Supplementary Figures

Supplementary Figure 1. Low-dimension representation of scMDC and the competing methods on the BMNC dataset. The t-SNE plots of the embeddings from scMDC (a) and four competing methods including IDEC (b), scVIS (c), TotalVI (d), and Seurat (e) are shown in different rows. The first three columns show the expression pattern of ADT CD14, CD8A, and CD56. The last column shows the true labels (cell types) on the latent space of each method.

Supplementary Figure 2. Low-dimension representation of scMDC and the competing methods on the PBMC13K dataset. The t-SNE plots of the embeddings from scMDC (a) and two competing methods including Cobolt (b) and scMM (c) are shown in different rows. The three columns show the predicted labels, the batch IDs, and the true labels on the latent space of each method.

Supplementary Figure 3. Low-dimension representation of scMDC and the variant methods on the SLN111 dataset. The t-SNE plots of the embeddings from scMDC (a) and three competing methods including scMDC-RNA (b), scMDC-ADT (c), and scMDC-Concat (d) are shown in different rows. The three columns show the predicted labels, the batch IDs, and the true labels on the latent space of each method.

Supplementary Figure 4. Low-dimension representation of scMDC and the variant methods on the PBMC13K dataset. The t-SNE plots of the embeddings from scMDC (a) and three competing methods including scMDC-RNA (b), scMDC-ATAC (c), and scMDC-Concat (d) are shown in different rows. The three columns show the predicted labels, the batch IDs, and the true labels on the latent space of each method.

Supplementary Figure 5. Clustering performance of scMDC-RNA and six single-modal clustering methods on the single-batch CITE-seq datasets. All methods only take mRNA counts or normalized counts as input. Clustering performance is evaluated by AMI, NMI, and ARI. Source data are provided as a Source Data file.

Supplementary Figure 6. Clustering performance of scMDC-RNA and six single-modal clustering methods on the multiple-batch CITE-seq datasets. All methods only take mRNA counts or normalized counts as input. Clustering performance is evaluated by AMI, NMI, and ARI. Source data are provided as a Source Data file.

Supplementary Figure 7. Clustering performance of scMDC-ADT and six single-modal clustering methods on the single-batch CITE-seq datasets. All methods only take ADT counts or normalized counts as input. Clustering performance is evaluated by AMI, NMI, and ARI. Source data are provided as a Source Data file.

Supplementary Figure 8. Clustering performance of scMDC-ADT and six single-modal clustering methods on the multiple-batch CITE-seq datasets. All methods only take ADT counts or normalized counts as input. Clustering performance is evaluated by AMI, NMI, and ARI. Source data are provided as a Source Data file.

Supplementary Figure 9. Clustering performance of scMDC-RNA and two single-modal clustering methods on the single-batch SMAGE-seq datasets. All methods only take mRNA counts or normalized counts as input. Clustering performance is evaluated by AMI, NMI, and ARI. Source data are provided as a Source Data file.

Supplementary Figure 10. Clustering performance of scMDC-RNA and two single-modal clustering methods on a multiple-batch SMAGE-seq dataset. All methods only take mRNA counts or normalized counts as input. Clustering performance is evaluated by AMI, NMI, and ARI. Source data are provided as a Source Data file.

Single-Batch ATAC

Supplementary Figure 11. Clustering performance of scMDC-ATAC and two single-modal clustering methods on the single-batch SMAGE-seq datasets. All methods only take ATAC counts or normalized counts as input. The ATAC counts are mapped to the gene regions. Clustering performance is evaluated by AMI, NMI, and ARI. Source data are provided as a Source Data file.

Supplementary Figure 12. Clustering performance of scMDC-ATAC and two single-modal clustering methods on a multiple-batch SMAGE-seq dataset. All methods only take ATAC counts or normalized counts as input. The ATAC counts are mapped to the gene regions. Clustering performance is evaluated by AMI, NMI, and ARI. Source data are provided as a Source Data file.

Pathway	Gene ranks	NES	pval	padj
HALLMARK_COMPLEMENT	have a second contract	2.70	4.3e-09	2.1e-07
HALLMARK_COAGULATION	I MOTOLO A COLORA COLOR	2.05	2.4e-03	3.9e-02
HALLMARK_ANGIOGENESIS	Li an i i	1.92	5.5e-03	6.8e-02
HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITION	line og som som er er sp	1.82	1.5e-02	1.3e-01
HALLMARK_TNFA_SIGNALING_VIA_NFKB	Manager and a straight of the	1.74	3.1e-02	1.8e-01
HALLMARK_INTERFERON_GAMMA_RESPONSE	lum cos e sension ne	1.74	1.5e-02	1.3e-01
HALLMARK_HYPOXIA	liment is a constant	1.68	3.2e-02	1.8e-0 <mark>1</mark>
HALLMARK_ESTROGEN_RESPONSE_LATE	In the contract of the second second	1.65	4.0e-02	1.8e-01
HALLMARK_KRAS_SIGNALING_UP	lumero a construction de m	1.64	4.5e-02	1.9e-01
HALLMARK_ALLOGRAFT_REJECTION	lines is a second of	-1.67	2.5e-02	1.8e-01
HALLMARK_MYC_TARGETS_V2	· · · · · · · · · · · · · · · · · · ·	-1.68	3.7e-02	1.8e-0 <mark>1</mark>
HALLMARK_MYC_TARGETS_V1		-1.88	4.6e-04	1.2e-02
	o 500 1000 1500 2000)		

Supplementary Figure 13. Enrichment plot of Hallmark pathways in CD14 monocyte cells from the BMNC dataset. The Kolmogorov-Smirnov test is used here, and the nominal P-values are adjusted for multiple comparisons (padj) by Benjamini & Hochberg (BH) method. Pathways with nominal P-values < 0.05 are shown.

Pathway	Gene ranks	NES	pval	padj
HALLMARK_MYC_TARGETS_V1		2.96	1.3e-04	6.7e-03
HALLMARK_HYPOXIA	the construction of the second s	2.56	1.8e-02	2.2e-01
HALLMARK_P53_PATHWAY	frame in the same of the second second second	2.56	1.5e-02	2.2e-01
HALLMARK_ANGIOGENESIS	The second se	2.21	3.8e-03	9.6e-02
HALLMARK_IL2_STAT5_SIGNALING	In communication of the second s	2.00	4.4e-02	2.2e-01
HALLMARK_INFLAMMATORY_RESPONSE	needs to be a series of the se	1.98	3.5e-02	2.2e-01
HALLMARK_TNFA_SIGNALING_VIA_NFKB	Inclusion of the subsection of the section of the section of the	1.98	4.0e-02	2.2e-01
HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITION	There is a second	1.82	4.8e-02	2.2e-01
HALLMARK_APICAL_JUNCTION	here is a second se	1.78	4.3e-02	2.2e-01
HALLMARK_ALLOGRAFT_REJECTION	Banna	1.78	4.8e-02	2.2e-01
HALLMARK_XENOBIOTIC_METABOLISM	o 500 1000 1500 2000	-1.66	4.1e-02	2.2e-01

Supplementary Figure 14. Enrichment plot of Hallmark pathways in CD4 memory cells from the BMNC dataset. The Kolmogorov-Smirnov test is used here, and the nominal P-values are adjusted for multiple comparisons (padj) by Benjamini & Hochberg (BH) method. Pathways with nominal P-values < 0.05 are shown.

Pathway	Gene	e ranks	NES	pval	padj
HALLMARK_MYC_TARGETS_V1	home and a second second second		2.05	6.2e-03	1.6e-01
HALLMARK_ANDROGEN_RESPONSE	н., с., с., с., с., с., с., с., с., с., с		-1.73	4.9e-02	3.0e-01
HALLMARK_IL2_STAT5_SIGNALING	1.00 - F. F. F. 100.01		-1.88	4.5e-02	3.0e-01
HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITION	h e contractor e		-2.02	2.0e-02	2.5e-01
HALLMARK_ANGIOGENESIS	1 1	i i i i i	-2.18	2.7e-02	2.7e-01
HALLMARK_P53_PATHWAY	11 - 11 - 11 - 11 - 11		-2.45	1.1e-02	1.8e-01
HALLMARK_HYPOXIA			-2.76	1.2e-03	5.9e-02
	0 500 1	000 1500 2000			

Supplementary Figure 15. Enrichment plot of Hallmark pathways in CD4 naive cells from the BMNC dataset. The Kolmogorov-Smirnov test is used here, and the nominal P-values are adjusted for multiple comparisons (padj) by Benjamini & Hochberg (BH) method. Pathways with nominal P-values < 0.05 are shown.

Pathway	Gene ranks	NES	pval	padj
HALLMARK_ALLOGRAFT_REJECTION		3.29	2.6e-03	4.3e-02
HALLMARK_INFLAMMATORY_RESPONSE		-1.84	1.9e-02	2.3e-01
HALLMARK_TNFA_SIGNALING_VIA_NFKB		-2.27	2.1e-03	4.3e-02
HALLMARK_COMPLEMENT		-2.47	7.8e-04	3.9e-02
	0 500 1000 1500 20	00		

Supplementary Figure 16. Enrichment plot of Hallmark pathways in CD8 naive cells from the BMNC dataset. The Kolmogorov-Smirnov test is used here, and the nominal P-values are adjusted for multiple comparisons (padj) by Benjamini & Hochberg (BH) method. Pathways with nominal P-values < 0.05 are shown.

Supplementary tables

Supplementary Table 1. One-sided paired t-test between the clustering performance of scMDC and the competing methods for the CITE-seq datasets.

Methods	p_AMI	p_NMI	p_ARI
BREM-SC	0.00402824	0.00355908	9.1677E-06
CiteFuse	0.0079801	0.01111861	0.00036261
IDEC	6.7698E-05	7.57E-05	5.7372E-07
Kmeans + PCA	2.1861E-05	2.1894E-05	6.0185E-05
SC3	1.4569E-05	1.366E-05	2.2145E-05
SCVIS	0.00025911	0.00030163	5.887E-06
Seurat	0.00212642	0.00220737	0.00062321
Specter	0.00015003	0.00010859	0.00161893
TotalVI	0.01579666	0.0144765	0.00069109
Tscan	2.0401E-05	2.4565E-05	1.9785E-05

Supplementary Table 2. One-sided paired t-test between the clustering performance of scMDC and the competing methods for the SMAGE-seq datasets.

Methods	p_AMI	p_NMI	p_ARI
Cobolt	0.04201604	0.04327985	0.01847998
Kmeans + PCA	0.00932083	0.00834753	0.01511548
scMM	0.00944043	0.00970153	0.01339524
Seurat	0.01684468	0.01755079	0.01762545

Supplementary Table 3. One-sided paired t-test between the clustering performance of scMDC and the competing methods for the simulation datasets.

Methods	p_AMI	p_NMI	p_ARI
BREMSC	0.00205187	0.00194259	6.9106E-05
CiteFuse	3.9747E-06	3.9025E-06	2.7077E-05
iDEC	5.5039E-07	5.4942E-07	9.7328E-07
PCA+Kmeans	0.00012266	0.00012191	0.00012582
SC3	7.5575E-05	7.5267E-05	9.2593E-06
SCVIS	4.3007E-05	4.2824E-05	9.334E-06
Seurat	5.6212E-06	4.9064E-06	0.00022347
Specter	1.2021E-06	1.4494E-06	1.1547E-05
TotalVI	0.0028567	0.00282413	0.0248134
Tscan	5.0904E-05	5.1844E-05	1.4705E-05

Supplementary Table 4. One-sided paired t-test between the clustering performance of scMDC and the competing methods for the model testing experiments.

Method1	Method2	Pval_AMI	Pval_NMI	Pval_ARI
scMDC	ATAC	0.07041006	0.07245205	0.09195784
scMDC	Concat-ATAC	0.00194839	0.00135246	0.0296167
scMDC	RNA	0.00015569	0.00016842	0.00013612
scMDC	ADT	0.00124744	0.0011954	0.00185413
scMDC	Concat-ADT	9.0239E-06	9.9314E-06	8.4946E-06

Supplementary Table 5. One-sided paired t-test between the clustering performance of scMDC and the competing methods for the parameter tunning experiments.

Parameters	Values	pvals_ami	pvals_nmi	pvals_ari
Fi	0.0001	0.657522448	0.654359414	0.339330244
Fi	0.001	0.061665126	0.061031154	0.15169793
Fi	0.005	0.185708427	0.183215647	0.065754824
Fi	0.01	0.721740687	0.721638474	0.172244312
Fi	0.1	0.996335282	0.996328807	0.993537274
Fi	1	0.999079993	0.99907693	0.998847524
Gamma	0.01	0.404148719	0.402075548	0.465113431
Gamma	0.1	0.020012276	0.019725304	0.027002903
Gamma	1	0.273661585	0.272609533	0.211856888
Gamma	10	0.505974017	0.505992115	0.565385718
Gamma	100	0.859013414	0.858343271	0.82483211

c	TILLO	c			
Supplementary	y Table 6.	Summary	/ of the I	real CITE	-seq datasets*

Datasets	Platform	Tissue	# of cells	# of total genes	# of ADTs	# of groups
PBMC	10X	PBMC	3,762	33,538	49	16
GSE100866	10X	CBMN	1,372	33,514	10	6
BMNC	10X	BMNC	30,672	17,009	25	27
SLN111D1	10X	SLN	9,264	13,553	111	35
SLN111D2	10X	SLN	7,564	13,553	111	35
SLN208D1	10X	SLN	8,715	13,553	208	35
SLN208D2	10X	SLN	7,105	13,553	208	35

* We selected top 1000 highly dispersed genes for experiments in all datasets

<u> </u>	T T		1.1. ATAOO F	• • • •
Supplementary	/ Lable / Summar	v of the real Single-cell Mi	iltiome ATAC Gene Ex	pression datasets*
ouppiententur,		y of the real office centric		

Datasets	Platform	Tissue	# of cells	# of total genes	# of genes from ATAC	# of groups
PBMC3k	10X	PBMC	2,585	36,601	20,010	14
PBMC10K	10X	PBMC	11,020	36,601	20,010	12
MBE18	10X	Brain	4,780	32,285	21,807	18

* We selected top 2000 highly dispersed genes for experiments in all datasets