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Summary
By combining data from 160,500 individuals with breast cancer and 226,196 controls of Asian and European ancestry, we conducted

genome- and transcriptome-wide association studies of breast cancer. We identified 222 genetic risk loci and 137 genes that were asso-

ciated with breast cancer risk at a p < 5.03 10�8 and a Bonferroni-corrected p < 4.63 10�6, respectively. Of them, 32 loci and 15 genes

showed a significantly different association between ER-positive and ER-negative breast cancer after Bonferroni correction. Significant

ancestral differences in risk variant allele frequencies and their association strengths with breast cancer risk were identified. Of the sig-

nificant associations identified in this study, 17 loci and 14 genes are located 1Mb away from any of the previously reported breast cancer

risk variants. Pathways analyses including 221 putative risk genes identifiedmultiple signaling pathways that may play a significant role

in the development of breast cancer. Our study provides a comprehensive understanding of and new biological insights into the genetics

of this common malignancy.
Introduction

Breast cancer is the most commonly diagnosed cancer in

women worldwide, with an estimated 2.3 million new

cases in 2020.1 Genetic factors play a critical role in the eti-

ology of both familial and sporadic breast cancers. In addi-

tion to breast cancer predisposition genes, such as BRCA1

and BRCA2,2–4 common genetic variants in approximately

200 loci have been identified in genome-wide association
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studies (GWASs).5–7 However, most GWASs of breast cancer

have been conducted among women of European

ancestry,8 and GWASs conducted among women of Asian

ancestry have had relatively smaller sample sizes.9,10

Although most susceptibility loci have been shown to be

shared across European and Asian populations, the lead

variants at some susceptibility loci can be different be-

tween these two populations given their differences in ge-

netic architecture.11,12 To identify additional genetic risk
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loci and provide a more comprehensive understanding of

breast cancer genetics, we conducted cross-ancestry meta-

analyses of data from the Asia Breast Cancer Consortium

(ABCC) and the Breast Cancer Association Consortium

(BCAC), including 386,696 women (139,523 of Asian

ancestry and 247,173 of European ancestry). Furthermore,

we performed a transcriptome-wide association study

(TWAS) to uncover putative breast cancer susceptibility

genes and gain biological insights into the genetics of

this common malignancy.
Subjects and methods

Study population
In this study, we conducted a cross-ancestry meta-analysis using

data from two large breast cancer genetic research consortia:

ABCC and BCAC. All studies were approved by relevant institu-

tional ethical committees. The detailed descriptions of partici-

pating studies are described in the supplemental information. In

brief, the 133,384 individuals with breast cancer and 113,789 con-

trols of European ancestry included in this analysis were from

BCAC, which consisted of three datasets: iCOGS (38,349 individ-

uals with breast cancer and 37,818 controls), OncoArray (80,125

individuals with breast cancer and 58,383 controls), and other

GWASs (14,910 individuals with breast cancer and 17,588 con-

trols).6 For European-ancestry participants, we used summary sta-

tistics data generated in BCAC, following the data use agreements.

Individuals of Asian ancestry included in this analysis were 27,116

individuals with breast cancer and 112,407 controls recruited by

studies in AABC and BCAC (Table S1). Proper informed consent

was obtained from all study participants.

Genotyping and quality control
Genotyping and quality control procedures for the contributing

studies have been described previously.5–7,9–11,13–19 After quality

control, we imputed all datasets using the 1000 Genomes Project

Phase 3 and excluded variants with an imputation quality score

(R2) <0.3. Variants with a minor allele frequency (MAF) of >0.01
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in Asian-ancestry datasets or >0.005 in European-ancestry data-

sets were included for association analyses.
Statistical meta-analyses
Analyses using logistic regression models were performed within

each of the ABCC studies, except Biobank Japan project (BBJ2),

to estimate the per-allele odds ratio (OR) for each variant using

PLINK 2.0.20 Age and the top two principal components (PCs)

were adjusted as covariates. The number of PCs included in the

regression was determined by evaluating the Scree plot. Summary

statistics were acquired for BBJ2 and BCAC-European dataset. Age

and top five PCs were adjusted in BBJ as covariates.13 The country

of contributing studies and the first ten PCs were adjusted in the

BCAC-European dataset.6 A fixed-effects model was used for

ancestry-specific meta-analyses and cross-ancestry meta-analyses

for risk of overall breast cancer and estrogen receptor (ER) subtypes

using METAL.21 The heterogeneity of risk estimates was evaluated

using Cochran’s Q statistic and I2. We estimated the statistical po-

wer of our cross-ancestry meta-analyses with a at 5 3 10�8

(Figure S1). We had 80% power to detect a minimum per-allele

OR of 1.07, 1.05, 1.04, and 1.03 for variants with a MAF of 0.05,

0.15, 0.20, and 0.30, respectively. In order to take into account

of the population heterogeneity, we also used the meta-regression

approach implemented in MR-MEGA22 in cross-ancestry meta-an-

alyses for overall breast cancer. At each risk locus, we performed

fine-mapping analysis using SuSiE23 and constructed a 95% cred-

ible set for the lead variant at the locus (detailed methods in

supplemental information). We investigated the ancestral hetero-

geneity of the lead variants and all variants in the credible sets.

Novel risk loci were defined as loci with the sentinel variants

located at least 1 Mb away from any of the risk variants identified

by previous GWASs included in the NHGRI-EBI GWAS Catalog.24

For each novel locus, we conducted conditional analyses to iden-

tify additional independent signals located flanking 5 500 kb

from the lead variant. The GCTA-COJO was used for the condi-

tional analyses. In each iteration of the stepwise conditional anal-

ysis, we conducted ancestry-specific conditional analyses and

combined the results by a fixed-effects model using METAL. Asian

samples (N ¼ 20,554) genotyped by Multi-Ethnic Genotyping
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Array (MEGA) chips were used as a reference panel for linkage

disequilibrium (LD) estimation among women of Asian ancestry.

For women of European ancestry, we used 5,000 samples from

the Vanderbilt University Medical Center biobank (BioVU) geno-

typed by MEGA as a reference panel for LD estimation.25,26 Since

the conditional analyses were restricted to local regions of the

novel loci identified at genome-wide significance, we used

1 3 10�4 as significance level (adjusting for �500 comparisons

in each locus). If the variant with the lowest conditional p was

lower than 1 3 10�4, it was considered an independent signal at

that locus, and it was subsequently adjusted, along with the lead

variant, from cross-ancestry meta-analyses in later iterations.

This process was repeated until there were no variants with a

cross-ancestry conditional p < 1 3 10�4.
Genetic variance explained by novel risk variants
We estimated the genetic variance explained by novel risk variants

identified in this study using a log-additive model:

Xn

i

2pi
�
1 � pi

��
b2
i � t2i

�

where n is the total number of novel risk variants, pi is the MAF of

the ith variant, bi is the log-OR for the ith variant and ti is the stan-

dard error of bi. The explained genetic variance was estimated for

overall breast cancer and by ER subtypes for Asian- and European-

ancestry populations, respectively.
Transcriptome-wide association analysis
We used RNA sequencing data from 115 samples collected from

European-ancestry women from the Genotype-Tissue Expression

Project (GTEx, version 8) to build prediction models for each

gene expressed in normal breast tissue. Germline genotyping

data were obtained using whole-genome sequencing (WGS) of

genomic DNA extracted from blood samples. The details of data

processing are described in the supplemental information. We

used a cross-tissue approach, joint-tissue imputation (JTI), to build

prediction models for gene-expression levels in normal breast tis-

sue.27 Besides breast tissue, data from all 31 other tissues were bor-

rowed in the JTI approach to leverage shared genetic regulation

and improve prediction performance in a tissue-dependent

manner (Table S10). Prediction models were built using genetic

variants within flanking þ/� 500 kb from the respective gene

boundaries. Five-fold cross-validation was conducted to validate

the models internally. Genes with a model prediction R > 0.1

were included for association analyses.

To evaluate the performance of prediction models, we per-

formed an external validation using 86 tumor-adjacent normal

breast tissue samples from European-ancestry females with breast

cancer in The Cancer Genome Atlas (TCGA). We calculated the

Spearman’s correlation between the prediction performance (R2)

in GTEx and TCGA.

We conducted association analyses of predicted gene expression

with breast cancer risk with S-PrediXcan tool,28 using the sum-

mary statistics from our ancestry-specific and cross-ancestry

meta-analyses of GWASs for breast cancer. For genes identified at

Bonferroni correction in the association analyses, we also conduct-

ed TWAS fine-mapping analyses and colocalization analyses.

Pathway analyses were conducted for protein-coding genes. The

details of statistical analyses were described in supplemental

information.
The American Jour
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By cross-ancestry meta-analyzing GWAS data from

160,500 individuals with breast cancer and 226,196 con-

trols of Asian and European ancestry using fixed-effects

models, we identified 23,461 variants in 184 regions that

were associated with overall breast cancer risk at genome-

wide significance level (p < 5.00 3 10�8; Table S2).

Twenty-seven additional risk loci were uncovered in popu-

lation-specific analyses, including 25 loci identified in Eu-

ropean-specific GWASs and two in Asian-specific GWASs.

In total, we identified 211 loci showing a significant asso-

ciation with risk of overall breast cancer. Of them, 16 loci

are novel, with the sentinel variants located at least 1 Mb

away from any of the risk variants identified by previous

GWASs (Table 1).

Analyses by ER status identified 13,392 variants in 100

loci and 2,425 variants in 34 loci that were associated

with ER-positive and ER-negative breast cancer, respec-

tively, at the genome-wide significance level (Tables S3

and S4). Two loci for ER-positive and nine loci for ER-nega-

tive breast cancer did not overlap with any of the loci iden-

tified for overall breast cancer. Of them, 17p13.2, associ-

ated with ER-negative breast cancer risk, has not yet been

reported in previous GWASs (Table 1).

Of the 222 lead risk variants identified in our study that

were associated with the risk of either overall breast cancer

(n ¼ 211) or exclusively ER-positive (n ¼ 2) or ER-negative

(n ¼ 9) breast cancer, 68 variants showed a significantly

different association by ER status at a false discovery rate

(FDR) <0.05 in heterogeneity tests (Table S7). Among

them, eight risk loci were not reported previously. Except

for rs12335941 at 9p21.3, all other seven variants had a

stronger association with ER-positive than ER-negative

breast cancer. Of the 32 variants showing a different asso-

ciation at a Bonferroni-corrected p < 2.25 3 10�4 (0.05/

222, Table 2), five lead variants showed an opposite direc-

tion of the association by ER status.
Of the 211 lead risk variants for overall breast cancer, 166

variants had a >25% difference in the effect allele fre-

quency between Asian-ancestry and European-ancestry

women (Figure S2). Seventeen lead variants, all identified

from ancestry-specific GWASs, are rare (a MAF of <0.01)

in one population but common in the other population.

For nine of these lead variants, all variants included in their

95% credible sets were rare in one population but common

in the other population (Table S2). Of the 194 common

risk variants in both populations, 36 showed a significant

difference in risk estimates between Asian- and Euro-

pean-ancestry populations at p < 0.05, including 31 lead

variants with the entire credible sets showing ancestral

heterogeneity in risk estimates (p < 0.05). Three variants

showed ancestral heterogeneity with a p < 2.58 3 10�4,

the significance level after adjusting for multiple compari-

sons (0.05/194) (Table S2). In particular, variant

rs59957907 showed a highly significant ancestral differ-

ence in risk estimate with a p for heterogeneity of
nal of Human Genetics 109, 2185–2195, December 1, 2022 2187



Table 1. Results for the lead risk variants at 17 novel loci identified in cross-ancestry meta-analyses of GWAS data

Variants Loci Nearest gene Gene region Allelesa EAFb OR (95% CI) pc I2, % p_het

Overall

rs727477 2p22.1 SLC8A1 Intron G/T 0.36 0.97 (0.96, 0.98) 2.85 3 10�8 52.1 0.03

rs3010266 5q13.2 LINC02056 8.5 kb from 50 A/G 0.24 0.96 (0.95, 0.98) 3.56 3 10�8 0 0.83

rs6890591d 5q35.2 CPEB4 3.3 kb from 30 A/T 0.38 0.97 (0.96, 0.98) 3.25 3 10�8 50.5 0.04

rs3829964 6p21.2 CDKN1A Intron T/C 0.47 0.97 (0.96, 0.98) 4.61 3 10�9 0 0.46

rs74392007 6q22.31 HSF2 5.4 kb from 50 T/C 0.12 1.05 (1.03, 1.07) 1.55 3 10�8 0 0.93

rs3778663 6q27 AFDN Intron A/G 0.13 1.06 (1.04, 1.07) 8.51 3 10�9 0 0.69

rs17167576 7p21.2 AC005019.3e 5.5 kb from 30 A/T 0.37 1.03 (1.02, 1.04) 6.93 3 10�9 47.2 0.05

rs3988353 8p22 PCM1 Intron CT/C 0.42 1.03 (1.02, 1.04) 4.32 3 10�8 0 0.81

rs1937680 10q21.1 PRKG1 Intron C/A 0.36 1.03 (1.02, 1.04) 8.18 3 10�9 1.3 0.42

rs11354045 11q23.1 ALG9 Intron CT/C 0.35 1.03 (1.02, 1.04) 2.68 3 10�8 22.3 0.25

rs36028244 11q23.3 PCSK7 Intron C/CTTA 0.07 1.06 (1.04, 1.08) 1.77 3 10�8 0 1.00

rs3809114 12q13.3 INHBE 50 UTRf G/A 0.47 0.97 (0.96, 0.98) 2.33 3 10�8 37.8 0.12

rs956006 15q22.2 TLN2 Intron T/C 0.32 1.03 (1.02, 1.05) 3.54 3 10�8 1.7 0.42

rs4797754 18p11.21 LDLRAD4 Intron G/C 0.31 1.03 (1.02, 1.05) 2.08 3 10�8 0 0.50

rs112208395 20q11.23 PHF20 Intron C/CT 0.14 1.05 (1.03, 1.07) 4.11 3 10�8 0 0.96

rs74157632g 10q26.11 DENND10 Missense G/A 0.05 0.86 (0.81, 0.90) 1.41 3 10�8 0 1.00

ER-negative

rs2123844 17p13.2 ZZEF1 Intron A/C 0.07 1.13 (1.09, 1.18) 2.81 3 10�10 37.4 0.16

aEffect allele/reference allele.
bEffect allele frequency.
cUnless otherwise specified, p derived from meta-analyses using fixed-effects model.
dIdentified using cross-ancestry meta-regression (Table S6). The p derived from cross-ancestry fixed-effects model is 1:16310�7 (Table S2).
eAC005019.3 (ENSG00000224330) does not have a gene symbol in HUGO yet.
fUTR, untranslated region.
gIdentified in Asian-specific GWASs. The p for cross-ancestry fixed-effects model is 1:74310�7 (Table S2).
1.27 3 10�104. Overall, risks estimated in European-

ancestry populations are larger than those estimated in

Asian-ancestry populations with a regression beta coeffi-

cient of 0.579 derived from linear regression (Figure 1,

Table S2). The ancestral difference observed in our study

could be underestimated, as variants with similar risk esti-

mates were more likely to be identified by cross-ancestry

meta-analyses.

Twenty-three previously reported index variants are not

located at the regions identified at genome-wide signifi-

cance in our meta-analyses. However, 16 of themwere asso-

ciated with breast cancer risk at p < 2.04 3 10�4, a signifi-

cant level with Bonferroni correction for comparisons of

245 index variants. Of the remaining seven index risk vari-

ants, four were previously identified in a GWAS by breast

cancer intrinsic subtypes6 (Table S8). Two index variants

showed a nominally significant association with breast can-

cer in cross-ancestry and European-ancestry meta-analyses

(p < 0.05). Only variant rs9348512 showed a null associa-

tion with overall breast cancer risk (p ¼ 0.505). The associa-

tion with this variant was originally reported in a GWAS

conducted among individuals with BRCA2 mutation29 but

was not replicated in subsequent studies.5,6
2188 The American Journal of Human Genetics 109, 2185–2195, Dec
The sentinel variants at all 17 newly identified risk loci

showed the same association direction in both Asian-

and European-ancestry populations (Tables S2 and S4).

Except for the Asian-specific risk variant rs74157632, all

other lead variants are common, with a MAF >0.01 in

both populations. Significant ancestral heterogeneity was

observed for rs6890591 (identified by meta-regression)

and rs74157632 (identified as Asian specific). The esti-

mated ORs for these 17 lead variants in the BCAC and

AABC studies are shown in Table S5. The proportion of

variance explained by the 17 novel loci identified in our

study was 1.15% for overall breast cancer, 1.07% for ER-

positive breast cancer, and 1.03% for ER-negative breast

cancer in Asian-ancestry populations. The corresponding

numbers are 0.74%, 0.61%, and 1.03% for European-

ancestry populations. The higher percentage of genetic

variation explained by these new loci in Asian- compared

to European-ancestry populations was because of the pop-

ulation differences in the risk estimates at the new loci. Of

the 17 novel loci, one locus was specific to the Asian pop-

ulations. For the remaining 16 loci, the effect size, as

measured using OR, was larger in Asian- than in Euro-

pean-ancestry populations for nine loci, including two
ember 1, 2022



Table 2. Results for breast cancer risk loci showing different associations by estrogen receptor status

Variants Loci Allelea EAFb

ER-Positive ER-Negative

p for ER heterogeneityOR (95% CI) p OR (95% CI) p

rs2506885 1p36.22 T/A 0.34 0.95 (0.94, 0.97) 5.91 3 10�10 0.88 (0.86, 0.90) 3.68 3 10�27 2.63 3 10�8

rs11249433 1p11.2 G/A 0.39 1.13 (1.11, 1.15) 3.45 3 10�59 1.01 (0.99, 1.04) 0.29 1.01 3 10�15

rs12129456 1q32.1 G/T 0.38 1.02 (1.00, 1.03) 0.03 0.92 (0.90, 0.94) 1.52 3 10�13 2.00 3 10�13

rs2169137 1q32.1 G/C 0.25 1.00 (0.98, 1.02) 0.9 1.13 (1.11, 1.16) 4.03 3 10�24 2.30 3 10�17

rs56158184 2p23.2 C/T 0.09 1.03 (1.00, 1.05) 0.02 0.89 (0.86, 0.92) 1.01 3 10�9 1.60 3 10�10

rs2016394 2q31.1 A/G 0.44 0.94 (0.93, 0.96) 1.05 3 10�16 1.00 (0.98, 1.02) 0.91 2.51 3 10�6

rs4442975 2q35 G/T 0.46 1.15 (1.14, 1.17) 1.42 3 10�92 1.05 (1.03, 1.07) 1.12 3 10�5 3.72 3 10�14

rs552647 3p24.1 A/C 0.48 1.12 (1.10, 1.14) 6.35 3 10�60 1.05 (1.03, 1.07) 4.89 3 10�6 1.06 3 10�7

rs7697216 4q34.1 T/C 0.15 0.89 (0.87, 0.91) 1.17 3 10�30 0.98 (0.96, 1.01) 0.24 1.49 3 10�8

rs2853669 5p15.33 G/A 0.31 0.96 (0.95, 0.97) 3.29 3 10�8 0.89 (0.87, 0.91) 3.03 3 10�24 4.32 3 10�8

rs7710996 5p12 A/G 0.25 1.00 (0.98, 1.02) 0.97 1.07 (1.04, 1.09) 1.50 3 10�8 3.84 3 10�6

rs10941679 5p12 G/A 0.31 1.16 (1.14, 1.18) 5.38 3 10�86 1.02 (1.00, 1.05) 0.04 1.45 3 10�20

rs59957907 5q11.2 G/A 0.22 1.19 (1.17, 1.21) 2.95 3 10�90 1.06 (1.04, 1.09) 2.09 3 10�6 2.46 3 10�13

rs60954078 6q25.1 G/A 0.17 1.16 (1.14, 1.19) 1.75 3 10�41 1.33 (1.29, 1.37) 6.92 3 10�76 2.18 3 10�12

rs910416 6q25.1 C/T 0.46 0.95 (0.94, 0.96) 3.23 3 10�13 0.91 (0.89, 0.93) 1.08 3 10�21 1.02 3 10�4

rs116426014 8p23.3 G/A 0.26 1.03 (1.01, 1.04) 0.01 1.09 (1.06, 1.12) 1.83 3 10�10 1.68 3 10�4

rs60037937 9q31.2 T/TAA 0.26 1.10 (1.08, 1.11) 7.92 3 10�28 1.03 (1.00, 1.05) 0.04 1.57 3 10�5

rs7862747 9q31.2 C/A 0.36 0.88 (0.87, 0.90) 1.89 3 10�58 0.98 (0.96, 1.00) 0.05 4.49 3 10�13

rs7098100 10p12.31 A/G 0.34 1.07 (1.06, 1.09) 9.46 3 10�21 0.97 (0.95, 1.00) 0.02 1.42 3 10�12

rs9420318 10q26.12 A/G 0.33 0.94 (0.93, 0.95) 2.55 3 10�17 1.00 (0.98, 1.02) 0.74 6.53 3 10�6

rs2981579 10q26.13 A/G 0.41 1.32 (1.31, 1.34) 3.72 3 10�359 1.06 (1.04, 1.08) 4.23 3 10�8 5.37 3 10�74

rs78540526 11q13.3 T/C 0.07 1.39 (1.35, 1.42) 3.11 3 10�137 1.01 (0.97, 1.05) 0.73 1.67 3 10�36

rs199504893 11q22.3 CA/C 0.41 1.02 (1.00, 1.03) 0.01 0.94 (0.92, 0.96) 3.31 3 10�9 1.56 3 10�10

rs1292011 12q24.21 G/A 0.39 0.90 (0.89, 0.92) 3.34 3 10�47 0.97 (0.95, 0.99) 0 1.05 3 10�7

rs1744947 14q24.1 T/C 0.15 1.08 (1.06, 1.10) 8.58 3 10�14 1.00 (0.97, 1.03) 0.82 2.26 3 10�5

rs4784227 16q12.1 T/C 0.24 1.26 (1.25, 1.28) 1.03 3 10�202 1.15 (1.13, 1.18) 3.57 3 10�36 3.21 3 10�11

rs2123844 17p13.2 A/C 0.07 1.03 (1.00, 1.06) 0.03 1.13 (1.09, 1.18) 2.81 3 10�10 6.69 3 10�5

rs745983748 18q11.2 A/AAGTGTT 0.32 0.93 (0.91, 0.94) 6.12 3 10�24 1.01 (0.99, 1.03) 0.44 3.07 3 10�10

rs4609972 19p13.11 C/G 0.48 1.00 (0.98, 1.01) 0.80 0.88 (0.86, 0.90) 6.13 3 10�35 6.60 3 10�24

rs34753522 20q12 C/T 0.35 0.96 (0.94, 0.97) 3.21 3 10�8 1.02 (1.00, 1.04) 0.1 8.07 3 10�6

rs2403907 21q21.1 A/C 0.29 0.91 (0.90, 0.93) 1.09 3 10�32 0.97 (0.95, 1.00) 0.02 3.14 3 10�6

rs4822992 22q12.1 A/G 0.02 1.25 (1.19, 1.31) 7.16 3 10�19 1.00 (0.93, 1.09) 0.91 6.23 3 10�6

aEffect allele/reference allele.
bEffect allele frequency.
loci showing a significant difference (p for heterogeneity

<0.05). In only two loci, the OR for the lead variant was

larger in European- than in Asian-ancestry populations,

but no significant heterogeneity was found in either locus.

The Asian-specific lead variant rs74157632 (GenBank:

NM_207009.4; c.658A>G; p.Asn220Asp) is a missense

variant of protein-coding gene DENND10, which has

been shown to regulate the progression of epidermal

growth factor receptor (EGFR) trafficking.30 Eleven lead
The American Jour
variants are located in the intronic regions of genes.

Some of these genes have been reported to be involved

in breast cancer cell migration and invasion (SLC8A1,31

CDKN1A,32 AFDN,33 TLN234), resistance to radiotherapy

(ALG935), and TGF-b (LDLRAD436) or p53 (PHF2037)

signaling pathways.

For each of the novel loci identified in this study, we per-

formed conditional analyses for variants located within

500 kb of the lead variant, adjusted for the lead variant
nal of Human Genetics 109, 2185–2195, December 1, 2022 2189



Figure 1. Comparison of risk estimates
for lead risk variants between Asian- and
European-ancestry women
The red regression line shows the trend of
risk estimates in both ancestry groups. To
be conservative, the regression was per-
formed excluding four variants with risk
estimates >0.15 in European-ancestry
women, which could be outliers or with a
high leverage. The black dashed diagonal
line shows where risk estimates are the
same in both ancestries.
separately for Asian and European descendants, to identify

potential secondary association signals. These results were

then combined by meta-analyses. We found eight inde-

pendent association signals (conditional p < 1.0 3 10�4)

at six loci: 2p22.1, 6q22.31, 6q27, 8p22, 15q22.2, and

18p11.21 (Table S9). There were two additional indepen-

dent association signals found at loci 8p22 and 18p11.21.

To identify putative breast cancer susceptibility genes,

we conducted a transcriptome-wide association analysis

(TWAS). We used whole-genome sequencing data gener-

ated in genomic DNA samples and RNA sequencing data

generated in normal tissues obtained from 115 individuals

included in the GTEx project (version 8) to build genetic

models to predict gene expression across the transcriptome

(Material and methods, Table S10). Of the 30,362 genes

evaluated, models were successfully built for 17,127 genes,

in which 10,820 genes could be predicted with R> 0.1. The

performance of the models was evaluated using the adja-

cent normal breast tissue samples from TCGA. Overall,

genes that were predicted with R > 0.1 in GTEx data

were also predicted well in TCGA tumor-adjacent normal

tissue data (correlation coefficient of 0.69; Figure S3).

Of the 10,820 genes evaluated using GWAS data from

160,500 individuals with breast cancer and 226,196 con-

trols, we identified 137 genes in association with risk of

breast cancer at the Bonferroni-corrected threshold of

p < 4.62 3 10�6, including 76 protein-coding genes

(Tables S11 and S18). Of them, 14 genes at 13 loci are

located at least 1 Mb away from any of the previous

GWAS-identified risk variants for breast cancer (Table 3),

including 11 genes associated with overall breast cancer

risk and three additional genes associated with ER-positive

breast cancer. CPNE1 is located at a novel risk locus identi-

fied in our cross-ancestry meta-analyses. CPNE1 has been

reported to be overexpressed in triple-negative breast can-

cer and promotes tumorigenesis and radio-resistance

by the AKT signaling pathway.38 In addition, we also
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identified 87 genes (including 39 pro-

tein-coding genes) that are located

in known risk loci but have not

yet been reported in previous

TWASs39,40–42 (Table S11).

Of the 137 genes identified by

TWAS, 15 genes showed different as-
sociations with ER-positive and ER-negative breast cancer,

with a p for heterogeneity<3.653 10�4 (0.05/137; Tables 4

and S12). Of them, protein-coding genes ABHD8 and

ANKLE1 at 19p13.11 showed an exclusive association

with ER-negative breast cancer, and similar heterogeneity

also was found for the lead variant rs4808616 at this risk

locus. These findings were supported by a previous study,

which identified ABHD8 and ANKLE1 as potential target

genes at the risk locus 19p13.11.43

In addition, 16 genes showed a significantly different as-

sociation between Asian- and European-ancestry women

at the Bonferroni-corrected threshold p for heterogeneity

<3.65 3 10�4, including seven protein-coding genes

(Table S13). Of them, CASP8 and ALS2CR12 at 2q33.1

and HLA-F at 6p22.1 showed a stronger association with

breast cancer risk in Asian-ancestry women than in Euro-

pean-ancestry women. The CASP8 gene plays a central

role in extrinsic apoptosis44 and has been reported to be

associated with breast cancer risk in previous TWASs

among European-ancestry women.39,40–42

To identify the most likely target genes in the locus in

which multiple genes were found to be associated with

breast cancer risk in TWASs, we performed fine-mapping

analyses using FOCUS.45 In total, we identified 69 genes

showing significant posterior inclusion probability and

thus included them in the credible target gene sets

(Table S14). In addition, we identified 50 genes that were

colocalized with both GWASs and eQTL signals from coloc-

alization analyses using COLOC46 (Table S15), including

28 genes included in the credible target gene sets from

TWAS fine-mapping analyses.

We performed pathway analyses to identify biological

pathways that may play a role in breast cancer etiology.

Of the 137 genes identified in our TWASs in association

with breast cancer risk, 76 located in 53 genomic regions

are protein-coding genes. In 47 regions, we were able to

identify 53 genes as putative target genes with supporting



Table 3. Genes identified in TWASs in novel loci in association with breast cancer risk

Locia Gene Gene type Z score p R2b

Overall

1p11.2 NBPF8 Pseudogene 7.05 1.76 3 10�12 0.23

1p11.2 PFN1P2 Pseudogene 9.22 2.87 3 10�20 0.22

3p21.31 RNF123 Protein coding 4.63 3.62 3 10�6 0.26

5p15.31 NSUN2 Protein coding �4.89 1.01 3 10�6 0.37

10q26.13 EEF1AKMT2 Protein coding �4.70 2.63 3 10�6 0.34

15q15.1 SRP14-DT LincRNA �4.80 1.55 3 10�6 0.29

15q15.3 STRCP1 Pseudogene �4.66 3.18 3 10�6 0.12

17p12 MAP2K4 Protein coding 4.99 6.06 3 10�7 0.02

19q13.12 ZNF793-AS1 Antisense RNA �4.94 7.64 3 10�7 0.10

20q11.22 CPNE1 Protein coding �4.68 2.88 3 10�6 0.38

20q13.33c RGS19 Protein coding 4.64 3.47 3 10�6 0.07

ER-positive

6p22.1 H4C12 Protein coding 5.01 5.54 3 10�7 0.07

11q13.2 RHOD Protein coding 4.78 1.73 3 10�6 0.19

5q13.2c GUSBP14 Pseudogene 5.08 3.73 3 10�7 0.08

aUnless otherwise specified, results are based on TWAS analyses using cross-ancestry GWAS data.
bPrediction performance derived using GTEx data.
cGenes identified from association analysis using European-ancestry GWAS data.
evidence from either fine-mapping analyses (n ¼ 25), co-

localization analyses (n ¼ 10), or both (n ¼ 18). Addition-

ally, for the remaining 152 loci, in which no target genes

were identified in TWASs, we selected 89 protein-coding

genes previously reported as putative target genes47 and

79 protein-coding genes located nearby the lead variants

identified in our GWAS. In total, 221 putative risk genes

for breast cancer were included in our pathway analysis

(supplemental methods and Table S16). We identified mul-

tiple signaling pathways that were significantly associated

with breast cancer risk at FDR<0.05, including p53, cGMP-

PKG, TNF, and MAPK signaling pathways, as well as path-

ways of DNA-binding transcription activator activity and

cell cycle phase transition48–50 (Table S17).
Discussion

We conducted a large GWAS and TWAS of breast cancer,

including 386,696 women of Asian and European ancestry.

In total, 222 genetic risk loci and 137 genes were identified

by GWAS and TWAS, respectively, in association with

breast cancer risk after adjusting for multiple comparisons.

Our pathway analyses identified multiple biological

pathways that have been implicated in the development

of breast and other cancers. For example, CACNA1A,

DUSP4, FGFR2, MAP2K4, MAP3K1, MYC, NF1, PLA2G6,

TAB2, TGFBR2, and TP53 are involved in mitogen-acti-

vated protein kinase (MAPK) signaling pathway.48,51

ATG10, CDKAL1, KLF4, MAF8, and MAP3K1 are regulated
The American Jour
by the activation of KRAS.51 KRAS is a proto-oncogene

from the RAS family and a part of the RAS/MAPK pathway.

Although the RAS signaling pathway is commonly acti-

vated in breast cancer, somatic mutations of RAS are not

common in individuals with breast cancer.52 Our findings

indicate that the germline alternation of genes involved in

the RAS signaling pathway could play a role in the develop-

ment and progression of breast cancer.

Although the p53 pathway is often altered in breast can-

cer tissues, particularly those from ER-negative and triple-

negative cancer, germline mutations of TP53 are detected

only in less than 1% of individuals with breast cancer.53

In this study, we found that 15 genes (CASP8, CCND1,

CCNE1, CDKN1A, CHEK2, MDM4, INHBB, KLF4, MXD1,

PHLDA3, PIDD1, TNNI1, TP53, ZFP36L1, ZNF365) are

involved in the p53 signaling pathway,48,51 providing sup-

port that germline alterations of this pathway could play a

more significant etiologic role than what is appreciated

based on analyzing TP53 alone. Intriguingly, the MDM4

and CCNE1 are located at risk loci with a stronger associa-

tion with ER-negative than ER-positive breast cancer. Our

TWAS also found that the expression of MDM4 was exclu-

sively associated with an increased risk of ER-negative

breast cancer. These findings suggest that the p53 signaling

pathway plays an important role in the risk of breast can-

cer, especially ER-negative breast cancer.

By increasing the sample size and incorporating tran-

scriptome data, we were able to identify 30 novel associa-

tions in loci and genes that are located >1 Mb away from

any of the previously reported breast cancer risk variants.
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Table 4. TWAS-identified breast cancer risk genes showing a significantly different association by estrogen receptor status

Loci Gene Gene type

ER-Positive ER-Negative

p for ER heterogeneityZ score P Z score p

1p11.2 SRGAP2C Protein coding �9.45 3.32010�21 �1.47 0.14 6.99010�5

1p11.2 H3P4 Pseudogene 8.89 6.05010�19 1.10 0.27 1.72010�4

1p11.2 RP11-343N15.2a LincRNA �8.74 2.27010�18 �1.00 0.32 3.35010�5

1p11.2 EMBP1 Pseudogene �8.38 5.23010�17 �0.27 0.78 9.32010�6

1p36.13 KLHDC7A Protein coding �7.10 1.27010�12 0.10 0.92 5.79010�6

1p36.22 DFFA Protein coding 4.37 1.26010�5 7.60 2.96010�14 9.54010�5

1q22 GBAP1 Pseudogene �6.66 2.73010�11 0.59 0.56 2.54010�5

1q22 THBS3 Protein coding 5.72 1.07010�8 �0.89 0.38 8.72010�5

1q32.1 PTPRVP Pseudogene �1.50 0.14 6.67 2.52010�11 1.36010�10

2q35 TNP1 Protein coding 5.85 5.04010�9 �0.37 0.71 5.44010�5

5p12 MRPS30-DT Antisense RNA 16.38 2.48010�60 �0.15 0.88 4.20010�21

5q11.2 CTD-2310F14.1a Antisense RNA 14.50 1.17010�47 3.73 1.90010�4 4.24010�7

8p23.3 SEPT14P8 Pseudogene �2.29 0.02 �6.00 1.98010�9 2.53010�4

19p13.11 ABHD8 Protein coding �0.51 0.61 9.64 5.25010�22 2.39010�15

19p13.11 ANKLE1 Protein coding �0.24 0.81 6.74 1.62010�11 8.17010�9

aRP11-343N15.2 (ENSG00000231429) and CTD-2310F14.1 (ENSG00000271828) do not have gene symbols in HUGO yet.
The discovery of these novel associations further expanded

our understanding of the genetic and biological mecha-

nism of breast cancer development. For example, the

lead variant at the novel risk locus 6p21.2 is located at

the intronic region of CDKN1A. CDKN1A regulates cell-cy-

cle progression as a cyclin-dependent kinase inhibitor32

and plays an important role in both PI3K/AKT signaling

pathway and p53 pathway.51

MAP2K4 at 17p12 is a novel target gene identified by our

TWAS. This gene encodes a member of the mitogen-acti-

vated protein kinase and it is involved in multiple

signaling pathways, including MAPK pathway, EGF

pathway, FAS signaling pathway,51 and PI3K/AKT signaling

pathway.54 In addition, our TWAS identified 39 protein-

coding genes that are located in known risk loci but have

not yet been reported in previous TWAS. Of them,

MDM4, PLA2G6, and RIT1 are involved in the p53

pathway, RAS/MAPK pathway, and PI3K/AKT pathway,

respectively. These newly identified putative breast cancer

risk genes could be potential targets for therapies.

Given the much larger sample size for GWASs conducted

in European descendants compared to those conducted in

East Asians, many of the associations were driven by data

from European-ancestry GWASs. Increasing the sample

size for GWASs of non-European populations will be valu-

able to fully uncover the genetic basis for breast cancer. In

our TWAS, we built gene prediction models using Euro-

pean-ancestry samples from GTEx. Given the difference in

genetic architectures between Asian and European descen-

dants, some of these models may not perform well in

TWASs in Asian populations, affecting the detection of sig-
2192 The American Journal of Human Genetics 109, 2185–2195, Dec
nificant association signals, particularly in regions where

significant ancestral differences exist. Using Asian-specific

gene prediction models in future studies should help to

identify additional genes associated with breast cancer risk.

In summary, in this largeGWAS and TWAS for breast can-

cer, we uncovered a large number of genetic variants associ-

ated with breast cancer risk and identified potential target

genes for this common cancer. We discovered significant

differences for many of these variants and genes in associa-

tion with breast cancer risk by ER status and ancestry. We

identified multiple signaling pathways that play an etio-

logic role in breast cancer risk and propose that germline al-

terations in TP53, RAS, and MAPK pathways may play a

more significant role in the etiology of breast cancer than

what is currently appreciated. Our study provides substan-

tial insights into the genetics and biology of breast cancer.
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22. Mägi, R., Horikoshi, M., Sofer, T., Mahajan, A., Kitajima, H.,

Franceschini, N., McCarthy, M.I., COGENT-Kidney Con-

sortium T2D-GENES Consortium, Morris, A.P., and Morris,

A.P. (2017). Trans-ethnic meta-regression of genome-wide as-

sociation studies accounting for ancestry increases power for

discovery and improves fine-mapping resolution. Hum. Mol.

Genet. 26, 3639–3650. https://doi.org/10.1093/hmg/ddx280.

23. Wang, G., Sarkar, A., Carbonetto, P., and Stephens, M. (2020).

A simple new approach to variable selection in regression,

with application to genetic fine mapping. J. Roy. Stat. Soc. B

82, 1273–1300. https://doi.org/10.1111/rssb.12388.

24. Buniello, A., MacArthur, J.A.L., Cerezo, M., Harris, L.W., Hay-

hurst, J., Malangone, C., McMahon, A., Morales, J., Mountjoy,

E., Sollis, E., et al. (2019). The NHGRI-EBI GWAS Catalog of

published genome-wide association studies, targeted arrays

and summary statistics 2019. Nucleic Acids Res. 47, D1005–

D1012. https://doi.org/10.1093/nar/gky1120.

25. Roden, D.M., Pulley, J.M., Basford, M.A., Bernard, G.R., Clay-

ton, E.W., Balser, J.R., and Masys, D.R. (2008). Development

of a large-scale De-identified DNA biobank to enable personal-

ized medicine. Clin. Pharmacol. Ther. 84, 362–369. https://

doi.org/10.1038/clpt.2008.89.

26. Kasimatis, K.R., Abraham, A., Ralph, P.L., Kern, A.D., Capra,

J.A., and Phillips, P.C. (2021). Evaluating human autosomal

loci for sexually antagonistic viability selection in two large

biobanks. Genetics 217, 1–10. https://doi.org/10.1093/ge-

netics/iyaa015.

27. Zhou, D., Jiang, Y., Zhong, X., Cox, N.J., Liu, C., and Gama-

zon, E.R. (2020). A unified framework for joint-tissue tran-

scriptome-wide association and Mendelian randomization

analysis. Nat. Genet. 52, 1239–1246. https://doi.org/10.

1038/s41588-020-0706-2.

28. Barbeira, A.N., Dickinson, S.P., Bonazzola, R., Zheng, J.,

Wheeler, H.E., Torres, J.M., Torstenson, E.S., Shah, K.P., Garcia,

T., Edwards, T.L., et al. (2018). Exploring the phenotypic con-

sequences of tissue specific gene expression variation inferred

from GWAS summary statistics. Nat. Commun. 9, 1825.

https://doi.org/10.1038/s41467-018-03621-1.

29. Gaudet, M.M., Kuchenbaecker, K.B., Vijai, J., Klein, R.J.,

Kirchhoff, T., McGuffog, L., Barrowdale, D., Dunning, A.M.,

Lee, A., Dennis, J., et al. (2013). Identification of a BRCA2-spe-

cific modifier locus at 6p24 related to breast cancer risk. PLoS

Genet. 9. e1003173. https://doi.org/10.1371/journal.pgen.

1003173.

30. Zhang, J., Zhang, K., Qi, L., Hu, Q., Shen, Z., Liu, B., Deng, J.,

Zhang, C., and Zhang, Y. (2019). DENN domain-containing
2194 The American Journal of Human Genetics 109, 2185–2195, Dec
protein FAM45A regulates the homeostasis of late/multivesic-

ular endosomes. Biochim. Biophys. Acta Mol. Cell Res. 1866,

916–929. https://doi.org/10.1016/j.bbamcr.2019.02.006.

31. Zhu, Q., Zhang, X., Zai, H.-Y., Jiang,W., Zhang, K.-J., He, Y.-Q.,

and Hu, Y. (2021). circSLC8A1 sponges miR-671 to regulate

breast cancer tumorigenesis via PTEN/PI3k/Akt pathway. Ge-

nomics 113, 398–410. https://doi.org/10.1016/j.ygeno.2020.

12.006.

32. Zaremba-Czogalla, M., Hryniewicz-Jankowska, A., Tabola, R.,

Nienartowicz, M., Stach, K., Wierzbicki, J., Cirocchi, R.,

Ziolkowski, P., Tabaczar, S., and Augoff, K. (2018). A novel reg-

ulatory function of CDKN1A/p21 in TNFa-induced matrix

metalloproteinase 9-dependent migration and invasion of

triple-negative breast cancer cells. Cell. Signal. 47, 27–36.

https://doi.org/10.1016/j.cellsig.2018.03.010.

33. Fournier, G., Cabaud, O., Josselin, E., Chaix, A., Adélaı̈de, J.,
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Figure S1. Estimated power of cross-ancestry meta-analysis using samples from ABCC and 

BCAC.  
 

  



 
Figure S2. Comparison of allele frequency in Asian- and European-ancestry women for 

lead variants at risk loci identified by cross-ancestry meta-analysis. The counted allele was 

the allele in association with an increased risk of breast cancer in European-ancestry women. The 

black dashed line is the diagonal line.   



 

 
Figure S3. Performance of expression prediction model in GTEx and TCGA data for genes 

with over 10% correlation in GTEx data. The x axis represents the prediction performance 

(R2) in the GTEx dataset (n = 115) and the y axis represents the prediction performance in the 

TCGA dataset (n = 86). Each dot represents the expression prediction model for one gene. There 

is a trend that genes with high prediction performance in the GTEx data also have high 

prediction performance in the TCGA (Pearson's correlation coefficient: 0.69). 

  



Legends for Supplemental Tables 

Table S1. Studies included in the cross-ancestry meta-analysis. 

Table S2. Lead variants at risk loci for risk of overall breast cancer identified by meta-analyses. 

Table S3. Lead variants at risk loci for risk of ER-positive breast cancer identified by meta-

analyses. 

Table S4. Lead variants at risk loci for risk of ER-negative breast cancer identified by meta-

analyses. 

Table S5. Results for the association of breast cancer risk with 17 novel risk loci in women from 

ABCC and BCAC 

Table S6. Associations of novel risk variants for overall breast cancer risk from analyses using 

meta-regression. 

Table S7. Associations by ER status for lead variants at risk loci identified by cross-ancestry 

meta-analyses. 

Table S8. Associations with breast cancer risk for previously reported index SNPs not located at 

loci identified by our cross-ancestry meta-analysis. 

Table S9. Independent association signals at novel breast cancer risk loci identified by 

conditional analysis in women of Asian and European ancestry. 

Table S10. Samples by tissue type used in cross-tissue model building.  



Table S11. Genes associated with breast cancer risk at the Bonferroni-corrected signficance 

level. 

Table S12. Associations with breast cancer by ER status for genes identified at the Bonferroni-

corrected significant level. 

Table S13. Ancestry-specific associations with breast cancer risk for genes identified at the 

Bonferroni-corrected significant level. 

Table S14. TWAS fine-mapping results for significant genes. 

Table S15. Colocalization analysis results for TWAS significant genes from COLOC. 

Table S16. Putative target protein-coding genes at risk loci for breast cancer risk. 

Table S17. Pathway analyses for protein-coding genes associated with breast cancer. 

Table S18. Summary of findings from genome- and transcriptome-wide association analyses 

with overall breast cancer and ER subtypes. 

  



Supplemental Methods 

 

I. Description of Study Populations 

 

1. Description of Studies of the Asia Breast Cancer Consortium (ABCC) 

 

1.1 Shanghai Breast Cancer Genetics Study (SBCGS) 

 

The Chinese participants were drawn from Shanghai Breast Cancer Genetics Study (SBCGS), 

which consists of the Shanghai Breast Cancer Study (SBCS), Shanghai Breast Cancer Survival 

Study (SBCSS), Shanghai Endometrial Cancer Study (SECS, contributed control data only), and 

the Shanghai Women’s Health Study (SWHS), four large population-based studies in urban 

Shanghai. All participants provided written informed consent prior to interview, and institutional 

review boards of all institutes in both China and the United States approved the study.  

 

The SBCGS contributed samples to both ABCC and the BCAC Asian samples. Samples 

overlapped between ABCC and BCAC were only kept in the ABCC.  

 

1.1.1 Shanghai Breast Cancer Study (SBCS) 

The SBCS is a two-phase (SBCS-I and SBCS-II) population-based case-control study that 

recruited incident patients with breast cancer and controls in urban Shanghai, China.1,2 The first 

phase (SBCS-I) recruited 1,602 eligible breast cancer cases and 1,724 eligible controls, from 

August 1996 to March 1998. Cases were recruited by a rapid case-ascertainment system and the 

population-based Shanghai Cancer Registry, and controls were randomly selected from the 

general population using the Shanghai Resident Registry. There were 1,459 cases (91.1%) and 

1,556 controls (90.3%) who completed in-person interviews. Blood samples (10 ml from each 

woman) were obtained who completed the in-person interview (1,193 (82%) cases and 1,310 

(84%) controls). A sample of exfoliated buccal cells was obtained using cotton swabs from 

virtually all study participants who did not provide a blood sample. The second phase (SBCS-II) 

recruited subjects between April 2002 and February 2005 using a protocol similar to the one 

used in the initial phase. Similar to the SBCS-I subjects, the majority of newly-recruited cases 

(n=1,932, 97.1%) and controls (n=1,857, 93.4%) provided a blood sample or an exfoliated 

buccal cell sample to the study. The modified mouthwash method initially reported by Lum A et 

al. was used.3 Eligibility criteria for study participation were identical for SBCS-I and SBCS-II 

except age. The age ranged from 25 to 65 years for SBCS-I, and from 25 to 70 years in SBCS-II. 

 

1.1.2 Shanghai Breast Cancer Survival Study (SBCSS) 

The SBCSS included 6,303 breast cancer cases ascertained via the population-based Shanghai 

Cancer Registry between April 2002 and December 2006.1 Information on known breast cancer 

risk factors as well as anthropometrics was collected by in-person interviews using a protocol 

and questionnaire similar to that used in the SBCS. Buccal cell samples were collected from 96% 

of study participants using the modified mouthwash method. There were 1,469 breast cancer 

patients participated in both SBCS-II and SBCSS due to the time overlap in the participant 

recruitment period. 

 

1.1.3 Shanghai Endometrial Cancer Study (SECS) 



The SECS is a population-based, case-control study of endometrial cancer conducted between 

January 1997 and December 2003 using a protocol similar to the SBCS, and only the community 

controls from the SECS were included in the present study.1 Eligible cases were identified 

through the population-based Shanghai Cancer Registry and controls were randomly selected 

from the general population of Shanghai using the Shanghai Resident Registry and were age 

frequency matched to cases. Detailed information was collected by in-person interviews and 

anthropometrics measurements were taken. A total of 1,039 controls provided a blood sample or 

buccal cell sample using the mouthwash method, and these women were included in SBCGS. 

 

1.1.4 Shanghai Women’s Health Study (SWHS) 

The SWHS is a population-based cohort study which recruited approximately 75,000 adult 

women from urban Shanghai between 1997 and 2000.4 A total of 56,831 subjects, 75.8% of 

those who completed baseline survey through an in-person interview, donated a blood sample. 

An exfoliated buccal cell sample was collected from an additional 8,934 (49.3%) of the 18,111 

subjects who did not provide a blood sample at baseline. Genomic DNA was available for about 

88% of cohort members. Cancer cases were identified via record linkage with the population-

based cancer registry and data collected at the Vital Statistic Unit, followed by home visits or 

telephone calls if necessary to confirm the diagnoses. Cancer diagnoses were verified by a 

review of medical records obtained from the diagnosing hospital. 

 

Participants in SBCGS have been genotyped by Affymetrix Genome-Wide Human SNP Array 

6.0, the Asian ExomeChip, and the Multi-Ethnic Global Array (MEGA). Similar genotyping and 

QC procedures have been described previously.1,5 After imputation with the 1000 Genomes 

Project Phase 3 and QC exclusions, the final dataset included 2,511 cases and 2,135 controls for 

11.1 million markers for the Affy6 dataset, 1,563 cases and 2,396 controls for 2.95 million 

markers for the ExomeChip dataset, and 1,794 cases and 2,059 controls for 14.1 million markers 

for the MEGA dataset. 

 

1.2 Hwasun Cancer Epidemiology Study-Breast (HCES-Br) 

The Hwasun Cancer Epidemiology Study (HCES-Br) is a hospital-based case-control study to 

identify factors of the cancer development and clinical progression in a Korean population.6,7 

The study included 3,387 female breast cancer cases diagnosed between April 2004 and 

February 2013 at Chonnam National University Hwasun Hospital, a cancer specified hospital in 

Jeollanam-do province, South Korea. Patients with secondary or recurrent tumor were excluded. 

Controls were 3,186 women who were randomly selected from among women with no previous 

cancer diagnosis at enrollment in the Namwon Study and the Dong-gu study, ongoing 

community-based cohort studies in South Korea.8 Genomic DNA was extracted from their 

peripheral blood. Demographics data and conventional factors of breast cancer were collected by 

structured questionnaire and review of medical records. All cases and control subjects provided 

the informed consent to participate in the study and Institutional Review Board of Chonnam 

National University Hwasun Hospital approved this study. In the HCES-Br, there were 274 cases 

and 273 controls genotyped by MEGA and imputed with the 1000 Genomes Project Phase 3 data 

as reference. 

 

1.3 Korea Precision Oncology Program (KPOP) - Breast Cancer 



The KPOP – Breast Cancer study is a study to investigate genetic mutation/variants distribution 

of hereditary breast/ovarian cancer and risk stratification for women with or without family 

history of breast cancer. In addition, the risk factors of breast cancer were studied in women, 

stratified by family history of breast cancer. All cases had a histologically confirmed diagnosis of 

invasive breast cancer or ductal carcinoma in situ. The breast cancer cases were recruited from 

breast cancer center and genetic counseling clinic, National Cancer Center in Korea between 

2013 and 2018. The controls were recruited from health screening examinees from National 

Cancer Center between 2013 and 2016 and they were women free of any cancer. After obtaining 

informed consent, cases and controls were asked to complete questionnaire on reproductive 

factors, lifestyle factors, and family history of cancer and provided blood samples. After 

separating plasma, serum, and whole blood, samples were stored at -70°C until assayed. Overall, 

1904 breast cancer cases and 1195 controls were recruited. In KPOP, there were 963 cases and 

921 controls were successfully genotyped by MEGA and imputed with the 1000 Genomes 

Project Phase 3 data as reference.  

 

1.4 The Biobank Japan Project (BBJ2) 

The BioBank Japan Project recruited around 200,000 patients with 47 diseases in Japan and 

collaboratively collected DNA and serum samples (https://biobankjp.org/english/index.html).9,10 

There were a total of 5,552 breast cancer patients and 89,731 female controls registered in 

Biobank Japan. Control samples were from population-based prospective cohorts and samples 

without related diagnoses. Samples were genotyped using the Illumina 

HumanOmniExpressExome BeadChip or a combination of the Illumina HumanOmniExpress 

and HumanExome BeadChips, and imputed with the 1000 Genomes Project Phase 3 data as 

reference.11 

 

1.5 Seoul Breast Cancer Study (SeBCS): 

The SeBCS is a hospital-based case-control study conducted in two teaching hospitals in 

Seoul.12,13 Between 2001 and 2007, there were 2,342 patients with primary breast cancer 

recruited in the study. Information on known breast cancer risk factors and anthropometrics were 

collected by in-person interviews using a protocol and questionnaire. Medical charts were 

reviewed to verify clinical information. Eligible controls were derived from a large urban cohort 

included in the Korea Genome Epidemiology Study (KoGES), which was an ongoing cohort 

study that has sought to understand the causes and risk factors of disease in South Korea. A total 

of 2,052 controls were recruited between May 2006 and December 2007. They were frequency-

matched to cases on the case’s age at diagnosis in five-year intervals. Using a structured 

questionnaire and a protocol similar to the SeBCS, trained interviewers collected the 

demographic characteristics of the controls, their family histories with regard to breast cancer in 

first-degree relatives, reproductive and menstrual factors, and life-style habits. Samples were 

genotyped using Affymetrix 6.0 array. After quality control and imputation by the 1000 

Genomes Project Phase 3, the final data set included 2,246 cases and 2,052 controls.14  

 

In addition to AABC, the SeBCS also contributed samples to BCAC Asian dataset.  

 

 

 

2. BCAC Asian samples 



 

The studies included in the BCAC that contributed individual-level data to the Asian-specific 

meta-analysis were listed as Study, Location and BCAC project(s): ACP, Thailand, Oncoarray 

and iCOGS; CBCS, Canada, Oncoarray; HERPACC, Japan, Oncoarray and iCOGS; HKHBCFR, 

Hong Kong, Oncoarray; KOHBRA, Korea, Oncoarray; LAABC, USA, iCOGS; MYBRCA, 

Malaysia, Oncoarray and iCOGS; NC-BCFR, USA, Oncoarray; NGOBCS, Japan, Oncoarray; 

SBCGS, China, Oncoarray and iCOGS; SeBCS, Korea, Oncoarray and iCOGS; SGBCC, 

Singapore, Oncoarray and iCOGS; TWBCS, Taiwan, Oncoarray and iCOGS. 

 

2.1 Asia Cancer Program (ACP): 

The ACP is a hospital-based case-control study conducted in Thailand. Breast cancer cases were 

recruited between 1999-2000, and 2008-present at The National Cancer Institute (Central 

region), The Prince Songkla University Research Centre (South region), The HRH Princess 

Maha Chakri Sirindhorn Medical Centre (MSMC)-Srinakarinviroj University (Eastern region), 

Khon-Kaen University Cancer Centre (North-Eastern region). Women who were less than 71 

years of age and underwent biopsy were eligible to participate in the study. All cases were 

pathologically diagnosed with breast cancer. Women resided in the same geographic area, 

younger than 71 years old, and reported no prior history of cancer were recruited as controls. In 

total, 944 invasive cases and 1,382 controls were included in the BCAC Asian dataset. 

 

2.2 Canadian Breast Cancer Study (CBCS) 

The CBCS is a population-based case-control study conducted in Canada.15–18 Incident cases 

diagnosed between 2005 and 2009 were recruited from two areas, Vancouver, British Columbia 

and Kingston, Ontario. The cases were ascertained either from the population cancer registry 

(Vancouver, British Columbia) or participants of the Hotel Dieu Breast Assessment Program 

(Kingston, Ontario). Cancer-free controls were recruited through the Screening Mammography 

Program of British Columbia or the Hotel Dieu Breast Assessment Program in Kingston, 

Ontario. Controls were frequency matched by 5-year age groups.  

 

 

2.3 Hospital-based Epidemiologic Research Program at Aichi Cancer Center (HERPACC) 

The participants were recruited from a hospital-based case-control study conducted in Aichi, 

Japan.19 All incident breast cancer cases were newly diagnosed within 1 year from the first visit 

to the Aichi Cancer Center between 2001 and 2013. Controls were selected from pool of non-

cancer patients who firstly visited Aichi Cancer Center between 2001 and 2011. Subjects with 

previous cancer history were excluded.  

 

 

2.4 Hong Kong Hereditary Breast Cancer (HKHBCFR) 

Genetic screening of high-risk breast cancer patients was approached for the study enrollment 

from all hospitals in Hong Kong, China between 2006 and 2014.20–22 Controls were selected 

from pool of non-cancer patients who visited hospitals in Hong Kong during the same period of 

recruitment as cases.  

 

2.5 Korean Hereditary Breast Cancer (KOHBRA) 



The KOHBRA study is an ongoing cohort study since 2007 to examine high risk groups for 

hereditary breast cancer such as female breast cancer patients with a family history, ovarian 

cancer, or other coincidental cancers, male breast cancer patients, and family members of breast 

cancer patients with BRCA1/2 mutation. Final dataset included selected 1,397 female cancer 

patients without BRCA1/2 mutation among KOHBRA subjects recruited in 2007-2009.23  

 

2.6 Los Angeles County Asian-American Breast Cancer Case-Control Study (LAABC) 

The LAABC is a population-based case-control study of incident breast cancer among Asian 

American women in Los Angeles County. Breast cancer cases were ascertained through the Los 

Angeles Cancer Surveillance Program. The included women were identified as Chinese, 

Japanese or Filipino women (aged 25-74 years) with a histologically confirmed primary breast 

cancer diagnosed between 1996 and 2006.24–26 Controls were recruited from the same 

neighborhood as where cancer cases resided at the time of diagnosis. Cases and controls were 

frequency-matched on specific Asian ethnicities and 5-year age groups.  

 

2.7 Malaysian Breast Cancer Genetic Study (MYBRCA) 

Prevalent or incident breast cancer cases identified at the Breast Cancer Clinic in University 

Malaya Medical Centre from January 2003 to July 2014 and Subang Jaya Medical Centre from 

September 2012 to September 2014.27 Controls are cancer-free individuals (37-74 years) selected 

from women attending mammographic screening at the same hospitals.  

 

2.8 Northern California Breast Cancer Family Registry (NC-BCFR) 

Incident breast cancer cases included women aged <65 years diagnosed from 1995-2009, 

identified through the SEER cancer registry of the Greater San Francisco Bay Area. All cases 

with indicators of increased genetic risk were eligible to enroll (diagnosed at age <35 years, 

personal history of ovarian or childhood cancer, bilateral breast cancer with 1st diagnosis at age 

<50, family history of breast or ovarian cancer in first-degree relatives).28,29 Cases not meeting 

these criteria were randomly sampled (2.5% of non-Hispanic whites, 32% of other 

race/ethnicities). Incident cases also included men aged <80 years diagnosed from 1995-1998. 

Controls were those unaffected family members enrolled from 1995-2011 or unaffected 

unrelated subjects identified through random digit dialing conducted from 1999-2000 in the San 

Francisco Bay Area. Controls were frequency matched to cases diagnosed from 1995-1998 on 5-

year age group and race/ethnicity, at a ratio of 1 control per 2 cases. Only women were included 

in the current analysis.  

 

2.9 Nagano Breast Cancer Study (NGOBCS) 

The Nagano Breast Cancer Study is a multicenter, hospital-based case-control study which was 

conducted from May 2001 to September 2005 at four hospitals in Nagano Prefecture, Japan.30,31 

Cases were admitted to the four hospitals during the survey period, and were a consecutive series 

of women aged 20-74 years with newly diagnosed, histologically confirmed invasive breast 

cancer. Among the 412 eligible patients, 405 (98%) agreed to participate. Controls were selected 

from medical checkup examinees in two of the hospitals who were confirmed having no cancer, 

with one control matched for each case by age (within three years) and residential area during the 

study period. Only one declined to participate among potential control subjects. Written 

informed consent was obtained from 405 matched pairs. Since two controls refused to provide 

blood samples, the analysis was restricted to 403 matched pairs. Participants completed a self-



administered questionnaire, which included questions on demographic characteristics, 

anthropometric factors, smoking habits, family history of cancer, physical activity, medical 

history, and menstrual and reproductive history. Dietary habits were investigated using a 136- 

item semi-quantitative food-frequency questionnaire, which was developed and validated in the 

Japanese population. The ER status of the patient’s breast cancer tissue was obtained from 

medical records. Hormone receptor positivity values were determined either as specified by the 

laboratory that performed the assay, in accordance with the laboratory’s written interpretation 

thereof, or both. The study protocol was approved by the Institutional Review Board of the 

National Cancer Center (Tokyo, Japan).  

 

 

2.10 Singapore Breast Cancer Cohort (SGBCC) 

The SGBCC is an open cohort with a recruitment target of 16,000 patients diagnosed with either 

breast carcinoma in situ or invasive breast cancer. Details of the study design has been published 

elsewere.32 Briefly, recruitment started in 2010. All breast cancer patients who are at least 21 

years of age at diagnosis, who are citizens or permanent residents of Singapore and who are 

attending any of the seven tertiary hospitals are invited to participate in SGBCC. Cases are a 

mixture of prevalent and incident cases. Three main ethnic groups are represented, namely, 

Chinese, Malays and Indians. Controls matched by age and ethnicity were selected from the 

Multi-ethnic Cohort (Phase 2, part of the Singapore Population Health Studies (SPHS).33 

Exclusion criteria for controls included a medical history of cancer, acute myocardial infarction 

or stroke, or major psychiatric morbidity including schizophrenia, psychotic depression, and 

advanced Alzheimer's disease. 

 

 

2.11 Taiwanese Breast Cancer Study (TWBCS) 

The study is a part of an ongoing collaborative study with a focus on understanding the cause of 

breast cancer among Taiwanese.34,35 Breast cancer patients were recruited from those who were 

diagnosed and treated at the Tri-Service General Hospital or the Changhua Christian Hospital 

between March 2002 and August 2005. The controls were randomly selected from women who 

attended the same hospitals for a comprehensive health examination during the same period. If 

any evidence of breast cancer, precancerous lesions of breast or other cancers was found, the 

subject was excluded from the control group. Epidemiologic data were collected from the 

participants via a structured questionnaire by research nurses. Blood biospecimen was also 

collected. All the participants provided their informed consent before the data and sample 

collection.  

 

 

3. BCAC European samples 

 

Summary statistics data of European descendants from studies involved in the BCAC 

OncoArray, iCOGS, and GWAS projects were obtained and utilized in the cross-ancestry meta-

analysis. Among 82 studies from the BCAC, the OncoArray dataset included 80,125 female 

cases with breast cancer and 58,383 female controls of European ancestry, and the Collaborative 

Oncological Gene-environment Study (iCOGS) included 38,349 breast cancer cases and 37,818 

controls.36 In addition, summary statistics from 11 other breast cancer genome-wide association 



studies were also used in the meta-analysis with a combined sample of 14,910 cases and 17,588 

controls. The genotyping data were imputed by IMPUTE version 237 with the 1000 Genomes 

Project Phase 3 as the reference panel.  

 

  



II.  Supplemental Statistical Analyses  

 

Fine-mapping. We investigated the ancestral heterogeneity of the lead variants at risk loci. 

However, lead variants are not necessarily the causal variants, and the observed heterogeneity 

may be related to the different linkage disequilibrium (LD) pattern across populations. Therefore, 

we performed fine-mapping analyses to construct the 95% credible sets for the lead variants, and 

further investigated the ancestral heterogeneity of all variants in the credible sets. Fine-mapping 

analysis was performed using SuSiE38. Samples from 1000 Genome Project Phase 3 (EAS and 

EUR) were used as LD reference. An ancestry-specific LD matrix was used for risk loci 

identified by ancestry-specific analyses. For risk loci identified by cross-ancestry analyses, a 

cross-ancestry LD matrix was constructed by combining ancestry-specific LD matrices using 

weights of population sample sizes.  

 

Gene prediction model building. We used whole genome sequencing (WGS) data in blood 

samples and RNA sequencing (RNA-seq) data from the Genotype-Tissue Expression Project 

(GTEx, version 8) to build prediction models for genes expressed in normal breast tissue. All 

genotyping and expression data were downloaded from dbGap (Accession Number: 

phs000424.v8.p2). 

 

We kept samples from European-ancestry women with both expression and genotyping data (N 

=115). The following genetic variants were used to build genetic prediction models: 1) MAF 

≥0.05, and 2) Hardy-Weinberg equilibrium P ≥ 10-4, and 3) call rate ≥ 95%, and 4) non A/T, C/G 

bi-allelic, and 5) available in BCAC. Finally, a total of 4,853,854 variants were kept for gene 

expression prediction model building. 

 



There were 32 tissues with both RNA-Seq and WGS data available with sample size >50, and 

these 32 tissues were kept for model building. Detailed sample sizes by each tissue type were 

shown in Supplementary Table 10. Within each tissue type, we kept genes with a median 

expression level (transcript per million, TPM) >0 across samples for each tissue, and the 

expression level was log2 transformed. Then we performed quantile normalization to bring the 

expression profile of each sample to the same scale and performed inverse quantile 

normalization for each gene to the same scale. Then the expression levels were adjusted for age, 

the top three principal components (PCs) and the top probabilistic estimation of expression 

residuals (PEER) factors39 to correct for batch effects and experimental confounders. After 

adjusting all these covariates, we performed another inverse quantile normalization for the 

residuals after PEER adjustment of each gene.  

 

We built genetic models to predict gene expression levels in normal breast tissue using the joint-

tissue imputation (JTI) approach, which borrows information across transcriptomes of different 

tissues to improve prediction performance.40 Besides breast tissue, data from all 31 other tissues 

were borrowed in the JTI approach to leverage shared genetic regulation and improve prediction 

performance in a tissue-dependent manner. Gene expression levels were predicted using genetic 

variants within a flanking +/- 500kb from the respective gene boundaries. Five-fold cross-

validation was used to validate the models internally. Genes with a model prediction R >0.1 

(≥10% correlation between predicted and observed gene expression) were included for 

association analyses.  

 



To evaluate the performance of prediction models, we further performed an external validation 

using 86 tumor-adjacent normal breast tissue samples from European-ancestry female breast 

cancer patients in the Cancer Genome Atlas (TCGA). Expression data were processed and 

normalized in similar approach for GTEx data as described above. We calculated the Spearman’s 

correlation between the prediction performance (R2) in GTEx and TCGA. 

 

Association analyses of predicted gene expression with breast cancer risk. Based on the 

weight matrix from the prediction models and the summary statistics from meta-analysis of 

GWAS, we evaluated the association between genetically predicted gene expression and breast 

cancer risk using the method from the S-PrediXcan tool41. The details of the formula used in this 

method are 

𝑍𝑔 ≈ ∑ 𝑤𝑙𝑔

𝜎𝑙̂

𝜎𝑔̂
𝑙∈𝑀𝑜𝑑𝑒𝑙𝑔

𝛽𝑙̂

𝑠𝑒(𝛽𝑙̂)
 

In brief, the Z-score was used to estimate the association between predicted gene expression and 

breast cancer risk. In this formula, 𝑤𝑙𝑔 is the weight of variant 𝑙 for predicting the expression of 

gene 𝑔. 𝛽̂𝑙and 𝑠𝑒(𝛽̂𝑙) are the association regression coefficient and its standard error for variant 𝑙 

in GWAS, and 𝜎̂𝑙 and 𝜎̂𝑔 are the estimated variances of variant 𝑙 and the predicted expression of 

gene 𝑔, respectively. For this study, we estimated the correlations between variants included in 

the prediction models. 

TWAS fine-mapping analyses. We performed TWAS fine-mapping for all genomic regions 

that contain one or more TWAS-identified risk genes using FOCUS (Fine-mapping Of CaUsal 



gene Sets, v0.6.10)42. Regions were defined using the correlation matrix of predicted effects on 

gene expression around TWAS-identified genes. A posterior inclusion probability (PIP) was 

assigned to each gene for being possibly causal in each TWAS uncovered association signal. 

Based on the PIP of each gene and a null model, whereby no gene in the region is causal for the 

TWAS signal, a gene set for each region in which the sum of PIPs for all the genes was greater 

than or equal to 90% probability (∑ 𝑛𝑃𝐼𝑃 ≥ 90%𝑘
𝑖=1 ) was defined as a credible gene set. 

Colocalization analyses. COLOC were conducted to assess the probability that molecular traits 

as estimated by eQTL and physiological traits as estimated by GWAS share the same causal 

variant43. For each TWAS-identified risk gene, we only estimated variants with both gene-

variant paired eQTL results from GTEx and GWAS association statistics (effect size estimate, 

standard error, and P value) and reached association p value less than 0.5. We obtained reference 

information such as MAF, sample size, and case-to-control proportions (in case of binary traits) 

for each variant. We defined a gene as having evidence of co-localization when gene-based 

posterior probability of co-localization PP[4] > 0.5. 

Pathway analyses. Protein-coding genes identified by our TWAS were located at 46 GWAS-

identified risk loci and seven novel risk loci. If there were multiple TWAS-identified genes at the 

same locus, genes which were included in the fine-mapping credible set or supported by 

colocalization analyses were selected for pathway analyses. At 150 additional GWAS-identified 

loci without protein-coding genes identified by our TWAS, previously reported putative target 

genes44 or nearby protein-coding genes were selected for pathway analyses. A total of 221 

putative genes for breast cancer were included for pathway analyses (Table S16). The WEB-



based Gene Set Analysis Toolkit (WebGestalt) was used to perform for KEGG pathways and 

gene ontology terms enrichment analyses45,46.  
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