Table S1 - *Rhodococcus* strains (http://www.iegmcol.ru)

Strain	Isolation source	Public accession
R. erythropol	is	
IEGM 20	Oil-polluted soil, Ukraine	http://www.iegmcol.ru/strains/rhodoc/eryth/r_eryth20.html
IEGM 185	Water, Kama reservoir, Perm krai, Russia	http://www.iegmcol.ru/strains/rhodoc/eryth/r_eryth185.html
IEGM 186	Water, Kama reservoir, Perm krai, Russia	http://www.iegmcol.ru/strains/rhodoc/eryth/r_eryth186.html
IEGM 188	Oil-polluted bottom sediments, the Ostjatski Zhivets river, Tyumen region, Russia	http://www.iegmcol.ru/strains/rhodoc/eryth/r_eryth188.html
IEGM 192	Oil-polluted bottom sediments, Bezjimyannoe lake, Tyumen region, Russia	http://www.iegmcol.ru/strains/rhodoc/eryth/r_eryth192.html
IEGM 212	Sewage, Kharbin, China	http://www.iegmcol.ru/strains/rhodoc/eryth/r_eryth212.html
IEGM 265	Oil-polluted soil, oil- extracting enterprise, Perm krai, Russia	http://www.iegmcol.ru/strains/rhodoc/eryth/r_eryth265.html
IEGM 266	Oil-polluted soil, oil- extracting enterprise, Perm krai, Russia	http://www.iegmcol.ru/strains/rhodoc/eryth/r_eryth266.html
IEGM 268	Oil-polluted soil, oil- extracting enterprise, Perm krai, Russia	http://www.iegmcol.ru/strains/rhodoc/eryth/r_eryth268.html
IEGM 269	Oil-polluted soil, oil- extracting enterprise, Perm krai, Russia	http://www.iegmcol.ru/strains/rhodoc/eryth/r_eryth269.html
IEGM 271	Oil-polluted soil, oil- extracting enterprise, Perm krai, Russia	http://www.iegmcol.ru/strains/rhodoc/eryth/r_eryth271.html
IEGM 487	Water, the Baykal Lake, Irkutsk region, Russia	http://www.iegmcol.ru/strains/rhodoc/eryth/r_eryth487.html, GenBank#KF547999
IEGM 708	Oil-shale from settling pit, Polazna oil-extracting enterprise, Perm krai, Russia	http://www.iegmcol.ru/strains/rhodoc/eryth/r_eryth708.html, GenBank#KY194798
IEGM 1189	Water, Tyumen region, Russia	http://www.iegmcol.ru/strains/rhodoc/eryth/r_eryth1189.html, GenBank#MG645202
R. fascians	I	
IEGM 34	Carp skin	http://www.iegmcol.ru/strains/rhodoc/fascians/r_fasc34.html
IEGM 39	Stratal water, oilfield, Perm krai, Russia	http://www.iegmcol.ru/strains/rhodoc/fascians/r_fasc39.html
IEGM 170	Snow carpet, Polasna oil- extracting enterprise, Perm krai,	http://www.iegmcol.ru/strains/rhodoc/fascians/r_fasc170.html

	Russia	
IEGM 278	River water, Tyumen region, Russia	http://www.iegmcol.ru/strains/rhodoc/fascians/r_fasc278.html
R. jostii		
IEGM 28	Soil, the bank of the	http://www.iegmcol.ru/strains/rhodoc/jostii/r jostii28.html,
	pond, Dnepropetrovsk region, Ukraine	GenBank#MG912559
IEGM 29	Oil-polluted soil, oil-gas field, Poltava region, Ukraine	http://www.iegmcol.ru/strains/rhodoc/jostii/r_jostii29.html, GenBank#MG912570
IEGM 31	Oil-polluted soil, oil-gas field, Poltava region, Ukraine	http://www.iegmcol.ru/strains/rhodoc/jostii/r_jostii31.html, GenBank#MG912563
IEGM 32	Soil, field, Poltava region, Ukraine	http://www.iegmcol.ru/strains/rhodoc/jostii/r_jostii32.html, GenBank#MG912560
IEGM 33	Oil-polluted soil, oil-gas field, Ivano-Frankovsk region, Ukraine	http://www.iegmcol.ru/strains/rhodoc/jostii/r_jostii33.html
IEGM 60	Oil-polluted soil, oilfield, Ukraine	http://www.iegmcol.ru/strains/rhodoc/jostii/r_jostii60.html, GenBank#MG607376
IEGM 68	Soil, Polasna oil- extracting enterprise, Perm krai, Russia	http://www.iegmcol.ru/strains/rhodoc/jostii/r_jostii68.html, GenBank#MG912561
R. opacus	I	
IEGM 56	Soil, windbreak, Kherson region, Ukraine	http://www.iegmcol.ru/strains/rhodoc/opac/r_opac56.html
IEGM 57	Oil-polluted soil, Ukraine	http://www.iegmcol.ru/strains/rhodoc/opac/r_opac57.html
IEGM 59	No information	http://www.iegmcol.ru/strains/rhodoc/opac/r_opac59.html
IEGM 246	Soil, lavsan (polyether fibre) production, Belarus	http://www.iegmcol.ru/strains/rhodoc/opac/r_opac246.html, GenBank#MG607380
IEGM 261	Soil, lavsan (polyether fibre) production, Belarus	http://www.iegmcol.ru/strains/rhodoc/opac/r_opac261.html
IEGM 262	Soil, lavsan (polyether fibre) production, Belarus	http://www.iegmcol.ru/strains/rhodoc/opac/r_opac262.html
IEGM 716 ^T	Municipal gasworks defective pipe, UK	http://www.iegmcol.ru/strains/rhodoc/opac/r_opac716t.html
IEGM 717	Soil	http://www.iegmcol.ru/strains/rhodoc/opac/r_opac717.html
IEGM 1157	Soil, Perm, Perm krai, Russia	http://www.iegmcol.ru/strains/rhodoc/opac/r_opac1157.html
R. qingshengi	ï	
IEGM 267	Oil-polluted soil oil- extracting enterprise, Perm krai, Russia	http://www.iegmcol.ru/strains/rhodoc/qingsh/r_qingsh267.html, DDBJ/ENA/GenBank acc. no <u>MRBQ01000001-</u> <u>MRBQ01000231</u>

R. rhodochro	us	
IEGM 63	Oil-polluted soil, Ukraine	http://www.iegmcol.ru/strains/rhodoc/rhodoch/r_rhod63.html
IEGM 64	No information	http://www.iegmcol.ru/strains/rhodoc/rhodoch/r_rhod64.html
IEGM 66	No information	http://www.iegmcol.ru/strains/rhodoc/rhodoch/r_rhod66.html, DDBJ/ENA/GenBank acc. no JAJNDE010000001- JAJNDE010000099
IEGM 67	Soil, UK	http://www.iegmcol.ru/strains/rhodoc/rhodoch/r_rhod67.html
IEGM 608	Water, Berezniki, Perm krai, Russia	http://www.iegmcol.ru/strains/rhodoc/rhodoch/r_rhod608.html, GenBank#KY194859
IEGM 632	Water, Berezniki, Perm krai, Russia	http://www.iegmcol.ru/strains/rhodoc/rhodoch/r_rhod632.html
IEGM 639	Snow, oilfield, Perm krai, Russia	http://www.iegmcol.ru/strains/rhodoc/rhodoch/r_rhod639.html
IEGM 646	Water, Berezniki, Perm krai, Russia	http://www.iegmcol.ru/strains/rhodoc/rhodoch/r_rhod646.html
IEGM 647	Oil-polluted water, Mezhevskoe oilfield, Perm krai, Russia	http://www.iegmcol.ru/strains/rhodoc/rhodoch/r_rhod647.html, GenBank#MG607375
IEGM 1137	Oil-polluted soil, Solikamsk, Perm krai, Russia	http://www.iegmcol.ru/strains/rhodoc/rhodoch/r_rhod1137.html
IEGM 1138	Oil-polluted soil, Solikamsk, Perm krai, Russia	http://www.iegmcol.ru/strains/rhodoc/rhodoch/r_rhod1138.html
R. ruber		
IEGM 65	Water, Mississipi river, USA	http://www.iegmcol.ru/strains/rhodoc/ruber/r_ruber65.html
IEGM 73	Ground water, Masuninskoe oilfield outline zone, Perm krai, Russia	http://www.iegmcol.ru/strains/rhodoc/ruber/r_ruber73.html
IEGM 76	Snow, oilfield outline zone, Perm krai, Russia	http://www.iegmcol.ru/strains/rhodoc/ruber/r_ruber76.html
IEGM 77	Water, spring, oilfield outline zone, Perm krai, Russia	http://www.iegmcol.ru/strains/rhodoc/ruber/r_ruber77.html
IEGM 84	Sandy soil, Gomel region, Belarus	http://www.iegmcol.ru/strains/rhodoc/ruber/r_ruber84.html
IEGM 90	Surface water reservoir, the Taimir peninsula, Krasnoyarsk region, Russia	http://www.iegmcol.ru/strains/rhodoc/ruber/r_ruber90.html
IEGM 93	Sandy soil, Irkutsk region, Russia	http://www.iegmcol.ru/strains/rhodoc/ruber/r_ruber93.html
IEGM 172	Stratal water, oilfield, Perm krai, Russia	http://www.iegmcol.ru/strains/rhodoc/ruber/r_ruber172.html
IEGM 219	Water, the Upper Ilitch river, Russia	http://www.iegmcol.ru/strains/rhodoc/ruber/r_ruber219.html

R. ruber		
IEGM 223	Soil, Polasna oil- extracting enterprise, Perm krai, Russia	http://www.iegmcol.ru/strains/rhodoc/ruber/r_ruber223.html
IEGM 224	Soil, Polasna oil- extracting enterprise, Perm krai, Russia	http://www.iegmcol.ru/strains/rhodoc/ruber/r_ruber224.html
IEGM 225	Soil, Polasna oil- extracting enterprise, Perm krai, Russia	http://www.iegmcol.ru/strains/rhodoc/ruber/r_ruber225.html, GenBank#KJ442849
IEGM 231	Water, spring, Olkhovski oil-extracting enterprise, Perm krai, Russia	http://www.iegmcol.ru/strains/rhodoc/ruber/r_ruber231.html, DDBJ/ENA/GenBank acc. no <u>CCSD01000001-</u> <u>CCSD01000115</u>
IEGM 233	Soil, Polasna oil- extracting enterprise, Perm krai, Russia	http://www.iegmcol.ru/strains/rhodoc/ruber/r_ruber233.html, GenBank#KJ442850
IEGM 235	Snow, Polasna oil- extracting enterprise, Perm krai, Russia	http://www.iegmcol.ru/strains/rhodoc/ruber/r_ruber235.html, GenBank#KJ442851
IEGM 236	Soil, Polasna oil- extracting enterprise, Perm krai, Russia	http://www.iegmcol.ru/strains/rhodoc/ruber/r_ruber236.html
IEGM 238	Sandy soil, Gomel region, Belarus	http://www.iegmcol.ru/strains/rhodoc/ruber/r_ruber238.html
IEGM 241	Chalk rock (depth 80 m), Gomel region, Belarus	http://www.iegmcol.ru/strains/rhodoc/ruber/r_ruber241.html
IEGM 323	Turf soil, Oktyabrski district, Sverdlovsk region, Russia	http://www.iegmcol.ru/strains/rhodoc/ruber/r_ruber323.html
IEGM 325	Oil-polluted water, Bistrinskoe oilfield, Tyumen region, Russia	http://www.iegmcol.ru/strains/rhodoc/ruber/r_ruber325.html
IEGM 326	Turf soil, oil-gas field, Perm krai, Russia	http://www.iegmcol.ru/strains/rhodoc/ruber/r_ruber326.html, GenBank#MG637021
IEGM 327	Turf soil, oil-gas field, Perm krai, Russia	http://www.iegmcol.ru/strains/rhodoc/ruber/r_ruber327.html, GenBank#KJ442854
IEGM 328	Water, well, oil-gas field, Perm krai, Russia	http://www.iegmcol.ru/strains/rhodoc/ruber/r_ruber328.html
IEGM 334	Sand rock from the depth 6 m, Belarus	http://www.iegmcol.ru/strains/rhodoc/ruber/r_ruber334.html
IEGM 342	Underground water, oilfield, Perm krai, Russia	http://www.iegmcol.ru/strains/rhodoc/ruber/r_ruber342.html, GenBank#KY174957
IEGM 381	Water, the Baykal Lake, Irkutsk region, Russia	http://www.iegmcol.ru/strains/rhodoc/ruber/r_ruber381.html
IEGM 385	Bottomset beds, the Baykal Lake, Irkutsk region, Russia	http://www.iegmcol.ru/strains/rhodoc/ruber/r_ruber385.html

R. ruber		
IEGM 436	Soil, bank of the Pechjora river, Russia	http://www.iegmcol.ru/strains/rhodoc/ruber/r_ruber436.html
IEGM 438	Oil-polluted water, oil- extracting enterprise, Perm krai, Russia	http://www.iegmcol.ru/strains/rhodoc/ruber/r_ruber438.html
IEGM 440	Oil-polluted sand, Belarus	http://www.iegmcol.ru/strains/rhodoc/ruber/r_ruber440.html
IEGM 443	No information	http://www.iegmcol.ru/strains/rhodoc/ruber/r_ruber443.html
Rhodococcus	sp.	
IEGM 27	Oil-polluted soil, oil-gas field, Poltava region, Ukraine	http://www.iegmcol.ru/strains/rhodoc/sp/r_sp27.html
IEGM 61	Oil-polluted soil, Ukraine	http://www.iegmcol.ru/strains/rhodoc/sp/r_sp61.html
IEGM 69	Soil, Polasna oil- extracting enterprise, Perm krai, Russia	http://www.iegmcol.ru/strains/rhodoc/sp/r_sp69.html
IEGM 1276	Oil slime, Udmurt Republic, Russia	http://www.iegmcol.ru/strains/rhodoc/sp/r_sp1276.html

For some strains, the species level has status "failed" that is related with current changes in taxonomy and defining of borders for closely related species.

Strain	Isolation source	Pronerties
<i>R. erythropolis</i> IEGM 212	Sewage, Kharbin, China	Uses hydrocarbons as a sole carbon source; resistant to Pb^{2+} (20.0 mm), Cr^{6+} (10.0 mm), Cu^{2+} (5.0 mm)
R. erythropolis IEGM 266	Oil-polluted soil, oil- extracting enterprise, Perm region, Russia	Uses hydrocarbons and crude oil as a sole carbon source (95); resistant to Cr^{6+} (20.0 mm), VO^{2+} (12.5 mm), VO_4^{3-} (50.0 mm), VO_3^{-} (>250.0 mm)
<i>R. opacus</i> IEGM 57	Oil-polluted soil, Ukraine	Uses <i>n</i> -hexadecane and crude oil as a sole carbon source; resistant to Cr^{6^+} (5.0 mm), $VO_4^{3^-}$ (25.0 mm), VO_3^- (>250.0 mm)
<i>R. opacus</i> IEGM 262	Soil, lavsan (polyether fibre) production, Belarus	Uses <i>n</i> -hexadecane, <i>n</i> - docosane, <i>n</i> -hexacosane, <i>n</i> - octacosane, <i>n</i> -nonacosane, <i>n</i> - hentriacontane, anthracene, and phenanthrene as a sole carbon and energy source; resistant to Pb^{2+} (5.0 mm)
<i>R. opacus</i> IEGM 717	Soil, UK	Uses <i>n</i> -hexadecane as a sole carbon source; resistant to VO_4^{3-} (12.5 mm), VO_3^{-1} (>250.0 mm); accumulates nickel
R. qingshengii IEGM 267	Oil-polluted soil, oil- extracting enterprise, Perm region, Russia	Uses hydrocarbons and crude oil as a sole carbon source; resistant to Cr^{6+} (5.0 mm), VO^{2+} (12.5 mm), VO_4^{3-} (50.0 mm), VO_3^{-} (250.0 mm)
R. rhodochrous IEGM 63	Oil-polluted soil, Ukraine	Uses hydrocarbons as a sole carbon source; accumulates cesium ions; resistant to Cr^{6+} (5.0 mm), VO^{2+} (12.5 mm), VO_4^{3-} (50.0 mm), VO_3^{-} (>250.0 mm)
R. rhodochrous IEGM 64	Oil-polluted soil, Ukraine	Uses hydrocarbons as a sole carbon source; resistant to Cr^{6+} (5.0 mm), VO^{2+} (12.5 mm), VO_4^{3-} (50.0 mm), VO_3^{-} (>250.0 mm), accumulates molybdenum and nickel
R. rhodochrous IEGM 646	Water, Berezniki, Perm region, Russia	Uses hydrocarbons as a sole carbon source; resistant to Cr^{6+} (5.0 mm), VO^{2+} (12.5 mm), VO_4^{3-} (100.0 mm), VO_3^- (>250.0 mm),

Table S2 -	- Rhodococcus	strains	selected	for a	dhesion	and	biodeg	radation	experiments
1.0010 01	1								•

		accumulates molybdenum
		and nickel
<i>R. ruber</i> IEGM 219	Water, the Upper Ilitch river,	Uses propane, <i>n</i> -butane (95)
	Russia	and liquid n -alkanes (C ₅ -C ₇ ,
		C_{11} - C_{16}); resistant to Pb ²⁺ (5.0
		mm)
<i>R. ruber</i> IEGM 241	Chalk rock (depth 80 m),	Uses propane, <i>n</i> -butane and
	Gomel region, Belarus	liquid <i>n</i> -alkanes (C_5 - C_{16}) as a
		sole carbon source;
		accumulates cesium ions;
		resistant to Cr^{6+} (10.0 mm),
		Cu^{2+} , Ni^{2+} , Pb^{2+} (5.0 mm)
<i>R. ruber</i> IEGM 328	Water, well, oil-gas field,	Uses propane and <i>n</i> -butane as
	Perm region, Russia	a sole carbon source; resistant
		to Pb^{2+} (5.0 mm)

Figure S1 – The 96-well polystyrene microplate modified using hydrocarbons

Hydrocarbons: 1 - benzo[a]pyrene, 2 - phenanthrene, 3 - naphthalene, 4 - benzo[a]anthracene, 5 - n-octacosane, 6 - n-docosane, 7 - n-nonacosane, 8 - n-hexacosane, 9 - n-hentriacontane, 10 -anthracene, 11, 12 -control (without hydrocarbons).

Cell concentration, x108 CFU/mL

Figure S2 – Calibration curve between concentration of *Rhodococcus* cells and A_{630 nm} after staining of cells with crystal violet

Protocol for calibration: Cells were grown in 250-mL Erlenmeyer flasks with 100 mL LB at 160 rpm and 28 °C for 28–30 h (until the late exponential growth phase), washed twice with 0.5% NaCl, resuspended in 0.5% NaCl and diluted in the range of concentrations between 0 and 2.5×10^8 CFU/mL in increments $0.5 \cdot 10^8$ and $0.1 \cdot 10^8$ CFU/mL. For each suspension, a precise number of cells (CFU/mL) on nutrient agar was determined. Suspensions (1 mL) were then centrifuged; supernatant was removed; 1 mL of 1% (w/w) crystal violet was added; cells were resuspended in the dye solution with thorough mixing to obtain a homogenous suspension and left at room temperature for 20 min for staining. Stained cells were centrifuged; supernatant was removed; cells were washed twice with 1 mL 0.5% NaCl (each time cells were centrifuged and resuspended to a homogenous suspension); and the crystal violet was extracted from cells with 1 mL of acetone/ethanol mixture (1:4, v/v) at 160 rpm and room temperature for 5 min. The extract was transferred into polystyrene microplates (200 µL per well), and absorbance at 630 nm was measured with a Multiscan Ascent photometer (Thermo Electron Corporation, Finland). Three replicates of suspensions were used for each cell concentration. A calibration curve was built using the obtained values of A_{630 nm} and CFU/mL.

Figure S3 – Growth of *Rhodococcus* cells in the presence of 0.2 mM individual C22–C31 *n*-alkanes or PAHs detected with INT staining after incubation for 72 h

Control (no growth) – medium with cells and without hydrocarbons. Control (no cells) – medium with hydrocarbons and without cells.

Abundance

R. rhodochrous IEGM 63

R. opacus IEGM 717

Typical (average) chromatograms are shown. Dilution factor was same for all presented chromatograms. Total areas of peaks were used for calculation of residual anthracene concentration. The initial (0 day of biodegradation) concentration of anthracene in samples was 2.00 ± 0.17 mg/mL.

Figure S4 – GC-MS chromatograms of residual anthracene (retention time 15.63–15.66 min) after 9 days of biodegradation by *Rhodococcus* cells

Typical (average) chromatograms are shown. Dilution factor was same for all presented chromatograms. Total areas of peaks were used for calculation of residual anthracene concentration. The initial (0 day of biodegradation) concentration of anthracene in samples was 2.00 ± 0.17 mg/mL.

Typical (average) chromatograms are shown. Dilution factor was same for all presented chromatograms. Total areas of peaks were used for calculation of residual *n*-hexacosane concentration. The initial (0 day of biodegradation) concentration of *n*-hexacosane in samples was 2.05 ± 0.18 mg/mL.

R. opacus IEGM 262

No cells (abiotic control)

Figure S5 – GC-MS chromatograms of residual *n*-hexacosane (retention time 31.27–31.29 min) after 9 days of biodegradation by *Rhodococcus* cells

Typical (average) chromatograms are shown. Dilution factor was same for all presented chromatograms. Total areas of peaks were used for calculation of residual *n*-hexacosane concentration. The initial (0 day of biodegradation) concentration of *n*-hexacosane in samples was 2.05 ± 0.18 mg/mL.

Property of a hydrocarbon substrate	R _{Spearman}	<i>p</i> -value
Water solubility	≤ 0.6	≥ 0.08
<i>log</i> P _{O/W}	≤ 0.2	≥ 0.10
Molecular weight	≤ 0.2	≥ 0.10
Length of chain (for C22–C31 <i>n</i> -alkanes)	≤ 0.6	≥ 0.06
Number of condensed benzene rings (for PAHs)	\leq 0.2	≥ 0.08

Table S3 – Correlations between adhesive activities of *Rhodococcus* strains¹ towards C22–C31 n-alkanes and PAHs and physicochemical properties of these hydrocarbons

¹Number of strains studied n = 12 (see Table S2).

Strain	Adhesion force (F _a), nN	Elastic modulus (E), MPa
R. erythropolis IEGM 212	7.1	1.4
R. erythropolis IEGM 266	4.4	7.4
<i>R. opacus</i> IEGM 57	1.4	1.8
R. opacus IEGM 262	1.0	27.5
R. opacus IEGM 717	1.4	3.6
R. qingshengii IEGM 267	0.2	0.2
R. rhodochrous IEGM 63	1.8	6.0
R. rhodochrous IEGM 64	3.2	12.0
R. rhodochrous IEGM 646	0.4	0.2
R. ruber IEGM 219	1.1	7.1
<i>R. ruber</i> IEGM 241	1.7	8.1
R. ruber IEGM 328	2.8	31.8

Table S4 – Medians of adhesion force and elastic modulus on the surface of Rhodococcus cells

Table S5 – Correlation coefficients between adhesion force, elastic modulus and adhesive activity of *Rhodococcus* bacteria

Adhesive activity	Adhesion	force (F _a)	Elastic modulus (E)				
towards	Rspearman	<i>p</i> -value	Rspearman	<i>p</i> -value			
Polystyrene	0.2	0.60	0.4	0.24			
<i>n</i> -Docosane	0.2	0.53	0.5	0.12			
<i>n</i> -Hexacosane	0.1	0.77	0.5	0.07			
<i>n</i> -Octacosane	0.1	0.70	0.5	0.09			
<i>n</i> -Nonacosane	0.0	0.98	0.6	0.05			
n-Hentriacontane	0.3	0.34	0.4	0.18			
Naphthalene	0.6	0.03	0.1	0.86			
Anthracene	0.0	0.96	0.5	0.10			
Phenanthrene	0.5	0.10	0.4	0.26			
Benzo[a]pyrene	0.2	0.59	0.5	0.13			
Benzo[a]anthracene	0.6	0.05	0.3	0.35			

	Ι	Hydrophob	Zeta potential of cells			
Adhesion substrate	MATH				SAT	
	Rspearman	<i>p</i> -value	R _{Spearman}	<i>p</i> -value	Rspearman	<i>p</i> -value
<i>n</i> -Docosane	0.16	≥ 0.05	-0.30	≥ 0.05	0.40	≥ 0.05
<i>n</i> -Hexacosane	0.29	≥ 0.05	-0.35	≥ 0.05	0.15	≥ 0.05
<i>n</i> -Octacosane	0.21	≥ 0.05	-0.35	≥ 0.05	0.34	≥ 0.05
<i>n</i> -Nonacosane	0.15	≥ 0.05	-0.32	≥ 0.05	0.35	≥ 0.05
<i>n</i> -Hentriacontane	0.04	≥ 0.05	-0.28	≥ 0.05	0.48	≥ 0.05
Naphthalene	0.21	≥ 0.05	-0.17	≥ 0.05	-0.19	≥ 0.05
Anthracene	0.24	≥ 0.05	-0.24	≥ 0.05	0.07	≥ 0.05
Phenanthrene	-0.17	≥ 0.05	-0.13	≥ 0.05	0.27	≥ 0.05
Benzo[a]pyrene	0.07	≥ 0.05	-0.36	≥ 0.05	0.47	≥ 0.05
Benzo[a]anthracene	0.13	≥ 0.05	-0.24	≥ 0.05	0.18	≥ 0.05
Polystyrene	0.28	≥ 0.05	-0.57	≥ 0.05	0.15	≥ 0.05

Table S6 – Correlation coefficients between adhesive activities of *Rhodococcus* strains¹ and physicochemical properties of cells

¹Number of the strains studied n = 12 (see Table S2).

Strain	MATS substrate					
	<i>n</i> -Hexane	<i>n</i> -Decane	<i>n</i> -Hexadecane	Diethyl	Ethyl	Chloroform
				ester	acetate	
R. erythropolis	71 ± 9	68 ± 25	24 ± 17	66 ± 18	5 ± 4	83 ± 6
IEGM 212						
R. erythropolis	38 ± 1	34 ± 8	29 ± 4	63 ± 1	85 ± 4	11 ± 8
IEGM 266						
R. opacus IEGM	89 ± 14	94 ± 5	99 ± 1	33 ± 7	100 ± 0	90 ± 9
57						
R. opacus IEGM	0 ± 0	0 ± 0	62 ± 12	75 ± 14	91 ± 15	65 ± 7
262						
R. opacus IEGM	39 ± 13	39 ± 13	32 ± 13	77 ± 10	36 ± 6	55 ± 18
717						
R. qingshengii	54 ± 4	69 ± 8	55 ± 6	96 ± 1	78 ± 18	82 ± 2
IEGM 267						
R. rhodochrous	33 ± 4	71 ± 4	25 ± 14	79 ± 7	0 ± 0	77 ± 9
IEGM 63						
R. rhodochrous	89 ± 5	85 ± 17	87 ± 3	93 ± 6	99 ± 2	87 ± 1
IEGM 64						
R. rhodochrous	32 ± 3	42 ± 9	38 ± 1	71 ± 11	14 ± 3	61 ± 4
IEGM 646						
R. ruber IEGM	69 ± 6	73 ± 23	75 ± 2	84 ± 12	40 ± 20	77 ± 1
219						
R. ruber IEGM	49 ± 23	59 ± 15	60 ± 1	79 ± 23	86 ± 13	72 ± 4
241						
R. ruber IEGM	36 ± 2	45 ± 2	37 ± 2	69 ± 3	61 ± 13	42 ± 4
328						
Correlations	$R_{Spearman} \leq$	$R_{Spearman} \leq$	$R_{Spearman} \leq$	R _{Spearman}	R _{Spearman}	$R_{Spearman} \leq$
with adhesive	$0.56^1, p \ge$	$0.54, p \ge$	$0.36, p \ge 0.05$	\leq 0.39,	\leq 0.36, <i>p</i>	$0.41, p \geq$
activities	0.05	0.05		$p \ge 0.05$	≥ 0.05	0.05
towards solid						
hydrocarbons						
and polystyrene						

Table S7 – Adhesion of *Rhodococcus* cells to MATS substrates, %

Number of the strains studied n = 12 (see Table S2). ¹Absolute values for the correlation coefficients are shown.