of pro-
portionality [3]. Consequently, we can write λdirect = kaλex, where ka is the ratio of the
proportionality constants. The resulting propagator is thus

Πpulse
ψ = exp

∫ δpulse

0

∗ λex(t) kaλex(t)
0 0 0
0 0 0

 dt
 . (S9)

This integral and the subsequent matrix exponential can be solved analytically, with the
result

Πpulse
ψ =

1− πex − kaπex πex kaπex
0 0 0
0 0 0

 , (S10)

where

πex =
1

1 + ka

(
1− exp

(
−(1 + ka)

∫ δpulse

0

λex(t)dt

))
, (S11)

where πex and kaπex are the probabilities that the donor or acceptor is directly excited by
the pulse, respectively. This quantity is the same for all the pulses because the molecule is
immobilized.

Now, using the obtained propagator for the pulse we can find the photophysical state
probability vector immediately after the pulse ρpulse. It is given by

ρpulse = ρgroundΠ
pulse
ψ =

(
1− πex − kaπex, πex, kaπex

)
, (S12)

where ρground is the photophysical state probability vector at the beginning of the pulse when
both fluorophores are in the ground state by assumption (2) in Sec. 3 of the main text [1].
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S2.2 Photophysics

Next, we compute the remaining terms in propagators of Eqs. S5-S6. To do so, we first
calculate the generator matrices in those terms, namely, Gdark

ψ for no photon detection, and

Grad
ψ for photon detection. These two generators describe events after the laser pulse and

before the next laser pulse where no fluorophore excitation may take place and thus we have
λex = λdirect = 0.

Now, for an empty interpulse period where there is no photon detection, there is still a
chance for emitted photons that are not detected quantified by detector efficiencies ηd and
ηa for donor and acceptor channels, respectively. Therefore, we can write (see Sec. 2.5.1 in
the first companion manuscript [2])

Gdark
ψ =

 0 0 0
(1− ηd)λd −λd − λFRETsn λFRETsn

(1− ηa)λa 0 −λa

 . (S13)

For nonempty interpulse periods, only radiative transitions associated with the detected
photon are possible at that detection moment, therefore we further set the nonradiative
transition rates λFRET = 0. If a photon is detected in the donor channel, the radiative
propagator is thus

G
rad(D)
ψ =

 0 0 0
ηdϕddλd 0 0

ηd(1− ϕaa)λa 0 0

 , (S14)

and for the acceptor channel

G
rad(A)
ψ =

 0 0 0
ηa(1− ϕdd)λd 0 0
ηaϕaaλa 0 0

 , (S15)

where (1 − ϕdd) and (1 − ϕaa) denote the crosstalk probabilities for donor and acceptor
channels, respectively.

Now, if we ignore the background and the IRF for the moment, using the obtained
generators above, the elements of the detection matrix (Dσ

n)sn→σj for an empty pulse, a
nonempty pulse with a donor photon, and a nonempty pulses with an acceptor photon are,
respectively, given as

(Dσ
n)sn→σj(∅, ∅) =ρpulse exp(τG

dark
ψ )ρTnorm, no photon,

(S16)

(Dσ
n)sn→σj(µ, ∅) =ρpulse exp(µnG

dark
ψ )G

rad(D)
ψ exp((τ − µn)G

dark
ψ )ρTnorm, donor photon

(S17)

(Dσ
n)sn→σj(∅, µ) =ρpulse exp(µnG

dark
ψ )G

rad(A)
ψ exp((τ − µn)G

dark
ψ )ρTnorm, acceptor photon

(S18)

where we ignored the integrals due to IRF in Eq. S5-S6. Moreover, ∅ and µ as the first
input, respectively denote no photon and a photon with arrival time µ from the donor
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channel. The same applies to the second input but for the acceptor channel. These elements
can be analytically solved as

(Dσ
n)sn→σj(∅, ∅) =

ρpulse

 1 0 0
A(τ) exp(−(λd + λFRETsn )τ) B(τ)

(1− ηa)(1− exp(−λaτ)) 0 exp(−λaτ)

ρTnorm, (S19)

(Dσ
n)sn→σj(µ, ∅) =

ρpulse

 0 0 0
ηdϕddλd exp(−(λd + λFRETsn )µ) + ηd(1− ϕaa)λaB(µ) 0 0

ηd(1− ϕaa)λa exp(−λaµ) 0 0

ρTnorm, (S20)

(Dσ
n)sn→σj(∅, µ) =

ρpulse

 0 0 0
ηa(1− ϕdd)λd exp(−(λd + λFRETsn )µ) + ηaϕaaλaB(µ) 0 0

ηaϕaaλa exp(−λaµ) 0 0

ρTnorm, (S21)

where τ is the interpulse period and

A(t) =
(1− ηd)λd + (1− ηa)λ

FRET
sn

λd + λFRETsn

(1− exp(−(λd + λFRETsn )t)), (S22)

B(t) =
λFRETsn

−λd − λFRETsn + λa
( exp(−(λd + λFRETsn )t)− exp(−λat)). (S23)

These can be further simplified by making the assumption that interpulses period is
long in comparison to the fluorophore lifetimes (assumption (2) above). In essence, we take
τ → ∞. Therefore, the elements of the detection matrix when no photon is detected becomes

lim
τ→∞

(Dσ
n)sn→σj(∅, ∅) = ρpulse

 1 0 0
(1−ηd)λd+(1−ηa)λFRET

sn

λd+λFRET
sn

0 0

(1− ηa) 0 0

ρTnorm. (S24)

Now, since ρnorm = [1, 1, 1], these matrices can be reduced to vectors by incorporating ρTnorm
as

(Dσ
n)sn→σj(∅, ∅) = ρpulse

 (1−ηd)λd+(1−ηa)λFRET
sn

λd+λFRET
sn

(1− ηa)

 , (S25)

(Dσ
n)sn→σj(µ, ∅) = ρpulse

 0
ηdϕddλd exp(−(λd + λFRETsn )µ) + ηd(1− ϕaa)λaB(µ)

ηd(1− ϕaa)λa exp(−λaµ)

 , (S26)

(Dσ
n)sn→σj(∅, µ) = ρpulse

 0
ηa(1− ϕdd)λd exp(−(λd + λFRETsn )µ) + ηaϕaaλaB(µ)

ηaϕaaλa exp(−λaµ)

 . (S27)
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Additionally, it is sometimes convenient to consider the likelihood of only detecting a
donor or acceptor photon, regardless of the photon arrival time. We find this by marginalizing
over the arrival times, and denote these marginalized likelihoods by

(D̂σ
n)sn→σj(d) =

∫ ∞

0

(Dσ
n)sn→σj(t, ∅)dt = ρpulse

 0
ηdϕdd(1− εFRETsn ) + ηd(1− ϕaa)ε

FRET
sn

ηd(1− ϕaa)

 ,

(S28)

(D̂σ
n)sn→σj(a) =

∫ ∞

0

(Dσ
n)sn→σj(∅, t)dt = ρpulse

 0
ηd(1− ϕdd)(1− εFRETsn ) + ηdϕaaε

FRET
sn

ηaϕaa

 ,

(S29)

where εFRETsn = λFRETsn /(λd + λsnFRET ) is the FRET efficiency for the system state sn. Here,

D̂σ
n denotes marginalization over arrival times.
In what follows, we will describe how to include the IRF and background into the derived

detection matrices in this section.

S2.3 Instrument Response Function

The IRF refers to the delay between a photon arrival to a detector and the arrival time
reported by the detector due to the electronics. We incorporate it by concluding that the
reported arrival time trep is the sum of two random variables, tarrive and tIRF , as follows

trep = tarrive + tIRF . (S30)

As it is a sum of two random variables the resulting distribution of trep is a convolution of
the photon arrival time distribution with the IRF distribution. Here, we assume that the
IRF is distributed according to

tIRF ∼ Normal(µIRF , νIRF ), (S31)

with each channel having a unique mean µIRF and variance νIRF . Moreover, the distribution
of tarrive is described by (Dσ

n)sn→σj derived in the previous section.
Now, we can obtain the likelihood in the presence of the IRF by calculating the convo-

lution implied by Eq. S30. That is obtained as follows

(Dσ
n)
IRF
sn→σj

(µ, ∅) = ρpulse

 0
ηdϕddλdfd(µ, λd + λFRETsn ) + ηd(1− ϕaa)λaBfd(µ)

ηd(1− ϕaa)λafd(µ, λa)

 , (S32)

(Dσ
n)
IRF
sn→σj

(∅, µ) = ρpulse

 0
ηa(1− ϕdd)λdfa(µ, λd + λFRETsn ) + ηaϕaaλaBfa(µ)

ηaϕaaλafa(µ, λa)

 , (S33)
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where

Bfd(t) =
λFRETsn

−λd − λFRETsn + λa
(fd(t, λd + λFRETsn )− fd(t, λa)), (S34)

fd(t, λ) =
1

2
exp

(
λ

2
(2µIRFd + λνIRFd − 2t)

)
erfc

(
µIRFd + λνIRFd − t√

2νIRFd

)
, (S35)

Bfa(t) =
λFRETsn

−λd − λFRETsn + λa
(fa(t, λd + λFRETsn )− fa(t, λa)), (S36)

fa(t, λ) =
1

2
exp

(
λ

2
(2µIRFa + λνIRFa − 2t)

)
erfc

(
µIRFa + λνIRFa − t√

2νIRFa

)
, (S37)

where erfc(·) = 1 − erf(·) is the complementary error function. Moreover, note that
(Dσ

n)
IRF
sn→σj

(∅, ∅) = (Dσ
n)sn→σj(∅, ∅) since there is no photon and thus no IRF effect.

S2.4 Background

In this section, we proceed to include background emissions in our formulation following
Sec. 2.6 of the first comapnion manuscript [2]. The background photons come from extra
light sources present in the environment in addition to the FRET pair. Such source of photon
is, in general, characterized by two components: 1) photon emission probabilities for each
channel; and 2) distribution of photon arrival times over the interpulse window.

Here, we first assume pd and pa to be the probability that a photon is emitted in the
donor and acceptor channels, respectively. Further, let gd(t) and ga(t) be probability density
functions that describe the distribution of background photons’ arrival times within the
interpulse window for the donor and acceptor channels, respectively. Moreover, note that
if the source is such that there is some relationship between donor and acceptor photons,
we would additionally require a joint probability distribution gda(td, ta), but in the case of
background, we assume that the channels are independent. Therefore, the distribution over
measurements for this source is

pbg(wn) =



(1− pd)(1− pa) wn = (∅, ∅)

pdgd(µd)(1− pa) wn = (µd, ∅)

(1− pd)paga(µa) wn = (∅, µa)

pbdpbagd(µd)ga(µa) wn = (µd, µa).

(S38)

In the presence of a background source, we run into the complication that, in most single
photon pulsed illumination setups, only the first photon arriving to a detector channel is
recorded. This means that there is a competition between photons from different sources,
namely, donor fluorophore, acceptor fluorophore, and background, to first reaching the detec-
tor. In many cases, this effect can be ignored, but here we take it into account for generality.
In this case, we can write the likelihood in the presence of background but absence of the

S8



IRF, (Dσ
n)
bg
sn→σj

, as follows

(Dσ
n)
bg
sn→σj

(wn) =

pbg(∅, ∅)(Dσ
n)sn→σj(∅, ∅) wn = (∅, ∅)

pbg(∅, ∅)(Dσ
n)sn→σj(µd, ∅) + pbg(µd, ∅)(Dσ

n)sn→σj(∅, ∅) +md(µd, ∅) wn = (µd, ∅)

pbg(∅, ∅)(Dσ
n)sn→σj(∅, µa) + pbg(∅, µa)(Dσ

n)sn→σj(∅, ∅) +ma(∅, µa) wn = (∅, µa)

pbg(∅, µa)(Dσ
n)sn→σj(µd, ∅) + pbg(µd, ∅)(Dσ

n)sn→σj(∅, µa) wn = (µd, µa)

+pbg(µd, µa)(D
σ
n)sn→σj(∅, ∅) +Md(µd, µa) +Ma(µd, µa),

(S39)

where pbg is given by Eq. S38 and (Dσ
n)sn→σj is the likelihood for signal photons, i.e., photons

from fluorophores. Further, md, ma, Md and Ma correspond to the cases where both back-
ground and signal photon are present, but only the smaller arrival time is detected. These
are derived by finding the distribution of the minimum arrival times between the competing
photons as follows

md(t, ∅) =pd(1− pa)

[
(gd(t)(D̂

σ
n)sn→σj(d) + (Dσ

n)sn→σj(t, ∅)− gd(t)

(∫ t

0

(Dσ
n)sn→σj(s, ∅)ds

)
−
(∫ t

0

gd(s)ds

)
(Dσ

n)sn→σj(t, ∅)
]
, (S40)

ma(∅, t) =(1− pd)pa

[
ga(t)(D̂

σ
n)sn→σj(a) + (Dσ

n)sn→σj(t, ∅)− ga(t)

(∫ t

0

(Dσ
n)sn→σj(s, ∅)ds

)
−
(∫ t

0

ga(s)ds

)
(Dσ

n)sn→σj(t, ∅)
]
, (S41)

Md(td, ta) =pdpa

[
gd(td)(D̂

σ
n)sn→σj(d) + (Dσ

n)sn→σj(td, ∅)− gd(t)

(∫ td

0

(Dσ
n)sn→σj(s, ∅)ds

)
−
(∫ td

0

gd(s)ds

)
(Dσ

n)sn→σj(td, ∅)
]
ga(ta), (S42)

Ma(td, ta) =pdpagd(td)

[
ga(ta)(D̂

σ
n)sn→σj(a) + (Dσ

n)sn→σj(ta, ∅)− ga(ta)

(∫ ta

0

(Dσ
n)sn→σj(s, ∅)ds

)
−
(∫ ta

0

ga(s)ds

)
(Dσ

n)sn→σj(ta, ∅)
]
, (S43)

where (D̂σ
n)sn→σj is the marginalized element introduced in Eq. S28.

Using this general method of incorporating additional light sources into our framework,
we can add the two most prominant background sources observed in the data: 1) laser
photons which are distributed the same as laser pulse and termed laser background; and 2)
uniform background which are uniformly distributed over the interpulse window and termed
uniform background. In what follows, we will discuss the inclusion of these two backgrounds
in our model.
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S2.4.1 Laser background

The primary goal of this section is constructing a general method for adding background
photons originating from the laser source to our pulsed illumination framework. These
photons arrive to the detector distributed according to the intensity of the laser pulse across
the interpulse window. Moreover, since the pulse width is extremely narrow, it can be
effectively considered as a delta function. Therefore, using our description for a generic
background source (Eq. S38), we can describe this laser background as

pbg(wn) =



(1− pbd)(1− pba) wn = (∅, ∅)

pbdδ(µd)(1− pba) wn = (µd, ∅)

(1− pbd)pbaδ(µa) wn = (∅, µa)

pbdpbaδ(µd)δ(µa) wn = (µd, µa)

, (S44)

where we used gd\a(µd\a) = δ(µd\a) for laser photons.
Since the laser photons arrive exactly at the beginning of the interpulse window, they

are going to naturally win the competition between multiple present photons from different
sources. This in turn simplifies the terms md, ma, Md, and Ma in Eq. S40-S43 for laser
photons as follows

ml
d(µd, ∅) =pbd(1− pba)(D̂

σ
n)sn→σj(d)δ(µd), (S45)

ml
a(∅, µa) =(1− pbd)pba(D̂

σ
n)sn→σj(a)δ(µa), (S46)

M l
d(µd, µa) =pbdpba(D̂

σ
n)sn→σj(d)δ(µd)δ(µa), (S47)

M l
a(µd, µa) =pbdpba(D̂

σ
n)sn→σj(a)δ(µd)δ(µa). (S48)

Here, the marginalized terms (D̂σ
n)sn→σj (defined in Eq. S28) account for the probability of

receiving a signal photon from the fluorophore, even if it is not detected due to the laser
background photon arriving first.

Now, by substituting Eq. S44-S48 in Eq. S39 we can derive the likelihood model of the
photons reaching to the detector in the presence of laser photons. To derive the reported
arrival time likelihood model, we still need to add the IRF effect. To do so, we need to
convolve the IRF with the delta function that describes the laser photon distributions across
the interpulse window. This results in the IRF itself which is given by a Normal distribution∫

dωδ(t− ω)Normal(ω;µIRF , νIRF ) = Normal(t;µIRF , νIRF ), (S49)

where ω is an auxiliary variable. As such, using the (Dσ
n)
IRF
sn→σj

in Eqs. S32-S33 and the
background terms as described above, we obtain the likelihood model in the presence of
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laser background (Dσ
n)
laser
sn→σj

as

(Dσ
n)
laser
sn→σj

(∅, ∅) =(1− pbd)(1− pba)(D
σ
n)sn→σj(∅, ∅), (S50)

(Dσ
n)
laser
sn→σj

(µd, ∅) =(1− pbd)(1− pba)(D
σ
n)
IRF
sn→σj

(µd, ∅)
+ pbdNormal(µd;µ

IRF
d , νIRFd )(1− pba)(D

σ
n)sn→σj(∅, ∅)

+ pbd(1− pba)(D̂
σ
n)sn→σj(d)Normal(µd;µ

IRF
d , νIRFd ), (S51)

(Dσ
n)
laser
sn→σj

(∅, µa) =(1− pbd)(1− pba)(D
σ
n)
IRF
sn→σj

(∅, µa)
+ (1− pbd)pbaNormal(µa;µ

IRF
a , νIRFa )(Dσ

n)sn→σj(∅, ∅)
+ (1− pbd)pba(D̂

σ
n)sn→σj(a)Normal(µa;µ

IRF
a , νIRFa ), (S52)

(Dσ
n)
laser
sn→σj

(µd, µa) =(1− pbd)pbaNormal(µa;µ
IRF
a , νIRFa )(Dσ

n)
IRF
sn→σj

(µd, ∅)
+ pbdNormal(µd;µ

IRF
d , νIRFd )(1− pba)(D

σ
n)
IRF
sn→σj

(∅, µa)
+ pbdpbaNormal(µd;µ

IRF
d , νIRFd )Normal(µa;µ

IRF
a , νIRFa )

× ((D̂σ
n)sn→σj(d) + (D̂σ

n)sn→σj(a)). (S53)

S2.4.2 Uniform background

Finally, we incorporate uniform background, which represents the combination of all ambient
light sources that emit photons with a constant rate, independent of the laser pulses. We
introduce uniform background after the IRF as the arrival time distribution of these photons
is not affected by the IRF, remaining uniform over the entire interpulse window. Once again,
using the form for a generic light source from Eq. S38, we describe uniform background as

pdbg(wn) =



(1− pdd)(1− pda) wn = (∅, ∅)

pdd(1/τ)(1− pda) wn = (µd, ∅)

(1− pdd)pda(1/τ) wn = (∅, µa)

pddpda(1/τ)
2 wn = (µd, µa)

. (S54)

Combining this source with (Dσ
n)
laser
sn→σj

from the previous section in the same way as
described in Eq. S39, we arrive at our final expression for the detection matrices as

(Dσ
n)sn→σj(wn) =

pdbg(∅, ∅)(Dσ
n)
laser
sn→σj

(∅, ∅) wn = (∅, ∅)

pdbg(∅, ∅)(Dσ
n)
laser
sn→σj

(µd, ∅) + pdbg(µd, ∅)(Dσ
n)
laser
sn→σj

(∅, ∅) +mu
d(µd, ∅) wn = (µd, ∅)

pdbg(∅, ∅)(Dσ
n)
laser
sn→σj

(∅, µa) + pdbg(∅, µa)(Dσ
n)
laser
sn→σj

(∅, ∅) +mu
a(∅, µa) wn = (∅, µa)

pdbg(∅, µa)(Dσ
n)
laser
sn→σj

(µd, ∅) + pdbg(µd, ∅)(Dσ
n)
laser
sn→σj

(∅, µa) wn = (µd, µa)

+pdbg(µd, µa)(D
σ
n)
laser
sn→σj

(∅, ∅) +Mu
d (µd, µa) +Mu

a (µd, µa).

(S55)
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Unlike for the laser background, the terms mu
d , m

u
a, M

u
d , and Mu

a are no longer simple to
compute. Therefore, here, we present their approximate form

mu
d(t, ∅) ≈ pdd(1− pda)

[
1

τ
(D̂σ

n)
laser
sn→σj

(d)− 1

τ

(∫ t

0

(Dσ
n)
laser
sn→σj

(s, ∅)ds
)

+

(
1− t

τ

)
(Dσ

n)
laser
sn→σj

(t, ∅)
]
, (S56)

mu
a(∅, t) ≈ (1− pdd)pda

[
1

τ
(D̂σ

n)
laser
sn→σj

(a)− 1

τ

(∫ t

0

(Dσ
n)
laser
sn→σj

(s, ∅)ds
)

+

(
1− t

τ

)
(Dσ

n)
laser
sn→σj

(t, ∅)
]
, (S57)

Mu
d (td, ta) ≈ pddpda

[
1

τ
(D̂σ

n)
laser
sn→σj

(d)− 1

τ

(∫ td

0

(Dσ
n)
laser
sn→σj

(s, ∅)ds
)

+

(
1− t

τ

)
(Dσ

n)
laser
sn→σj

(td, ∅)
]
1

τ
, (S58)

Mu
a (td, ta) ≈ pddpda

1

τ

[
1

τ
(D̂σ

n)
laser
sn→σj

(a)− 1

τ

(∫ ta

0

(Dσ
n)
laser
sn→σj

(s, ∅)ds
)

+

(
1− t

τ

)
(Dσ

n)
laser
sn→σj

(ta, ∅)
]
. (S59)

Here, we derived the most general likelihood for smFRET under pulsed illumination and
used it in our analysis. However, as mentioned earlier, this likelihood can be much simpli-
fied to an approximate form by ignoring the terms associated to the competitions between
photons reaching to the detectors in (Dσ

n)
laser
sn→σj

(Eqs. S50-S53) and (Dσ
n)sn→σj (Eq. S59).
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S3 Model Structure and Priors

After deriving the likelihood, in this section, we present our priors to derive the parametric
and nonparametric posteriors. The parameters are arranged according to their hierarchical
dependency, meaning that if a parameter depends on another, it will necessarily come after
it. Parameters whose priors’ parameters are set by hand rather than by another parameter
are highlighted with a (∗).

S3.1 Parametric Model

π0 ∼ Dirichlet(1, 1, . . . , 1), (∗)
πm ∼ Dirichlet(1, 1, . . . , 1), m ∈ {1, . . . ,M}, (∗)
s1 ∼ Categorical(π0),

sn|sn−1 ∼ Categorical(πsn−1), n ∈ {2, 3, . . . , N},
πex ∼ Beta(1, 1), (∗)
an ∼ Categorical(1− πex − kaπex, πex, kaπex), n ∈ {1, . . . , N},
λd ∼ Gamma(1, 1), (∗)
λa ∼ Gamma(1, 1), (∗)

λFRETσm ∼ Gamma(1, 1), m ∈ {1, . . . ,M}, (∗)
wn ∼ p(w|an, λd, λa, λFRETsn ), n ∈ {1, . . . , N},

where the distribution p(w|an, λd, λa, λFRETsn ) is the likelihood derived in Section S2 with
ρpulse set by the auxiliary parameter an.
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S3.2 Nonparametric Model

γ ∼ Gamma(1, 1), (∗)

β ∼ Dirichlet
( γ
M
, . . . ,

γ

M

)
,

α ∼ Gamma(1, 1), (∗)
κ ∼ Beta(ϕ, 1), (∗)

π0 ∼ Dirichlet(αβ),

dm =

{
(dm)i = 1 i = m

(dm)i = 0 i ̸= m
,

πm ∼ Dirichlet(α((1− κ)β + κdm)), m ∈ {1, . . . ,M},
s1 ∼ Categorical(π0),

sn|sn−1 ∼ Categorical(πsn−1), n ∈ {2, 3, . . . , N},
πex ∼ Beta(1, 1), (∗)
an ∼ Categorical(1− πex − kaπex, πex, kaπex), n ∈ {1, . . . , N},
λd ∼ Gamma(1, 1), (∗)
λa ∼ Gamma(1, 1), (∗)

λFRETσm ∼ Gamma(1, 1), m ∈ {1, . . . ,M}, (∗)
wn ∼ p(w|an, λd, λa, λFRETsn ), n ∈ {1, . . . , N},

where the distribution p(w|an, λd, λa, λFRETsn ) is the likelihood derived in Section S2 with
ρpulse set by the auxiliary parameter an.
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S4 Sampling from the Posterior: Gibbs Algorithm Steps

The central object of interest in the Bayesian paradigm is the posterior

p(ϑ|w1:N) ∝ L(w1:N |ϑ)p(ϑ). (S60)

where ϑ denotes the set of all unknowns including ρstart, rates in Gψ, and transition proba-
bilities in Πσ. Furthermore, p(ϑ) denotes the set of priors given in Sec. S3.

In order to infer the unknown parameters, we draw numerical samples from the pos-
terior. One way of doing this is through Markov Chain Monte Carlo (MCMC) methods,
where samples from the posterior are drawn iteratively to construct a Markov chain. In this
implementation, we utilize the Gibbs algorithm, where individual parameters x are sampled
from their conditional posterior distributions in each MCMC iteration

p(x|ϑ/{x}, w1:N), (S61)

where x is some model parameter and ϑ/{x} represents the set of all model parameters
without x. In the following, we present our Gibbs sampling steps for each parameter.

S4.1 Photophysical rates

A photophysical rate, λ, is sampled from the conditional posterior

p(λ|ϑ/{λ}, w1:N) ∝ L(w1:N |ϑ)p(λ), (S62)

where prior p(λ) is the same for all the photophysical rates

p(λ) = Gamma(λ; 1, 1). (S63)

This particular conditional posterior does not have a closed form, so the photophysical rates
are sampled through a Metropolis-Hasting (MH) procedure. We do so by proposing new
values for rates as follows

λ∗ ∼ Gamma

(
ϕ,
λ

ϕ

)
, (S64)

where ϕ is a parameter tuned to improve mixing. Subsequently, the proposal is accepted
with probability given by

α = min

{
1,
L(w1:N |λ∗)Gamma(λ∗; 1, 1)Gamma(λ;ϕ, λ

∗

ϕ
)

L(w1:N |λ)Gamma(λ; 1, 1)Gamma(λ∗;ϕ, λ
ϕ
)

}
, (S65)

where L(wn|λ) is the likelihood for individual pulse derived in Sec. S2.

S4.2 Excitation Probability

To allow for direct sampling of the excitation probabilities and simplify the pulse likelihood
functions derived in Sec S2, we sample the photophysical state an immediately after the
pulse. By doing so, we effectively set ρpulse to be a certain photophysical state.
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Since the photophysics of the individual pulses are assumed independent, we can sample
each of the an individually from their conditional posterior

p(an|ϑ/{an}, w1:N) ∝ Ln(wn|ϑ)p(an) = Ln(wn|ϑ)Categorical(an;ρpulse), (S66)

where, as derived in Sec. S2.1,

ρpulse =
(
1− πex − kaπex, πex, kaπex

)
. (S67)

Since an represents the photophysical state immediately after the pulse, it has three photo-
physical states ψ1, ψ2, and ψ3 that represent both donor and acceptor being in the ground
state, the donor being excited and the acceptor being in the ground state, and the donor
being in the ground state and acceptor being excited, respectively. Therefore, we sample

an ∼

Categorical

(
Ln(wn|an = ψ1)ξ1∑3
i=1 Ln(wn|an = ψi)ξi

,
Ln(wn|an = ψ2)ξ2∑3
i=1 Ln(wn|an = ψi)ξi

,
Ln(wn|an = ψ3)ξ3∑3
i=1 Ln(wn|an = ψi)ξi

)
.

(S68)

Now, the excitation probability πex is sampled from the conditional posterior

p(πex|ϑ/{πex}, w1:N) ∝ L(w1:N |ϑ)p(πex) = L(w1:N |ϑ)Beta(πex; 1, 1), (S69)

which has likelihood-prior conjugacy because of our choice to also sample the photophysical
trajectory a1:N . Intuitively, the number of times that the photophysical trajectory records the
donor being excited is the number of “successes” of a Bernoulli random variable. Therefore,
we can directly sample πex from the following probability density

πex ∼ Beta(1 +
N∑
i=1

1{ai = ψ2}, 1 +N −
N∑
i=1

1{ai = ψ2}), (S70)

where
∑N

i=1 1{ai = ψ2} is the number of times that that the photophysical trajectory is in
ψ2.

S4.3 System State Trajectory

Sampling of the system state trajectory is done through a standard forward filtering backward
sampling algorithm, which we briefly describe here [4]. First, we sample an initial probability
vector π0 that is informed by the prior and the first system state of the previous trajectory.

π0 ∼ Dirichlet(α((1− κ)β + κdm + n0·), (S71)

where α((1− κ)β + κdm is the prior of the transition probabilities modified with the sticky
hyperparameter and nm is a vector with value one at the index corresponding to s1 and zero
otherwise.
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Next, we construct a forward filter by propagating forward using the transition matrix
while taking into account observations. The first time level of the forward filter is given by,

A1i = π0i × L1(w1|s1 = σi), i = 1, . . . ,Mσ. (S72)

This allows us to then move forward by computing for each n from one to N ,

Ani = Ln(wn|s1 = σi)
M∑
i=1

πimAn−1,i, i = 1, . . . ,Mσ, n = 1, . . . , N. (S73)

Finally, we sample the transition by recursively sampling the system state starting at the
end and moving towards the first pulse in the following way

sN ∼ Categorical(AN), (S74)

sn|sn+1 ∼ Categorical(bn), (S75)

where

bni =
πi,sn+1An+1,i∑M
j=1 πj,sn+1An+1,j

, i = 1, . . . ,Mσ, n = 1, . . . , N. (S76)

S4.4 Transition probabilities

The transition probabilities are sampled as vectors πm that represent transition probabilities
out of state m from the conditional posterior

p(πm|ϑ/{πm}, w1:N) ∝ L(w1:N |ϑ)p(πm) (S77)

= L(w1:N |ϑ)Dirichlet(πm;α((1− κ)β + κdm)), (S78)

where α((1−κ)β+κdm) is the prior of the transition probabilities modified with the sticky
hyperparameter.

These transition probability vectors are updated through likelihood-prior conjugacy with
the state trajectory. Using the closed form of the conditional posterior, we sample each πm

through
πm ∼ Dirichlet(α((1− κ)β + κdm) + nm·), (S79)

where nm· is a vector which collects the number of each transition out of system state σm.

S4.5 Base Distribution

The sampling of the base distribution and the other hyperparameters are heavily inspired
by the work of Emily Fox et. al. [5], and it is highly recommended for those interested in a
more in-depth discussion of sticky iHMMs to read their work.

To sample the base distribution, we first sample auxiliary parameters D and W. We
start with D. For each i, j = 1, . . . ,M , we set

Mij =

nij−1∑
k=0

Bernoulli

(
αβi

j + αβi

)
. (S80)
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Next we sample W, which intuitively represents the number of times a self-transition
occurred because of the influence of the sticky hyperparameter.

Wii = Binomial

(
Mii,

κ

κ+ βi(1− κ)

)
. (S81)

Finally, define D = D−W. We can now directly sample the base distribution through

β ∼ Dirichlet(γζ +
M∑
i=1

Dij), (S82)

where ζ is an M dimensional vector with all elements set to 1
M
.

S4.6 Optional Hyperparameters

Many of these sampling steps draw on auxiliary parameters D, W, and D described in the
previous section for sampling the base distribution.

S4.6.1 Transition probabilities concentration hyperparameter

To sample the concentration parameter α, we sample additional auxiliary parameters, r and
s, which are vectors of size M . Define n·j =

∑M
i=1 nij as the total number of transitions into

system state σj. We then sample

ri ∼ Beta(1 + α, nj), (S83)

si ∼ Bernoulli

(
n·j

n·j + α

)
. (S84)

We can then sample

α ∼ Gamma(α +
M∑
i=1

M∑
j=1

Dij −
M∑
i=1

s, 1−
M∑
i=1

log(ri)). (S85)

S4.6.2 Sticky hyperparameter

Naturally the sticky hyperparameter is updated by taking the number of times self transitions
occur due to the stickiness (found in W) and using those as successes to update a Beta
distribution. The sampling step is given as

κ ∼ Beta

(
1 +

M∑
i=1

Wii, ϕ+
M∑
i=1

M∑
j=1

Dij −
M∑
i=1

Wii

)
, (S86)

where ϕ is a preset parameter that controls the ”stickiness” of the HMM.
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S4.6.3 Base distribution concentration hyperparameter

The base distribution concentrion parameter γ requires sampling additional parameters c
and p. Additionally, define K as the number of elements of D that are greater than zero.
Next, we sample

c ∼ Beta

(
γ + 1,

M∑
i=1

M∑
j=1

Dij

)
, (S87)

p ∼ Bernoulli

(
K

(
∑M

i=1

∑M
j=1Dij)(1− log(c))

)
. (S88)

If p = 1, we sample γ as
γ ∼ Gamma(1 +K, 1− log(c)), (S89)

and otherwise we sample
γ ∼ Gamma(K, 1− log(c)). (S90)
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S5 Estimation of pre-set Parameters

Parameters associated with photon detection such as crosstalk, IRF, detection efficiency,
and direct acceptor excitation are preset according to the experimental conditions. Both the
label and detector quantum efficiencies are combined into ηd and ηa. We preprocess only two
parameters: IRF, by fitting IRF data to a Gaussian distribution; and background emission,
which we deterimine individually.

S5.1 IRF

IRF data was obtained using water scattering, i.e., shining the laser at a sample of water
and recording the microtimes. The resulting distribution records the instrument response
function, since the photons from water scattering do not experience delays due to lifetime.
The expression for IRF fit using MATLAB’s pre-built curve fitting tools.

Figure S1: IRF curve fitting. We fit a Guassian distribution to the IRF calibration data
obtained by water scattering.

S5.2 Background

The probability of receiving a background photon is considered constant over the course
of the experiment. Let this probability be πo. Consider a period of time with no emitting
sample with pulses 1, . . . , N . Let bn be a label for all the pulses where bn = 1 if a background
photon is received in one channel and bn = 0 otherwise. Given that a background photon
is received, it can either come from a laser source or a uniform source. Let the probability
that arrives in the laser source πb. Let ck be a label for all background photons received with
ck = 1 if a photon is from the laser source, and cn = k if it is from the uniform source. In
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this case, we model background by

bn ∼ Bernoulli(πo), (S91)

ck|bn = 1 ∼ Bernoulli(πb), (S92)

tk ∼ ckNormal(µIRF , σ
2
IRF ) + (1− ck)Uniform([0, T ]). (S93)

Since the bn are known, we can directly obtain a maximum likelihood estimate for πo. Let
K =

∑N
i=1 bn. Then the estimate is given by

π∗
o =

K

N
. (S94)

We can then obtain an estimate for πb through

π∗
b = argmax

πb

(
K∏
i=1

(
πbNormal(tk;µIRF , σ

2
IRF ) + (1− πb)Uniform([0, T ])

))
. (S95)

The laser, pb, and dark, pd, background probabilities are then

pb = π∗
0π

∗
b , (S96)

pd = π∗
0(1− π∗

b ). (S97)

An identical calculation is done for each channel.
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S6 Parameters Used for Synthetic Data Generation

Here, we detail the parameters used to produce synthetic data. Since the synthetic data
algorithm incorporates crosstalk, detector efficiency, IRF, and background emissions, all of
these must be set. In Table S6, the parameters not included are set according to Table S6.

Quantity Value Assigned Notes
λσ1→σ2 40 s−1 Ref. [6]
λσ2→σ1 40 s−1 Ref. [6]
λFRETσ1

0.5 ns−1 from experimental data
λFRETσ2

0.1 ns−1 from experimental data
πex 5× 10−4 Ref. [6]
λd 0.35 ns−1 similar to ATTO 532 [7]
λa 0.25 ns−1 similar to ATTO 647N [7]
µIRF 2.9 ns from experimental data
σ2
IRF 0.001 ns2 from experimental data
ϕda 0.03 from experimental data
ϕad 0.01 from experimental data
pbd 0.05πex from experimental data
pba 0.045πex from experimental data
pdd 0.05πex from experimental data
pda 0.005πex from experimental data
ηd 0.38 experimental data and Ref. [7]
ηa 0.19 experimental data and Ref. [7]

Table S2: Parameter values for system with two states. Most of these values were
motivated by the experimental smFRET traces gathered for this paper.

Quantity Value Assigned Notes
λσ1→σ2 1200 s−1 informed by 1mm MgCl2 HJ dynamics [8]
λσ2→σ1 1200 s−1 informed by 1mm MgCl2 HJ dynamics [8]
λσ2→σ3 1200 s−1 informed by 1mm MgCl2 HJ dynamics [8]
λσ3→σ2 1200 s−1 informed by 1mm MgCl2 HJ dynamics [8]
λFRETσ1

0.1 ns−1 from experimental data
λFRETσ2

0.4 ns−1 from experimental data
λFRETσ3

0.8 ns−1 from experimental data
πex 7.5× 10−3 highest value obtained from experimental data

Table S3: Parameter values for system with three system states Values that are not
specified here are identical to those in Table S6 since they are set by the experimental setup
and do not change from time trace to time trace.
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S7 Additional Parameter Estimates

The following figures depict the posterior distributions over all the parameters not presented
in the main text.

S7.1 Synthetic Data with Two System States

Figure S2: Learned parameters for synthetic data with two system states. The
panels are as follows: a) donor relaxation rate; b) acceptor relaxation rate; c-d) FRET rates;
e-h) system state transition probabilities for the visited states; i) excitation probability; and j-
l) hyperparameters of the nonparameteric scheme, which we sample to improve mixing of the
MCMC chain. The shaded regions and red lines, respectively, represent the 95% confidence
interval and ground truths. The ground truth is not included for hyperparameters which are
not physical quantities. The same convention is followed in the remaining figures.
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S7.2 Synthetic Data with Three System States

Figure S3: Learned Parameters for Synthetic Data with three System States. The
panels are as follows: a) donor relaxation rate; b) acceptor relaxation rate; c-e) FRET rates;
f-n) system state transition probabilities for the visited states; o) excitation probability; and
p-r) hyperparameters of the nonparameteric scheme, which we sample for improved mixing
of MCMC chain. The figure conventions are the same as those in Fig. S7.1.
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S7.3 Experimental Data: 1mm

Figure S4: Learned Parameters for 1mm MgCl2 Experimental data. The panels
are as follows: a) donor relaxation rate; b) acceptor relaxation rate; c-d) FRET rates; e-h)
system state transition probabilities; i) excitation probability; and j-l) hyperparameters of
the nonparameteric scheme, which we sample for improved mixing of MCMC chain. The
figure conventions are the same as those in Fig. S7.1.
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S7.4 Experimental Data: 3mm

Figure S5: Learned Parameters for 3mm MgCl2 Experimental data. The panels
are as follows: a) donor relaxation rate; b) acceptor relaxation rate; c-d) FRET rates; e)-h)
system state transition probabilities for the visited states; i) excitation probability; and j-l)
hyperparameters of the nonparameteric scheme, which we sample for improved mixing of
MCMC chain. The figure conventions are the same as those in Fig. S7.1.
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S7.5 Experimental Data: 5mm

Figure S6: Learned Parameters for 5mm MgCl2 Experimental data. The panels
are as follows: a) donor relaxation rate; b) acceptor relaxation rate; c-d) FRET rates; e-h)
system state transition probabilities for the visited states; i) excitation probability; and j-l)
hyperparameters of the nonparameteric scheme, which we sample for improved mixing of
MCMC chain. The figure conventions are the same as those in Fig. S7.1.
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S7.6 Experimental Data: 10mm

Figure S7: Learned Parameters for 10mm MgCl2 Experimental data. The panels
are as follows: a) donor relaxation rate; b) acceptor relaxation rate; c)-d) FRET rates; e)-h)
system state transition probabilities for the visited states; i) excitation probability; and j)-l)
hyperparameters of the nonparameteric scheme, which we sample for improved mixing of
MCMC chain. The figure conventions are the same as those in Fig. S7.1.
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