## **Supplementary Materials for**





**Supplementary Figure 1**. **a**, **b** IL-10 level in BALF supernatant (**a**) and serum (**b**) of ALI mice at different time points upon LPS treatment. n = 6 per group. All samples were biologically independent and three or more independent experiments with similar results were performed. Data are presented as mean  $\pm$  SEM and analyzed with a 95% confidence interval. Statistical analysis was performed using one-way ANOVA followed by Bonferroni's post hoc test. Source data are provided as a Source Data file.



Supplementary Figure 2. Representative histological images of H&E-stained lung sections from WT and  $II-10^{-/-}$  mice at 12 h after LPS inhalation. Scale bars in the upper panel, 1 mm; scale bars in the below panel, 50  $\mu$ m. Three independent experiments with similar results were performed.



**Supplementary Figure 3**. The effects of  $Il-10^{-/-}$  comparing to WT on survival of the severe ALI mice. n = 14, 14, 15, 15, respectively in each group. \*p = 0.0261 versus WT-LPS group. All samples were biologically independent and three or more independent experiments with similar results were performed. Data are analyzed with a 95% confidence interval. Statistical analysis was performed using Log-rank test. Source data are provided as a Source Data file.



**Supplementary Figure 4. a-f** Mice were co-injected nasally with PBS or recombinant IL-10 (rIL-10; 45  $\mu$ g/kg) together with LPS (10 mg/kg). Animals were euthanized 24 h after LPS stimulation for the analysis of total cell counts (**a**, n = 6 per group), H&E staining of cells (**b**, scale bars, 50  $\mu$ m), neutrophil numbers (**c**, n = 6 per group), macrophage counts (**d**, n = 6 per group), lymphocyte numbers (**e**, n = 6 per group) and total protein in BALF (**f**, n = 6, 6, 7 in each group). **g-h** Production of IL-6 in BALF (**g**) and serum (**h**) is shown, n = 5 per group. ns, not significant. All samples were biologically independent and three or more independent experiments with similar results were performed. Data are presented as mean  $\pm$  SEM and analyzed with a 95% confidence interval. Statistical analysis was performed using one-way ANOVA followed by Bonferroni's post hoc test. Source data are provided as a Source Data file.



Supplementary Figure 5. a Representative histological images of H&E-stained lung sections at 24 h after LPS inhalation in the presence or absence of rIL-10 administration. Scale bars in the upper panel, 1 mm; scale bars in the below panel, 50  $\mu$ m. **b-d** Immunohistochemical staining with Ly6G (b), MPO (c) and NE (d) in mouse lung sections. Scale bars, 50  $\mu$ m. Three independent experiments with similar results were performed.



**Supplementary Figure 6**. **a-j** Violin plots of gene expression in single cells of each population from lungs of WT control, WT LPS-treated and *Il-10<sup>-/-</sup>* LPS-treated mice for described markers in the literature for epithelial cells (**a**), endothelial cells (**b**), fibroblasts (**c**), neutrophils (**d**), monocyte-macrophages (Mono-Macro) (**e**, **f**), lymphocyte T-cells (**g**), lymphocyte B-cells (**h**), dendritic cells (DC) (**i**) and natural killer (NK) cells (**j**). Boxes within violin plot show the median  $\pm$  1 quartile, with the whiskers extending from the hinge to the smallest or largest value within 1.5 × interquartile range from the box boundaries. *n* = 469, 168, 683, 7071, 2618, 566, 140, 55, 100, respectively.



**Supplementary Figure 7**. Proportions of neutrophil populations in lung tissues of  $Il-10^{-/-}$  (left) and WT (right) mouse at 24 h after LPS stimulation.



**Supplementary Figure 8**. **a**, **b** Heatmaps of the top differentially expressed genes in each neutrophil population compared to the others. **c-e** Immunohistochemical staining was performed for Fth1 to determine the distribution of the Fth1<sup>hi</sup> Neu subset in ALI lung tissues. Scale bars, 100  $\mu$ m (**c**); scale bars, 20  $\mu$ m (**d**, **e**). Blue arrowheads indicate neutrophils in airways (**d**) and pulmonary vessels (**e**). Three independent experiments with similar results were performed.





Supplementary Figure 9. a, b GO enrichment and KEGG pathway analyses of individual neutrophil subsets in ALI lungs from  $II-10^{-/-}$  (a) and WT (b) mice. Red boxes indicate the

.....

differential functions between Fth1<sup>hi</sup> (N1-N5) and Prok2<sup>hi</sup> (N6 and N7) neutrophils. The statistical analysis was performed by Fisher's test.



Supplementary Figure 10. a, b Transfection of human promyelocytic leukemia (HL-60) cells with Fth1/Prok2 shRNA downregulated the mRNA (a) and protein (b) expression at 12 h compared with control shRNA treatment. n = 3 per group. c-f Fth1-depleted neutrophils exhibited function defects in anti-oxidation (c), anti-apoptosis (e) and chemotaxis (f), while Prok2-deficient neutrophils defected in ROS production (c), phagocytosis (d) and chemotaxis (f) of HL-60 cell-derived neutrophils compared with NEGi. n = 4 per group. (g) Immunoblotting verifying the effects of Fth1/Prok2 on anti-oxidant HO-1 and pro-apoptotic Bax expression, as well as NLRP3 and cleaved Caspase-1 level for inflammasome activation.

ns, not significant. All samples were biologically independent and three or more independent experiments with similar results were performed. Data are presented as mean  $\pm$  SEM and analyzed with a 95% confidence interval. Statistical analysis was performed using two-tailed unpaired Student t test. Source data are provided as a Source Data file. Uncropped scans of western blot with molecular weight markers were provided in Supplementary Figure 16.



Figure 11. Representative images **Supplementary** a of anti-Fth1/anti-Ly6G immunofluorescence-stained lung sections of mice with or without rIL-10 treatment 24 h after LPS challenge. The nuclei were stained with DAPI and are displayed in blue. Scale bars, 50 µm. b Representative images of anti-Fth1 immunofluorescence-stained airway neutrophils of mice with or without rIL-10 administration 24 h after LPS stimulation. The nuclei were stained with DAPI, displayed in blue. Scale bars, 20 µm. Three independent experiments with similar results were performed. c Gating strategy and representative scatter plots of BALF cells collected from WT and Il-10<sup>-/-</sup> mice at 24 h after LPS challenge. Cellular apoptosis was evaluated by flow cytometry.



**Supplementary Figure 12**. **a** BALF was collected from WT and *ll-10<sup>-/-</sup>* mice for identifying total counts of inflammatory cells on day 4 and day 7 after LPS challenge, n = 4 in each group. **b** TUNEL staining of apoptotic cells (green) and DAPI staining of nuclei (blue) in lung sections at 4 d and 7 d post-exposure. ns, not significant. All samples were biologically independent and three or more independent experiments with similar results were performed. Data are presented as mean  $\pm$  SEM and analyzed with a 95% confidence interval. Statistical analysis was performed using two-tailed unpaired Student t test. Source data are provided as a Source Data file.



Supplementary Figure 13. a-h The volcano plots (upper) and heatmaps (below) showing the

differentially expressed genes in BALF and blood neutrophils from distinct management groups at different time points. n = 4 samples per group. VS, versus. p values were calculated with a likelihood ratio test between groups.



**Supplementary Figure 14**. **a-h** GO terms and KEGG pathway analyses of BALF and blood neutrophils in different treatment groups at different time points. n = 4 samples per group. VS, versus. The statistical analysis was performed by Fisher's test.



**Supplementary Figure 15**. **a-c** Gating strategy for the detection of ROS (**a**), phagocytosis (**b**) and apoptosis (**c**) of HL-60 cell-derived neutrophils.



**Supplementary Figure 16**. **a-c** Uncropped scans of western blot with molecular weight markers, which are related with Supplementary Figure 10.

|                   | Age, Yrs, | Sex            | Smoking | Pack-years, | Cancer  | Current                         | Sample                                        |                     | Hypertension | Diabetes | Cardiac | Autoimmune | Others   |       | Survival |
|-------------------|-----------|----------------|---------|-------------|---------|---------------------------------|-----------------------------------------------|---------------------|--------------|----------|---------|------------|----------|-------|----------|
|                   | (M, IQR)  |                |         | Yrs         | history | disease                         |                                               |                     |              |          | disease | diseases   | <u> </u> | -     |          |
| All%<br>or median | 67(49-88) | 62.50% Male    | 8.33%   | -           | 16.67%  | -                               |                                               |                     | 41.67%       | 12.5%    | 16.67%  | 4.17%      | 50.00%   |       | 75.00%   |
| Case 1            | 49        | F ª            | ×       | -           | ×       | SP ° Pneumonia                  |                                               |                     | ~            | ×        | 4       | ×          | ×        |       | ~        |
| Case 2            | 54        | M <sup>b</sup> | 4       | 30          | ×       |                                 |                                               |                     | ×            | ~        | ×       | ×          | ×        |       | ~        |
| Case 3            | 66        | F              | ×       | -           | 4       |                                 |                                               |                     | ×            | ×        | ×       | ×          | ×        |       | ~        |
| Case 4            | 85        | М              | ×       | -           | ×       |                                 |                                               |                     | ×            | ×        | ×       | ×          | 4        |       | ~        |
| Case 5            | 64        | F              | ×       | -           | ×       | KP <sup>d</sup><br>Pneumonia    |                                               |                     | ×            | ~        | ×       | ×          | ×        |       | ~        |
| Case 6            | 64        | F              | ×       | -           | 4       |                                 | Pneumonia<br>HI °<br>Lung Cancer<br>Pulmonary | Underlying diseases | ~            | ×        | ×       | ×          | ×        |       | ~        |
| Case 7            | 71        | М              | ×       | -           | 4       |                                 |                                               |                     | ×            | ×        | ×       | ×          | ×        |       | ~        |
| Case 8            | 73        | М              | ×       | -           | ×       | Ηι∘                             |                                               |                     | ~            | ×        | ×       | ×          | ×        |       | ~        |
| Case 9            | 70        | М              | ×       | -           | ×       |                                 |                                               |                     | ×            | ×        | ×       | ×          | 4        |       | ~        |
| Case 10           | 66        | М              | ×       | -           | ×       |                                 |                                               |                     | ~            | ×        | 4       | ×          | ×        | Q     | ~        |
| Case 11           | 64        | F              | ×       | -           | 7       | Lung Cancer                     |                                               |                     | ×            | ×        | ×       | ×          | ×        | lcome | ~        |
| Case 12           | 54        | М              | ×       | -           | ×       |                                 |                                               |                     | ×            | ×        | ×       | ×          | 4        |       | ~        |
| Case 13           | 87        | F              | ×       | -           | ×       |                                 |                                               |                     | ×            | ×        | ×       | ×          | ×        |       | ~        |
| Case 14           | 61        | F              | ×       | -           | ×       | Pulmonary                       |                                               |                     | ×            | ×        | ×       | ×          | 4        |       | ~        |
| Case 15           | 72        | М              | ×       | -           | ×       | Fibrosis<br>AECOPD <sup>r</sup> |                                               | ~                   | ×            | ×        | ×       | ×          |          | ~     |          |
| Case 16           | 67        | F              | ×       | -           | ×       |                                 |                                               |                     | ×            | ×        | ×       | ×          | 4        |       | 4        |
| Case 17           | 54        | М              | 4       | 30          | ×       |                                 |                                               |                     | ×            | ×        | ×       | ×          | 4        |       | ~        |
| Case 18           | 72        | М              | ×       | -           | ×       | ARDS 8                          |                                               |                     | ~            | ×        | 4       | ×          | ×        |       | ×        |
| Case 19           | 71        | М              | ×       | -           | ×       |                                 |                                               |                     | ×            | ~        | ×       | 4          | 4        |       | ×        |
| Case 20           | 70        | F              | ×       | -           | ×       |                                 |                                               |                     | ~            | ×        | ×       | ×          | ~        |       | ×        |
| Case 21           | 65        | М              | ×       | -           | ×       |                                 |                                               |                     | ×            | ×        | ×       | ×          | 4        |       | ×        |
| Case 22           | 66        | М              | ×       | -           | ×       |                                 |                                               |                     | ~            | ×        | ×       | ×          | 4        |       | ~        |
| Case 23           | 88        | М              | ×       | -           | ×       |                                 |                                               |                     | ~            | ×        | ×       | ×          | 4        |       | ×        |
| Case 24           | 84        | М              | ×       | -           | ×       |                                 |                                               |                     | ~            | ×        | 4       | ×          | ~        |       | ×        |

## Supplementary Table 1: Demographic and clinical characteristics of 24 patients.

<sup>a</sup> F: Female. <sup>b</sup> M: Male. <sup>c</sup> SP: *Streptococcus pneumoniae*. <sup>d</sup> KP: *Klebsiella pneumoniae*. <sup>e</sup> HI: *Haemophilus influenzae*. <sup>f</sup> AECOPD: Acute exacerbation of chronic obstructive pulmonary disease. <sup>g</sup> ARDS: Acute respiratory distress syndrome.