Cell Reports, Volume 42

Supplemental information

A delicate balance between antibody evasion

and ACE2 affinity for Omicron BA.2.75

Jiandong Huo, Aiste Dijokaite-Guraliuc, Chang Liu, Daming Zhou, Helen M. Ginn, Raksha Piyada Supasa, Muneeswaran Selvaraj, Rungtiwa Nutalai, Aekkachai Das. Tuekprakhon, Helen M.E. Duyvesteyn, Alexander J. Mentzer, Donal Skelly, Thomas G. Ritter, Ali Amini, Sagida Bibi, Sandra Adele, Sile Ann Johnson, Neil G. Paterson, Mark A. Williams, David R. Hall, Megan Plowright, Thomas A.H. Newman, Hailey Hornsby, Thushan I. de Silva, Nigel Temperton, Paul Klenerman, Eleanor Barnes, Susanna J. Dunachie, Andrew J. Pollard, Teresa Lambe, Philip Goulder, OPTIC ISARIC4C consortium, Elizabeth Juthathip consortium. E. Fry, Mongkolsapaya, Jingshan Ren, David I. Stuart, and Gavin R. Screaton

Figure S1 Pseudoviral neutralization assays against monoclonal antibodies. (A) Neutralization curves for a panel of 28 monoclonal antibodies made from samples taken from vaccinees infected with BA.1. Titration curves for single mutations of BA.2.27 in the BA.2 background are compared with BA.2 and BA.2.75. IC50 titres are shown in Table S2. Related to Figure 5. All assays have been done at least twice.

Figure S1

Figure S2 Surface plasmon resonance (SPR) analysis of interaction between BA.2 or BA.2.75 RBD and selected mAbs. (A) Binding of Omi-29 (IGHV3-53) to BA.2.75 RBD is severely reduced compared to that of BA.2, as shown by a single-injection of 1 µM Omi-29 Fab over sample flow cells containing biotinylated BA.2 or BA.2.75 RBD. (B) Binding of Omi-36 (IGHV3-66) to BA.2.75 RBD is severely reduced compared to that of BA.2, as shown by a single-injection of 0.2 µM BA.2 or BA.2.75 RBD over sample flow cells containing Omi-36 in the IgG form. (C-H) Sensorgrams (Red / Coloured: original binding curve; black: fitted curve) showing the interactions between BA.2 or BA.4/5 RBD and selected mAbs, with kinetics data shown. Related to Figure 5.

Figure S2

Figure S3

Table S1. (A) IC50 of BA.1 mAbs against Victoria and Omicron variantPV including BA.2.75 and BA.2+N460K (related to Figure 5A)

mAbs	Victoria	BA.1	BA.1.1	BA.2	BA.3	BA.4/5	BA.2.75	BA.2+N460K
Omi-02	0.002 ± 0.001	0.004 ± 0.001	0.004 ± 0.001	0.003 ± 0.001	0.019 ± 0.007	>10	0.009 ± 0.002	0.025 ± 0.003
Omi-03 (3-53)	0.003 ± 0.000	0.005 ± 0.002	0.003 ± 0.001	0.008 ± 0.001	0.022 ± 0.003	0.017 ± 0.005	0.017 ± 0.000	0.401 ± 0.026
Omi-06	0.007 ± 0.000	0.017 ± 0.003	0.139 ± 0.033	0.039 ± 0.008	0.696 ± 0.106	>10	0.063 ± 0.005	0.026 ± 0.002
Omi-08	0.008 ± 0.004	0.003 ± 0.000	0.002 ± 0.000	0.114 ± 0.045	0.032 ± 0.001	0.086 ± 0.005	0.036 ± 0.002	0.552 ± 0.090
Omi-09	0.006 ± 0.002	0.005 ± 0.000	0.005 ± 0.002	0.008 ± 0.002	0.017 ± 0.002	0.166 ± 0.007	0.003 ± 0.000	0.010 ± 0.002
Omi-12	0.006 ± 0.002	0.002 ± 0.000	0.002 ± 0.001	0.003 ± 0.001	0.006 ± 0.001	0.429 ± 0.060	0.003 ± 0.001	0.011 ± 0.002
Omi-16 (3-66)	0.014 ± 0.003	0.012 ± 0.002	0.011 ± 0.003	0.034 ± 0.012	0.111 ± 0.008	0.029 ± 0.007	>10	>10
Omi-17 (3-66)	0.023 ± 0.011	0.018 ± 0.012	0.022 ± 0.009	0.060 ± 0.004	0.123 ± 0.002	0.028 ± 0.001	0.255 ± 0.169	>10
Omi-18 (3-53)	0.008 ± 0.003	0.002 ± 0.000	0.002 ± 0.000	0.005 ± 0.000	0.006 ± 0.002	0.005 ± 0.001	0.035 ± 0.007	0.014 ± 0.002
(3-66)	0.009 ± 0.002	0.006 ± 0.001	0.005 ± 0.001	0.015 ± 0.003	0.020 ± 0.004	0.014 ± 0.006	0.178 ± 0.075	0.315 ± 0.142
Omi-23	0.005 ± 0.002	0.029 ± 0.006	0.023 ± 0.12	0.019 ± 0.005	0.011 ± 0.000	>10	0.011 ± 0.006	0.022 ± 0.005
Omi-24	0.005 ±0.000	0.006 ± 0.002	0.054 ± 0.015	0.007 ± 0.001	0.009 ± 0.002	>10	0.008 ± 0.004	0.014 ± 0.000
Omi-25	0.005 ± 0.001	0.023 ± 0.005	0.027 ± 0.005	0.024 ± 0.004	0.050 ± 0.004	>10	0.014 ± 0.005	0.050 ± 0.010
Omi-26	0.002 ± 0.001	0.006 ± 0.002	0.005 ± 0.001	0.013 ± 0.001	0.018 ± 0.002	>10	0.010 ± 0.004	0.010 ± 0.000
Omi-27 (3-66)	0.008 ± 0.003	0.026 ± 0.006	0.034 ± 0.009	0.034 ± 0.005	0.026 ± 0.007	0.069 ± 0.023	6.672 ± 4.466	>10
Omi-28 (3-66)	0.022 ± 0.000	0.011 ± 0.004	0.009 ± 0.002	0.008 ± 0.000	0.019± 0.000	0.028 ± 0.009	0.133 ± 0.082	0.103 ± 0.048
Omi-29 (3-53)	0.014 ± 0.006	0.017 ± 0.003	0.016 ± 0.009	0.056 ± 0.014	0.064 ± 0.017	0.396 ± 0.007	>10	>10
Omi-30	0.012 ± 0.002	0.008 ± 0.003	0.008 ± 0.004	0.011 ± 0.002	0.015 ± 0.003	>10	0.008 ± 0.002	0.018 ± 0.001
Omi-31	0.376± 0.090	0.029± 0.002	0.031 ± 0.012	0.013 ± 0.002	0.013 ± 0.004	>10	0.014 ± 0.008	0.015 ± 0.001
Omi-32	0.010 ± 0.006	0.017 ± 0.000	>10	2.682 ± 0.553	1.018 ± 0.139	0.035 ± 0.016	0.354 ± 0.064	2.341 ± 0.282
Omi-33	0.027 ± 0.011	0.014 ± 0.005	0.042 ± 0.018	0.068 ± 0.022	0.133 ± 0.021	0.013 ± 0.004	0.053 ± 0.006	0.490 ± 0.156
Omi-34	0.007 ± 0.004	0.008 ± 0.001	0.062 ± 0.004	0.009 ± 0.003	0.014 ± 0.000	>10	0.005 ± 0.000	0.020 ± 0.001
Omi-35	0.018 ± 0.004	0.058 ± 0.006	0.381 ± 0.061	0.094 ± 0.004	0.044 ± 0.018	1.687 ± 0.441	0.020 ± 0.000	0.056 ± 0.012
Omi-36 (3-66)	0.022 ± 0.004	0.009 ± 0.003	0.009 ± 0.003	0.030 ± 0.014	0.178 ± 0.048	0.024 ± 0.006	>10	>10
Omi-38	0.015 ± 0.004	0.024 ± 0.015	>10	0.005 ± 0.000	0.008 ± 0.002	0.005 ± 0.001	0.011 ± 0.005	0.010 ± 0.001
Omi-39	0.014 ± 0.002	0.009 ± 0.004	>10	0.026 ± 0.011	0.014 ± 0.001	0.035 ± 0.003	0.027 ± 0.009	0.045 ± 0.017
Omi-41	>10	0.053 ± 0.028	0.037 ± 0.002	>10	0.032 ± 0.007	>10	>10	>10
Omi-42	0.013 ± 0.004	0.007 ± 0.004	0.006 ± 0.002	0.021 ± 0.011	0.025 ± 0.012	0.013 ± 0.001	0.003 ± 0.000	0.007 ± 0.002

(B) IC50 of commercial mAbs against PV BA.2.75 (related to Figure 5B)

			IC50	(µg/mL)						
	Pseudovirus									
	Victoria	BA.1	BA.1.1	BA.2	BA.3	BA.4/5	BA.2.75			
REGN10987	0.002 ± 0.001	>10	>10	0.616 ± 0.347	>10	>10	>10			
REGN10933	0.001 ± 0.002	>10	>10	>10	>10	>10	>10			
AZD1061	0.002 ± 0.001	0.308 ± 0.058	>10	0.008 ± 0.003	0.019 ± 0.007	0.015 ± 0.004	0.021 ± 0.002			
AZD8895	0.001 ± 0.000	0.246 ± 0.027	0.100 ± 0.053	1.333 ± 0.317	>10	>10	0.008 ± 0.000			
AZD7442	0.001 ± 0.000	0.232 ± 0.113	0.806 ± 0.093	0.008 ± 0.001	0.065 ± 0.011	0.065 ± 0.007	0.017 ± 0.003			
ADG10	0.007 ± 0.002	>10	>10	>10	>10	>10	>10			
ADG20	0.003 ± 0.002	0.348 ± 0.169	0.253 ± 0.070	>10	>10	>10	>10			
ADG30	0.014 ± 0.006	>10	>10	>10	>10	>10	>10			
Ly-CoV555	0.002 ± 0.000	>10	>10	>10	>10	>10	>10			
Ly-CoV16	0.014 ± 0.010	>10	>10	>10	>10	>10	>10			
Ly-CoV1404	0.001 ± 0.000	0.002 ± 0.000	0.001 ± 0.000	0.001 ± 0.000	0.002 ± 0.000	0.002 ± 0.000	0.002 ± 0.000			
\$309	0.079 ± 0.027	0.113 ± 0.006	0.142 ± 0.012	0.638 ± 0.154	0.311 ± 0.023	0.689 ± 0.041	0.202 ± 0.017			

Table S2. IC50 of BA.1 mAbs against PV BA.2, BA.2.75 and BA.2with each of the four BA.2.75 mutations (see also Figure S1,related to Figure 5)

IC50 (μg/ml)									
mAbs	BA.2	BA.2+D339H	BA.2+R493Q	BA.2+G446S	BA.2.+ N460K	BA.2.75			
Omi02	0.003 ± 0.000	0.007 ± 0.003	0.003 ± 0.000	0.007 ± 0.002	0.025 ± 0.003	0.009 ± 0.002			
Omi03	0.008 ± 0.001	0.006 ± 0.000	0.002 ± 0.001	0.005 ± 0.001	0.401 ± 0.026	0.017 ± 0.000			
Omi06	0.039 ± 0.008	0.012 ± 0.002	0.023 ± 0.010	0.087 ± 0.002	0.026 ± 0.002	0.063 ± 0.005			
Omi08	0.114 ± 0.045	0.250 ± 0.009	0.194 ± 0.020	0.017 ± 0.001	0.552 ± 0.090	0.036 ± 0.002			
Omi09	0.008 ± 0.002	0.005 ± 0.001	0.003 ± 0.000	0.006 ± 0.001	0.010 ± 0.002	0.003 ± 0.000			
Omi12	0.003 ± 0.001	0.003 ± 0.001	0.001 ± 0.000	0.003 ± 0.001	0.011 ± 0.002	0.003 ± 0.001			
Omi16	0.034 ± 0.012	0.014 ± 0.004	0.008 ± 0.003	0.018 ± 0.004	>10	>10			
Omi17	0.060 ± 0.004	0.036 ± 0.015	0.013 ± 0.001	0.038 ± 0.002	>10	0.255 ± 0.169			
Omi18	0.005 ± 0.000	0.003 ± 0.000	0.004 ± 0.000	0.003 ± 0.000	0.014 ± 0.002	0.035 ± 0.007			
Omi20	0.015 ± 0.003	0.007 ± 0.000	0.005 ± 0.001	0.005 ± 0.001	0.315 ± 0.142	0.178 ± 0.075			
Omi23	0.019 ± 0.005	0.006 ± 0.000	0.007 ± 0.000	0.010 ± 0.002	0.022 ± 0.005	0.011 ± 0.006			
Omi24	0.007 ± 0.001	0.005 ± 0.001	0.004 ± 0.000	0.005 ± 0.000	0.014 ± 0.000	0.008 ± 0.004			
Omi25	0.024 ± 0.004	0.016 ± 0.003	0.007 ± 0.002	0.022 ± 0.000	0.050 ± 0.010	0.014 ± 0.005			
Omi26	0.013 ± 0.001	0.007 ± 0.002	0.008 ± 0.001	0.008 ± 0.002	0.010 ± 0.000	0.010 ± 0.004			
Omi27	0.034 ± 0.006	0.007 ± 0.001	0.007 ± 0.001	0.011 ± 0.001	>10	6.672 ± 4.466			
Omi28	0.008 ± 0.000	0.009 ± 0.001	0.010 ± 0.001	0.014 ± 0.000	0.103 ± 0.048	0.133 ± 0.082			
Omi29	0.056 ± 0.014	0.018 ± 0.006	0.042 ± 0.012	0.024 ± 0.002	>10	>10			
Omi30	0.013 ± 0.002	0.006 ± 0.001	0.002 ± 0.000	0.003 ± 0.000	0.018 ± 0.001	0.008 ± 0.002			
Omi31	0.011 ± 0.002	0.005 ± 0.001	0.003 ± 0.000	0.005 ± 0.001	0.015 ± 0.001	0.014 ± 0.008			
Omi32	2.614 ± 0.533	0.683 ± 0.179	0.312 ± 0.008	0.330 ± 0.010	2.341 ± 0.282	0.354 ± 0.064			
Omi33	0.070 ± 0.024	0.177 ± 0.035	0.063 ± 0.008	0.043 ± 0.016	0.490 ± 0.156	0.053 ± 0.006			
Omi34	0.009 ± 0.003	0.004 ± 0.000	0.002 ± 0.000	0.002 ± 0.000	0.020 ± 0.001	0.005 ± 0.000			
Omi35	0.092 ± 0.004	0.012 ± 0.003	0.017 ± 0.011	0.014 ± 0.006	0.056 ± 0.012	0.020 ± 0.000			
Omi36	0.030 ± 0.014	0.036 ± 0.002	0.013 ± 0.003	0.067 ± 0.015	>10	>10			
Omi38	0.005 ± 0.000	0.011 ± 0.000	0.003 ± 0.001	0.010 ± 0.000	0.010 ± 0.001	0.011 ± 0.005			
Omi39	0.026 ± 0.011	0.012 ± 0.002	0.021 ± 0.007	0.009 ± 0.002	0.045 ± 0.017	0.027 ± 0.009			
Omi41	>10	>10	>10	>10	>10	>10			
Omi42	0.021 ± 0.011	0.011 ± 0.002	0.006 ± 0.001	0.016 ± 0.002	0.007 ± 0.002	0.003 ± 0.000			

	BA.1 infection	BA.2 infection	BA.4/5 infection	AZV3+28	BNT162b2 V3+28	Early pandemic	Alpha	Beta	Gamma	Delta	Vaccine-V1_Delta	Delta-V1-Vaccine
Participants												
Female	7	7	7	7	7	7	7	7	7	7	7	7
Male	7	4	5	21	10	9	6	5	4	3	4	4
Median Age (Y)	22 (Range 21-56)	41 (Range 22-57)	42 (Range 20-94)	37 (Range 25-53)	45 (Range 30-59)	60 (Range 53-69)	57 (Range 29-76)	47 (Range 16-64)	32 (Range 23-49)	26 (Range 12-36)	40 (Range 28-70)	41 (Range 31-54)

Table S3. Sample participant information.

Table S4. Primers used for site-directed PCR mutagenesis to generate theBA.2.75 construct using the BA.2 Spike construct as template (related to methods)

Primer ID	Sequence
D339H_pNeoF	5'-GGTTGCGTAGCTGAAACCGGTACCAATCTGTGCCCTTTCCACGAGGTGTTCAATGCCACC-3'
G446S_F	5'-CAAACTAGATTCGAAAGTTAGCGGCAATTACCATTACCTG-3'
G446S_R	5'-CAGGTAATTGTAATTGCCGCTAACTTTCGAATCTAGTTTG-3'
N460K_F	5'-CAGACTGTTCAGAAAGAGCAAACTGAAGCCTTTCGAGAGAGA
N460K_R	5'-GTCTCTCTCGAAAGGCTTCAGTTTGCTCTTTCTGAACAGTCTG-3'
R493Q_F (RBD)	5'-CAATTGCTACTTCCCTCTGCAGAGCTACGGCTTCAGACCTACC-3'
R493Q_R (RBD)	5'-GGTAGGTCTGAAGCCGTAGCTCTGCAGAGGGAAGTAGCAATTG-3'
RBD333_BAP_R	5'-GTCATTCAGCAAGCTCTTCTTGCCGCACACGGTAGC-3'
pNeoRBD333Omi_F	5'-GGTTGCGTAGCTGAAACCGGTCATCACCATCACCATCACCAATCTGTGCCCTTTCGAC-3'
K147E_W152R_F157L_F	5'-CGTTTATTATCATGAGAACAACAAGAGCAGGATGGAGAGCGAGTTACGCGGTATATTCGTCGGC-3'
K147E_W152R_F157L_R	5'-GCCGACGAATATACGCGTAACTCGCTCTCCATCCTGCTCTTGTTGTTCTCATGATAATAAACG-3'
1210L_F	5'-CAGCAAGCACACCCGTTAATCTGGGCAGAGACC-3'
I210L_R	5'-GGTCTCTGCCCAGATTAACGGGTGTGCTGCTG-3'
G275S_F	5'-GCGATTCGTCAAGCAGTTGGACCGCTGGAGC-3'
G275S_R	5'-GCTCCAGCGGTCCAACTGCTTGACGAATCGC-3'
D339H_F	5'-CAATCTGTGCCCTTTCCACGAGGTGTTCAATGC-3'
D339H_R	5'-GCATTGAACACCTCGTGGAAAGGGCACAGATTG-3'
G446S_N460K_F	5' - GAACTCTAACAAACTAGATTCGAAAGTTAGCGGCAATTACAATTACCTGTACAGACTGTTCAGAAAGAGCAAGCTGAAGCCTTTCGAGAG-3'
G446S_N460K_R	5'-CTCTCGAAAGGCTTCAGCTTGCTCTTTCTGAACAGTCTGTACAGGTAATTGTAATTGCCGCTAACTTTCGAATCTAGTTTGTTAGAGTTC-3'
R493Q_F	5'-GCTTCAATTGCTACTTCCCTCTGCAGAGCTACGGCTTCAGACCTACC-3'
R493Q_R	5'-GGTAGGTCTGAAGCCGTAGCTCTGCAGAGGGAAGTAGCAATTGAAGC-3'

Table S5. X-ray data collection and structure refinement statistics(related to Figure 4)

^a Values in parentheses are for highest-resolution shell.

Structure	BA.2.75 RBD/ACE2
PDB ID	8ASY
Data collection	
Space group	P4 ₁ 2 ₁ 2
Cell dimensions	
a, b, c (Å)	105.3, 105.3, 220.8
a, b, g (°)	90, 90, 90
Resolution (Å)	76–2.85 (2.80–2.85) ^a
R _{merge}	0.443 ()
R _{pim}	0.086 (1.401)
l/s(l)	7.6 (0.4)
CC _{1/2}	0.971 (0.279)
Completeness (%)	99.8 (96.9)
Redundancy	26.8 (25.7)
Refinement	
Resolution (Å)	76–2.85
No. reflections	2089/1439
R _{work} / R _{free}	0.217/0.265
No. atoms	
Protein	6464
Ligand/ion/water	167
B factors (Å ²)	
Protein	86
Ligand/ion/water	108
r.m.s. deviations	
Bond lengths (Å)	0.002
Bond angles (°)	0.4