

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Quantitative G6PD point-of-care test can be used reliably on cord blood to identify male and female newborns at increased risk of neonatal hyperbilirubinaemia: a mixed method study

Journal:	BMJ Open
Manuscript ID	bmjopen-2022-066529
Article Type:	Original research
Date Submitted by the Author:	12-Jul-2022
Complete List of Authors:	Bancone, Germana; Shoklo Malaria Research Unit; University of Oxford Centre for Tropical Medicine and Global Health Gilder, Mary Ellen; Department of Family Medicine, Faculty of Medicine, Chiang Mai University Win, Elsie; Shoklo Malaria Research Unit Gornsawun, Gornpan; Shoklo Malaria Research Unit Penpitchaporn, Penporn; Shoklo Malaria Research Unit Moo, Phaw Khu; Shoklo Malaria Research Unit Archasuksan, Laypaw; Shoklo Malaria Research Unit Win, Sylverine; Shoklo Malaria Research Unit Win, Sylverine; Shoklo Malaria Research Unit Hashmi, Ahmar; Institute for Implementation Science, University of Texas Health Sciences Center (UTHealth), Houston, TX USA; Departmen of Health Promotion and Behavioral Sciences, School of Public Health, University of Texas Health Sciences Center (UTHealth) Hanboonkunupakarn, Borimas; Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University Nosten, Francois; Shoklo Malaria Research Unit; University of Oxford Centre for Tropical Medicine and Global Health Carrara, Verena Ilona; Shoklo Malaria Research Unit; Institute of Global Health, Faculty of Medicine, University of Geneva, Switzerland McGready, Rose; Shoklo Malaria Research Unit; University of Oxford Centre for Tropical Medicine and Global Health
Keywords:	PAEDIATRICS, NEONATOLOGY, MOLECULAR BIOLOGY

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reziez onz

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

3		
4 5	1	TITLE
6 7	2	Quantitative G6PD point-of-care test can be used reliably on cord blood to identify male and
8 9	3	female newborns at increased risk of neonatal hyperbilirubinaemia: a mixed method study
9 10	4	
11 12	5	Germana Bancone ^{1,2,*} , Mary Ellen Gilder ³ , Elsie Win ¹ , Gornpan Gornsawun ¹ , Penporn Penpitchaporn ¹ , Den Khu Mag ¹ , January Arabasulus 1, Nan San Wei ¹ , Subaria 2, Win ¹ , Ka Ka Augus ¹ , Abasar Hashari ⁵ ,
13	6 7	Paw Khu Moo ¹ , Laypaw Archasuksan ¹ , Nan San Wai ¹ , Sylverine Win ¹ , Ko Ko Aung ¹ , Ahmar Hashmi ^{5,6} , Borimas Hanboonkunupakarn ⁴ , Francois Nosten ^{1,2} , Verena I Carrara ^{1,2,7} , Rose McGready ^{1,2}
14 15	8	bonnus hunboonkungukun , huncois Nosten , verenu reururu , hose wedreudy
16 17	9	1. Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical
18	10	Medicine, Mahidol University, Mae Sot, Thailand.
19 20	11	2. Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of
21 22	12	Oxford, Oxford, United Kingdom.
23 24 25	13 14	3. Department of Family Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
26 27 28 29 30 31 32 33 34	15 16	4. Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
	17 18	5. Institute for Implementation Science, University of Texas Health Sciences Center (UTHealth), Houston, TX USA
	19 20	6. Department of Health Promotion and Behavioral Sciences, School of Public Health, University of Texas Health Sciences Center (UTHealth) Houston, TX USA
35 36	21	7. Institute of Global Health, Faculty of Medicine, University of Geneva, Switzerland
37 38	22	* corresponding author: germana@tropmedres.ac
39 40 41	23	
42 43 44	24	
45 46 47	25	
48 49	26	
50 51 52 53 54	27	
55 56 57 58 59 60		

BMJ Open

3 4	28
5 6 7	29
8 9	30
10 11	31
12 13	32
14 15 16	33
17 18	34
19 20	35
21 22	36
23 24 25	37
26 27	38
28 29	39
30 31	40
32 33 34	41
34 35 36	42
37 38	43
39 40	44
41 42	45
43 44 45	46
46 47	47
48 49	48
50 51	49
52 53 54	50
55 56	51
57 58	52
59 60	

28 ABSTRACT

29 Objectives: New point-of-care (POC) quantitative G6PD testing devices developed to provide safe 30 radical cure for P. vivax malaria may be used to diagnose G6PD deficiency in newborns at risk of severe 31 neonatal hyperbilirubinaemia, improving clinical care, and preventing related morbidity and mortality. 32 Methods: We conducted a mixed-methods study analyzing technical performance and usability of the 33 "STANDARD G6PD" Biosensor when used by trained midwives on cord blood samples at two rural 34 clinics on the Thailand-Myanmar border.

Results: In 307 cord blood samples, the Biosensor had a sensitivity of 1.000 (95%Cl 0.859-1.000) and a
specificity of 0.993 (95% Cl 0.971-0.999) as compared to gold standard spectrophotometry to diagnose
G6PD deficient newborns using a receiving operator characteristic (ROC) analysis-derived threshold of
≤4.8IU/gHb. The Biosensor had a sensitivity of 0.727 (95%Cl: 0.498-0.893) and specificity of 0.933
(95%Cl: 0.876-0.969) for 30-70% activity range in females using ROC analysis-derived range of 4.9 to
9.9IU/gHb. These thresholds allowed identification of all G6PD deficient neonates and 80% of female
neonates with intermediate phenotypes.

42 Need of phototherapy treatment for neonatal hyperbilirubinaemia was higher in neonates with
 43 deficient and intermediate phenotypes as diagnosed by either reference spectrophotometry or
 44 Biosensor.

Focus group discussions found high levels of learnability, willingness, satisfaction, and suitability for the Biosensor in this setting. The staff valued the capacity of the Biosensor to identify newborns with G6PD deficiency early ("We can know that early, we can counsel the parents about the chances of their children getting jaundice") and at the POC, including in more rural settings ("Because we can know the right result of the G6PD deficiency in a short time. Especially for the clinic which does not have a lab"). Conclusions: The Biosensor is a suitable tool in this resource-constrained setting to identify newborns with abnormal G6PD phenotypes at increased risk of neonatal hyperbilirubinaemia.

53 Strengths and limitations of this study
54 • The technical performance of the G6PD q

• The technical performance of the G6PD quantitative point-of-care diagnostic device was assessed against the current gold-standard spectrophotometric assay.

- Receiving operator characteristic analysis was used to identify the best diagnostic thresholds.
- Usability among clinical personnel from a resource-constrained setting was analysed using a conceptual framework developed for similar settings.
- Fewer than planned focus group discussions were conducted and they occurred in a single
 - clinical site providing a possibly narrower point of view on the usability topics explored.

61 INTRODUCTION

Pathologically increased levels of bilirubin during the first week of life, i.e. neonatal hyperbilirubinaemia (NH), are common and dangerous for the developing brain. The most severe form of NH, kernicterus, causes neurological sequelae in >80% of neonates (56/100,000 live births globally, [1]). Every year, an estimated twenty-four million newborns are at risk of NH-related adverse outcomes with three-quarters of mortality occurring in sub-Saharan Africa and South Asia [1,2]. These preventable deaths and disabilities disproportionally affect neonates where universal health care and treatment options are scarce, if not absent [3].

Several genetic and clinical factors influence the timing and evolution of NH, including G6PD deficiency,
ABO blood group incompatibility, prematurity/low birth weight and sepsis [4]. Early identification of
these risk factors can dramatically improve neonatal clinical management during the first days of life
[5].

The enzymatic defect of G6PD deficiency, caused by mutations on the X-linked G6PD gene, is a known
risk factor for increased levels of bilirubin after birth and it is associated with susceptibility to druginduced haemolysis [6]. Risk of severe NH is increased in both deficient and heterozygous newborns
with abnormal phenotypes [7-9] and universal neonatal screening of G6PD deficiency is supported by
WHO in populations where more than 3-5% of males are affected [10].

BMJ Open

G6PD deficiency is particularly prevalent among neonates from tropical regions [11], where clinical
care is often provided in a non-tertiary hospital or clinic context. Knowledge of G6PD status by medical
staff and parents can aid in avoiding potentially haemolytic antibiotics or other agents (such as
naphthalene), improved follow-up, and heightened awareness of signs and symptoms of severe NH.

G6PD deficiency is very common among the Karen and Burman population along the Thailand-Myanmar border (9-18% in males, [12]) where it is associated with an increased risk to develop NH requiring phototherapy both in G6PD deficient (over 4-fold [13]) and in heterozygous females (over 2fold [5]) as compared to wild type genotype neonates. In a recent study, screening of G6PD by qualitative Fluorescent Spot Test (FST) on cord blood failed to identify almost 10% of G6PD deficient neonates [14].

Demonstrating usability of new quantitative Point-Of-Care (POC) G6PD diagnostic tests by locally trained clinical staff can inform clinical deployment in this setting and in other rural settings. This study assessed the technical performance and usability of the "G6PD STANDARD" (SD Biosensor, Korea) test when used by trained midwives in two clinics along the Thailand-Myanmar border.

92 MATERIALS AND METHODS

93 Study design

A mixed-methods study was conducted to evaluate both the technical performance of the "G6PD
STANDARD" (SD Biosensor, Korea) test (henceforth "Biosensor") and its usability by midwives in a nontertiary setting. G6PD enzymatic activity and haemoglobin concentration measured by the device were
compared to the gold standard reference spectrophotometric assay and haematology analyser,
respectively. Performance of the G6PD fluorescent spot test (FST) currently used routinely at the pointof-care, was also compared to the reference and new test.

Following local staff training, user proficiency was assessed before study start; usability was explored
using focus group discussions (FGD) at the end of the study.

102 Study setting and population

The study was conducted in SMRU clinics situated along the Thailand-Myanmar border in Tak province
(Thailand) where free antenatal care and birthing services are provided for migrant women of
predominantly Karen and Burman ethnicity.

SMRU midwives come from the same population as the pregnant women and patients seeking care at SMRU clinics. The majority of midwives have primary or secondary education and receive clinical training on-site. Pregnant women attending SMRU clinics at Wang Pha (WPA) and Maw Ker Thai (MKT) were informed about the study at regular antenatal care visits in the 3rd trimester. Informed consent procedures and eligibility assessments for mothers were completed before labour commenced. Eligibility of neonates was assessed immediately after delivery, and those born at an estimated gestational age (EGA) by ultrasound ≥35 weeks with no severe maternal complications at delivery and no severe neonatal illness were included. In order to allow laboratory analyses to be performed within 30 hours from collection, only neonates born during week days were included. For all neonates, indication for starting phototherapy treatment followed the recommendations of the UK NICE guidelines [15].

³⁸ 117 Blood analyses for technical evaluation of Biosensor

118Two milliliters of cord blood were collected into EDTA from the umbilical cord using an established120SMRU SOP. An aliquot of anticoagulated blood was used by the midwives in the delivery room for the120Biosensor following manufacturer's instructions within one hour of collection (Appendix 1). Tests were121repeated if the test result was an error or "HI" (a result obtained when G6PD activity is very high,122outside the instrument analytic range). High-level and low-level Biosensor controls were run weekly or123monthly (depending on availability) from April 2020 until May 2021.

An aliquot of anticoagulated blood was analysed by G6PD fluorescent spot test (FST) at the clinical
 125
 125
 126
 126
 126
 127
 128
 129
 129
 120
 120
 120
 120
 121
 121
 122
 123
 124
 125
 125
 125
 126
 126
 126
 126
 126
 126
 127
 128
 129
 120
 120
 120
 120
 120
 120
 120
 120
 121
 121
 121
 121
 122
 123
 124
 125
 125
 125
 126
 126
 126
 127
 128
 129
 120
 120
 120
 120
 120
 121
 121
 121
 121
 121
 121
 121
 122
 123
 124
 125
 125
 125
 125
 126
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 <li

Page 7 of 32

BMJ Open

Gold standard reference testing for G6PD and haemoglobin were performed by spectrophotometric
assay and haematology analyser (with complete blood and reticulocyte counts), respectively, at the
SMRU central laboratory.

G6PD spectrophotometric assay was performed using Pointe Scientific kits (assay kit # G7583-180, Lysis Buffer # G7583-LysSB). Kinetic determination of G6PD activity at 340 nm was performed using a SHIMAZU UV-1800 spectrophotometer with temperature controlled cuvette compartment (30°C). Samples were analysed in double and mean activity was expressed in IU/gHb using the Hb concentration obtained by complete blood count analysis. The final result was calculated using manufacturer's Temperature Control Factor of 1.37. Two controls (Normal, Intermediate or Deficient; Analytic Control Systems, Inc. USA) were analysed at every run and results compared to expected ranges provided by manufacturer. Complete blood count was performed using a CeltacF MEK-8222K haematology analyser (Nihon Kohden, Japan). Three-levels quality controls were run every day and device maintenance and calibration were performed regularly. Reticulocytes were analysed by microscopy after staining with supervital staining Crystal Violet.

141Buffy coat recovered from whole blood after centrifugation was stored at -20°C for later DNA142extraction using standard columns kit (Favorgen Biotech, Taiwan). Genotyping for G6PD common143mutations was performed through established SOPs [16]. Mahidol mutation was analysed in all144samples. Other mutations were only analysed in phenotypically deficient or intermediate samples145(G6PD < 9.31IU/gHb by reference test) with wild type or heterozygote Mahidol genotypes. Viangchan,</td>146Chinese-4, Kaiping, Canton, Union and Mediterranean were analysed first and full gene sequence was147performed if none of these mutations were found.

0 148

149 Biosensor training, user proficiency and usability assessment

150 Midwives of WPA and MKT SMRU clinics were trained for use of Biosensor and were eligible to 57 151 participate in the usability component of the study following informed consent. Two to four training 59 152 sessions were provided at each clinic in the local language by an experienced laboratory technician

(author LA). The sessions lasted from 1 to 2 hours and included a short introduction about the test, a practical demonstration using imitation blood, and supervised use of the biosensor by each midwife. Midwives were allowed to practice the procedure the week following the training prior to taking a user proficiency test. The proficiency test was administered by author LA in the local language and it consisted of a questionnaire (modified from a questionnaire developed by PATH (https://www.finddx.org/wp-content/uploads/2020/09/PATH_STANDARD-G6PD-User-Competency-

Assessment-quiz_08oct19.pdf) and direct observation of two consecutive tests. Midwives were asked to explain out-loud their actions while performing the first test. The proficiency test was analysed by authors GB and GG and midwives who scored <85% were re-trained before study start. A visual aid with all critical steps of the procedure was printed and available in the delivery room during the study.

The usability component of the study followed the conceptual framework for acceptance and use of a rapid diagnostic test for malaria proposed by Asiimwe et al. [17] that evaluates 6 components: learnability, willingness, suitability, satisfaction, efficacy, and effectiveness. The focus group discussions (FGD) specifically focused on 4 main themes of learnability, willingness, satisfaction, and suitability. Due to COVID, only two of the planned six total FGD were conducted. The midwives were grouped by their seniority, with senior and junior midwives together, and midwife assistants in a separate group in order to encourage honest and open conversation. One researcher (KKA) facilitated the FGD while an experienced assistant took notes; both were fluent in Burmese and Karen languages used in the FGD. Immediately following the FGD, research staff debriefed and noted main themes of the discussion. FGDs were audio-recorded and subsequently translated and transcribed in English. Two researchers (MG and GB) independently analysed the transcript using thematic analysis based on the pre-set framework [17] using Taguette (a free and open access qualitative data analysis software, https://joss.theoj.org/papers/10.21105/joss.03522) and confirmed findings with the KKA. Face-to-face meeting and exchange of notes allowed for triangulation between the researchers.

Page 9 of 32

1 2		
3 4	177	Blood analysis for assessment of neonatal hyperbilirubinaemia
5 6	178	Routine clinical care for newborns included at least one total serum bilirubin (TSB) test before
7 8	179	discharge (around 48h of life) using capillary blood measured on-site by the rapid quantitative
9 10	180	bilirubinometer BR-501 (Apel Co. Ldt, Japan).
11 12 13 14	181	
15 16	182	Sample size and statistical analyses
17 18	183	The expected prevalence of G6PD deficiency in the population living at the border is 9-18% in males
19 20	184	and 2-4% in female [12, 16] corresponding to approximately 20-30% heterozygous females, 60% of
21 22	185	whom have intermediate activity [18]. Assuming that the proportion of females and males in the
23 24	186	neonate population is 50%, 9% were expected to be G6PD deficient and 7% to be G6PD intermediate.
25 26	187	In order to obtain 95% CI of the limits of agreement within 0.5 SD of the difference, about 31 neonates
27 28 29	188	with deficiency and 25 with intermediate phenotypes were needed, with a minimum total sample size
30 31	189	of 350 samples.
32 33	190	Clinical data were double entered in MACRO and collated with laboratory data; data were analysed
34 35 36	191	using SPSSv27.
37 38	192	Male median (MM) was calculated in all males with wild type genotypes in both the references
39 40 41	193	spectrophotometric assay and the Biosensor. Deficiency was defined as enzymatic activity below 30%
41 42 43	194	of MM by reference spectrophotometry and receiving operator characteristic (ROC)-derived 30%
44 45	195	threshold by Biosensor; intermediate phenotypes were defined as enzymatic activity between 30%
46 47	196	and 70% of the MM or ROC-derived threshold.
48 49 50	197	Mean and standard deviation (SD) were reported for continuous variables. Categorical variables were
50 51 52	198	compared by Chi-squared test and ANOVA. Bland-Altman plot was used to inspect correspondence
53 54	199	between G6PD activity detected by Biosensor compared to the spectrophotometry assay [19].
55 56 57	200	Correlation was assessed using Pearson's coefficient of correlation and Interclass Correlation
57 58 59	201	Coefficient (ICC). Area under the curve (AUC) of the ROC curve [20] was calculated at different activity
60	202	thresholds to analyse clinical performances (i.e. sensitivity and specificity) of the Biosensor. Cohen's

3 4	203	Kappa coefficient was calculated for categories of phenotypes identified by Biosensor and
5 6	204	spectrophotometry.
7 8	205	For analysis of haematologic features and risk of neonatal hyperbilirubinaemia, neonates gestational
9 10 11	206	ages assessed by ultrasound were categorized as \leq 38 and $>$ 38 weeks according to epidemiologic
12 13	207	studies conducted previously in the same population [21].
14 15 16	208	Statistical significance was assessed at the 5% level.
16 17 18	209	Patient and Public Involvement statement
19 20	210	At the outset of the study, the research team engaged the local population through a local ethics and
20 21 22	211	research advisory committee, the Tak Province Community Advisory Board, Thailand. This group is
23 24	212	comprised of community leaders, and were asked to advise on study design, process, and outcomes
25 26 27	213	of interest, and subsequently approved the study (TCAB201904).
28 29 30 31	214	RESULTS
32 33	215	A total of 331 cord blood samples were collected between April 2020 and November 2021; six were
34 35	216	clotted and excluded from all analysis. Of the remaining 325 samples, 257 (79%) were collected in MKT
36 37 38	217	clinic and 68 in WPA clinic, in 166 (51%) female and 159 male neonates. Mean (SD) of estimated
39 40	218	gestational age of newborns was 39.1 (1.0) weeks.
41 42	219	General haematologic characteristics
43 44	220	As expected for this specimen, haematological characteristics of cord blood (Table 1) show higher
45 46	221	white blood cell count, haemoglobin concentrations, reticulocyte counts and larger cellular volumes
47 48 40	222	compared to adult blood. Reticulocyte counts and red cell distribution width were higher in neonates
49 50 51	223	<38 weeks gestational age (P=0.02 and P=0.01 respectively) while the other indexes did not differ by
52 53	224	gestational age groups.
54 55	225	
56 57 58 59 60	226	

1 2 3	227	Table 1. H
4 5		EGA
6		
7		(weeks
8		<38
9		
10		≥38
11		
12		P _{ANOVA}
13	228	
14	-	
15	229	* Numbe
16	230	enzymati
17		,
18	231	
19		
20		
21		
22 23		
25 24		
24 25		
26		
27		
28		
29		
30		
31		
32		
33		
34		
35		
36		
37		
38		
39		
40		
41 42		
42 43		
43 44		
44 45		
45 46		
40		

Haematologic characteristics of cord blood samples according to newborn gestational age. Results are shown as mean (SD)

EGA		WBC	NEU	LYM	RBC	HGB	НСТ	MCV	мсн	мснс	RDW	PLT	Reticulocyte
(weeks)	N*	(10 ³ / uL)	(10 ³ / uL)	(10 ³ / uL)	(10 ⁶ / uL)	(g/dL)	(%)	(fL)	(pg)	(g/dL)	(%)	(10 ³ / uL)	(%)
<38	19	13.1	9.6	2.7	4.3	14.4	48.0	110.9	33.2	29.9	16.8	259.2	2.8
		(3.6)	(3.3)	(1.7)	(0.4)	(1.7)	(5.4)	(6.6)	(2.7)	(1.5)	(1.5)	(66.2)	(1.8)
≥38	298	14.3	10.8	2.8	4.5	14.5	49.0	109.0	32.3	29.6	16.0	261.4	2.1
		(3.8)	(3.6)	(1.6)	(0.5)	(1.7)	(5.2)	(7.9)	(3.0)	(1.4)	(1.2)	(47.7)	(1.1)
P _{ANOVA}		0.17	0.16	0.88	0.14	0.68	0.43	0.30	0.21	0.41	0.01	0.85	0.02

.s 317 out of 32., er of samples analysed by haematology analyser was 317 out of 325; 7 samples were analysed by Hemocue and result used to calculate G6PD

ic activity.

2		
3 4	232	G6PD genotypes
5 6	233	A total of 26 hemizygous mutated males (21 Mahidol, 2 Kaiping, 1 Viangchan, 1 Coimbra, 1 Orissa), 3
7 8	234	homozygous mutated females (Mahidol), 34 heterozygous females (32 Mahidol, 1 Canton, 1
9 10	235	Viangchan) and 262 wild type (129 females and 133 males) were found. Overall allelic frequency of all
11 12 13	236	mutated alleles was 13.4%. The distribution of G6PD activity by spectrophotometry and biosensor
13 14 15	237	associated with different genotypes are shown in Figures 1 and Supplementary Tables 1 and 2.
16	220	
17 18	238	Fluorescent spot test
19	239	The poor performances of the FST in cord blood were confirmed here, with the FST failing to identify
20 21 22	240	23% (7/30) of deficient neonates and 100% of the intermediate females (22/22; Table 2).
23 24	241	Technical evaluation of Biosensor
25 26	242	Male medians by reference spectrophotometric assay and Biosensor
27 28	243	MM G6PD activity by spectrophotometer was 13.3 IU/gHb giving a 30% threshold of 4.0 IU/gHb for
29 30	244	diagnosis of deficiency; intermediate activity (30-70%) in females ranged between 4.1 and 9.3 IU/gHb.
31 32	245	The cord blood-specific 30% spectrophotometric threshold identified all the hemizygous male and
33 34 35	246	homozygous female newborns (Figure 1A).
36 37	247	MM of G6PD activity by Biosensor calculated on 307 samples was 14.4 IU/gHb giving a 30% threshold
38 39	248	of 4.3 IU/gHb for diagnosis of deficiency. Intermediate activity (30-70%) in females ranged between
40 41	249	4.4 and 10.1 IU/gHb (Figure 1B).
42 43 44	250	In 7% of cases (23/325), the Biosensor provided an initial result of "HI" activity without a numeric value.
44 45 46	251	Of the 19 samples retested, 14 had "HI" results again and 5 samples had an activity ranging from 17.3
47 48	252	to 20.0 IU/gHb; all samples with initial or confirmed "HI" results were normal by spectrophotometry
49 50	253	and had a wild type genotype. Overall, 18 samples (5.5% of the total) did not have a final numeric
51 52 53	254	result by Biosensor but would have been considered "normal", according to the spectrophotometric
54 55	255	assay.
56		
57 58		
59		
60		

1

BMJ Open

2	
3 4	2
5	2
5 6 7	
7 8	2
9	_
10	4
11 12	2
13	
14	2
15 16	_
16 17	2
18	2
19 20	
21	2
22	_
23 24	4
24 25	2
26 27	_
27 28	2
29	
30 31 32 33	2
31 32	-
33	-
34	_
35 36	4
36 37	2
38	
39 40	2
40 41	_
42	4
43 44	2
44 45	
46	-
47 48	4
40 49	2
50	
51 52	2
52 53	_
54	2
55	
56 57	2
58	
59	4
60	

256 Biosensor performance

Biosensor performance was assessed for 307/325 samples that yielded numeric results. The mean
(±1.96SD) difference in enzymatic activity between Biosensor and spectrophotometry was 1.05 IU/gHb
(LoA: -3.52 to 5.62 IU/gHb) as represented in the Bland-Altman plot in Figure 2A. A very strong
correlation between enzymatic activity by Biosensor and reference spectrophotometry was observed
(Pearson's r=0.855, p<0.001; ICC=0.905, p<0.001).

The mean (±1.96SD) difference in Hb between the Biosensor and haematology analyser was 0.70 g/dL (LoA: -2.83 to 4.23 g/dL) (Figure 2B). A moderate correlation between Hb levels by Biosensor and haematology analyser was observed (Pearson's r=0.637, p<0.001; ICC=0.728, p<0.001).

Area under the curve (AUC) of the ROC analysis (Figure 3A) of the 30% threshold was 0.999 (95%CI: 0.997-1.000); ROC analysis showed that 30% of Biosensor MM (4.3IU/gHb) was associated with sensitivity of 0.931 (95%CI: 0.758-0.988) and specificity of 0.989 (95%CI: 0.966-0.997) while a threshold of 4.8IU/gHb had a sensitivity of 1.000 (95%CI: 0.859-1.000) and a specificity of 0.993 (95% CI: 0.971-0.999). This second threshold was therefore used for the subsequent analyses.

AUC of the ROC analysis (Figure 3B) for the 70% threshold was 0.972 (95%CI: 0.949-0.994) and ROC analysis showed that a threshold of 9.9IU/gHb had a better sensitivity and specificity as compared to the 70% of Biosensor MM (10.1 IU/gHb). The ROC-derived threshold had a sensitivity of 0.842 (95%CI: 0.716-0.921) and specificity of 0.984 (95%CI: 0.957-0.995) to identify samples with ≤70% activity and was used for subsequent analyses.

AUC of the ROC analysis for the range 30-70% activity was 0.935 (95%CI: 0.887-0.983); sensitivity and
 specificity for intermediate phenotypes in females were 0.727 (95%CI 0.498-0.893) and 0.933 (95%CI:
 0.876-0.969) respectively based on ROC-derived thresholds as compared to 0.592 (95%CI: 0.390-0.770)
 and 0.953 (95%CI: 0.897-0.980) using Biosensor MM thresholds.

When comparing phenotypes defined according to the 30% and 70% thresholds of spectrophotometry
 When comparing phenotypes defined according to the 30% and 70% thresholds of spectrophotometry
 and ROC-derived threshold for Biosensor (Table 2), the Biosensor correctly identified all deficient and
 and ROC-derived threshold for Biosensor (Table 2), the Biosensor correctly identified all deficient and

normal males and all deficient females. In females, the Biosensor incorrectly identified 9% (2/22) of intermediate females (activity by spectrophotometry 33% and 62%) as deficient, and 7% (9/130) of phenotypically normal female neonates as intermediate (activity by spectrophotometer ranging from 71% to 113%). It also misdiagnosed 18% (4/22) of intermediate samples as normal. Of these 4 samples, 3 were Mahidol heterozygotes and 1 was a wild type and their enzymatic activity by spectrophotometry ranged from 54% to 64%. Cohen's kappa coefficient was 0.841, p<0.001. Overall, the majority of samples with discordant results (11/15) were identified by the Biosensor as having a "worse" phenotype. Characteristics of the 15 samples with discordant results are reported in Supplementary Table 3.

> Table 2. Diagnostic performance of FST and Biosensor as compared to gold standard spectrophotometry.

		Spectrophotometry						
		Ma	ale					
		Deficient	Normal	Deficient	Intermediate	Normal		
	Deficient	20	0	2	0	0		
FST	Normal	6*	133	2*	22	137		
Σ.	Total	26	133	4	22	137		
	Deficient	26	0	4	2#	0		
osu	Intermediate	NA	NA	0	16	9 ^{\$}		
Biosensor	Normal	0	125	0	4 ^{&}	121		
	Total	26	125	4	22	130		

Phenotypes are based on 30% and 70% thresholds for spectrophotometry. For Biosensor, threshold for deficiency is ≤ 4.8 IU/gHb and 4.9 to 9.9IU/gHb for intermediate, both obtained by ROC analysis. Total sample for Biosensor was 307; total sample for FST was 322 (3 samples were not analysed by FST at the clinic)

*Enzymatic activities ranging from 12% to 27% of spectrophotometry MM.

[#]Two Mahidol heterozygotes with activity by spectrophotometry of 33% and 62% of MM.

^{\$} Two Mahidol heterozygotes and 7 wild type samples with enzymatic activity by spectrophotometry ranging from 71% to 113%.

- [&] Three Mahidol heterozygotes and 1 wild type samples with enzymatic activity by
- spectrophotometry ranging from 54% to 64%.
- Characteristics of discordant samples are reported in Supplementary Table 1.

1 2		
2 3	317	
4 5	318	
6 7	319	No difference in results were observed by clinic (ICC=0.899, p<0.001 in MKT and ICC=0.930, p<0.001 in
8 9 10	320	WPA) or user. In MKT clinic where the test was used over 20 months, a trend of larger absolute mean
10 11 12	321	differences in activity (Biosensor - Spectrophotometry) were observed in the last 4-8 months of use as
13 14	322	compared to the first 12 months (Supplementary Figure 1).
15 16	323	Risk of neonatal hyperbilirubinaemia
17 18	324	Risk of neonatal hyperbilirubinemia by phenotype (determined by spectrophotometry) was assessed
19 20 21	325	in term neonates (EGA≥38weeks). A significantly larger proportion of G6PD deficient neonates (29%)
22 23	326	underwent phototherapy for treatment of NH as compared to G6PD normal (6%, RR[95%CI] =4.9 [2.3-
24 25	327	10.5]; P<0.001). A larger proportion of female neonates with intermediate phenotypes (90% of whom
26 27 28	328	were heterozygotes) required phototherapy (15%), although in this small cohort the difference did not
29 30	329	reach statistical significance (RR[95%CI] =2.6 [0.8-8.1]; P=0.13; supplementary Table 4. Relative risk by
31 32	330	quantitative phenotypes were similar to those already established by genotypes in the same
33 34 35	331	population [5].
36	332	Biosensor training, user proficiency and usability assessment
37 38 39	333	A total of 22 midwives in two clinics were initially trained and completed the users' proficiency test,
40 41	334	including 7 senior, 10 junior and 5 assistant midwives. Median (min-max) observed score from the
42 43	335	questionnaire (max 7 points) and observed tests (max 18 points) was 22.1 (18-24.5). The median score
44 45 46	336	did not differ by seniority: assistant 21.4 (18.0-23.5), junior 22.0 (19.3-24.5), senior 22.8 (21.0-24.5);
40 47 48	337	most midwives (72%) had a score >21 points (>85% of maximum score). The most common mistakes
49 50	338	in the questionnaire were on how to mix the blood and the buffer (pipetting 10 times vs shaking the
51 52	339	buffer tube) and on volume of blood mixture to transfer into the device. On observation, the most
53 54 55	340	common mistakes were failure to check the date on Biosensor screen and failure to check test expiry
56 57	341	date (rated as minor mistakes as expired test strips are automatically recognized by the Biosensor and
58 59 60	342	rejected).

3 4	
4 5	
6	
7	
, 8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43 44	
44 45	
45 46	
40 47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

1 2 3

343	Two focus group discussions were held in December 2021 in MKT clinic, four weeks after completion
344	of the sample collection at that site; one FGD included 6 senior and junior midwives, and one included
345	6 assistant midwives. Discussions on satisfaction, learnability, willingness, and suitability and future
346	use are summarized in Table 3. Overall satisfaction was high, although staff were concerned with
347	invalid results, and found it challenging to dedicate one member of the team to perform the biosensor
348	test in the delivery room in the busy postpartum period. In terms of learnability, the midwife assistants
349	reported learning the device more easily, though some were anxious about missing steps. The senior
350	staff were anxious about mistakes and clotted blood, and reported the need to refer to the instructions
351	as a problem. Contrary to the positive expressions to keep using the device at the clinic, the midwives'
352	willingness to use the device was not high and they requested a dedicated staff to perform the test or
353	the test to be done in the laboratory. In terms of suitability and future use, the midwives found the
354	results clinically useful and a valuable diagnostic tool in both their setting and field clinics. However,
355	they were concerned about neglecting clinical care while doing a laboratory test, the cost of the device,
356	and emphasized the need for good training.

Table 3. Selected quotes by theme from focus group discussions.

Theme	Quotes							
A. Satisfaction	"It is very good for the children. It is good to know if the child has G6PD deficiency or not							
	from birth. The advantage of the device is that it can detect the children without having							
	to do a heel stick on the baby. On the other hand, there is an increase in work But now							
	that we are good at using it, it's fine." [FGD1]							
	"Sometimes if someone is doing the test by using the device it means there are fewer							
staffs to be with mothers and babies which is not good." [FGD1]								
B. Learnability	"After the one-time training, we had 1 or 2 times experiences practically. Then we can do							
	it." [FGD2]							
	"I am really scared I will forget the steps." [FGD2]							
	"We have to look at the book very often, if not we forget the process of what to put and							
	how to put it." [FGD1]							
C. Willingness	"Facilitator: Yes. What do you think about keeping on using this device in the future?							
	Participant: Of course. It is good.							
	Participant: Yes, it is good. But if we can have a specific staff to do it then it will be							
	better." [FGD2]							
	"To make changes, take out the blood and send it to the lab. Then only lab staff have to							

Page 17 of 32

1 2			
2 3			do that." [FGD1]
4 5 7 8 9 10		D. Suitability & Future Use	"Because we can know that early, we can have counseling with the parents about the chances of their children getting yellow skin. We can take time to counsel." [FGD1] "Because we can know the right result of the G6PD deficiency in a short time. Especially for the clinic which doesn't have a lab then it is difficult to know the G6PD status. But with this device, they will only need to take a little blood from the baby and they can know the result of G6PD." [FGD2]
11 12	358		
13 14			
15 16 17	359	DISCUSSION	
18	360	This is the first stu	udy to assess clinical performance and usability by locally trained health workers of
19 20			
21	361	the "STANDARD	G6PD" Biosensor test for identification of G6PD deficient and intermediate
22 23 24	362	phenotypes in cor	d blood. Current data, together with previously collected evidence from clinical trials
25 26	363	in the same popu	lation [5], clearly indicate that newborn heterozygous girls with G6PD intermediate
27 28	364	phenotypes, who	are not identified by the FST, are at increased risk of NH and require phototherapy
29 30	365	[7, 8]. The availat	pility of a validated POC quantitative test such as the Biosensor and its inclusion in
31 32 33	366	diagnostics guidel	ines for neonatal care at birth will allow identification of this group of neonates and
34 35	367	better clinical car	e in several settings [22-25]. Together with other easy-to-use non-invasive tools for
36 37	368	diagnosis of NH (e.g. Transcutaneous bilirubinometers), this study provides evidence that Biosensor
38 39	369	could be used in r	non-tertiary rural settings for identification of neonates who need referral to higher
40 41 42	370	levels of care. In s	ettings where phototherapy is available, this study indicates that the Biosensor is a
43 44	371	better option tha	n FST to support clinical management of neonates. Technical performance of the
45 46	372	Biosensor using R	OC-derived threshold was comparable to that observed in adult blood in laboratory
47 48	373	and field studies [26-29].
49 50 51	374	The phenotypic of	classification provided by the Biosensor was superior to the currently available
52 53	375	qualitative test (FST) both for deficient and for intermediate phenotypes. Among intermediate
54 55	376	phenotypes, 80%	were identified as either deficient or intermediate, allowing a better identification
56 57	377	of neonates at po	tential jaundice risk as compared to the currently used FST-based diagnosis [14, 30].
58 59 60	378	Poor performance	e of FST can be explained by the higher G6PD enzymatic activity at birth as compared

> to adulthood [31, 32]; this is probably the result of several haematological factors including younger red cell age, increased number of reticulocytes with higher G6PD activity [33, 34] and higher WBC count [28] as observed here. Importantly, because of higher enzymatic activity in cord blood, thresholds established in adult blood cannot be used to identify deficient or intermediate phenotypes by either spectrophotometry or Biosensor at birth and would have missed identification of 10% (3/29) deficient neonates (2/26 deficient males and 1/4 deficient females) and 86% (19/22) intermediate females.

Biosensor haemoglobin values had a moderate correlation with those assessed by automatic
haematology analyser. Although cord (and neonatal) blood samples have higher haemoglobin levels
and increased viscosity, Biosensor's performance in measuring G6PD activity was not worse at higher
haemoglobin levels.

While the Biosensor provided a numeric result in 94.5% of cases, in few cases an "error" message or a "HI" result was obtained which, according to the protocol, required re-analysis of the sample. Samples that tested "HI" were confirmed to be normal, both phenotypically by spectrophotometry and by genotype (all wild type). In routine practice it will not be needed to repeat the test in samples showing "HI" result should the manufacturers include this information in the instructions for use.

The usability component highlighted important themes to be taken into consideration for future use of the Biosensor at birth. The midwives have been involved in previous research regarding neonatal jaundice and appreciated the importance of early G6PD diagnosis to identify newborns most at risk of neonatal hyperbilirubinaemia and to facilitate optimal clinical care and parental counselling. The noninvasive nature of cord blood analysis was considered an advantage. In this setting, the SMRU midwives recommended that the test be performed by dedicated staff or by the available laboratory to assure appropriate clinical care is provided to the newborns and mothers; nevertheless, they estimated that in more rural contexts it may be appropriate for trained birth attendants to perform the test. Of note, midwives considered their reliance on reading the visual aid while performing the test (which is standard practice in laboratories) a weakness and this aspect might need to be taken

BMJ Open

3 4	405
5 6	406
7 8	407
9 10 11	408
12 13	409
14 15	410
16 17 18	411
19 20	412
21 22	413
23 24 25	414
25 26 27	415
28 29	416
30 31	417
32 33 34	418
35 36	419
37 38	420
39 40 41	421
41 42 43	422
44 45	423
46 47	424
48 49 50	425
51 52	426 427
53 54	427
55 56 57	428
57 58 59	429

)5 into account when training clinic field staff. Usability results obtained here might not be generalizable 06 to every other context but there are data being collected in several rural and community-based)7 settings that corroborate ease of use of this device to guide malaria treatment after appropriate 30 training [26, 35, 36].)9 Although midwives felt uncertain about properly conducting the test at the beginning of the study, the LO laboratory data showed highly accurate results in the first 12 months of use and very good results in the latter 8 months, supporting suitability of the test among health care workers without prior 11 12 experience in diagnostics. Follow up studies should explore the causes of this slight decrease in quality L3 over time which could be attributed to environmental or users' factors as well as device durability over

- 414 >1 year of use in tropical conditions.
- 3 416 Limitations

417 A practical limitation of Biosensor testing on cord blood is the extra step needed to collect the blood
 418 with a syringe from the cord. A sampling device that collects a fixed volume of blood directly from the
 419 cord would streamline the process.

420 It is very likely that performance and reference ranges observed here in cord blood could apply to
 421 neonatal capillary or venous blood collected within the first 24 hours of life but this was not evaluated
 422 during the study.

423 The study was conducted in a period critically influenced by the COVID-19 pandemic. Travel restrictions 424 resulted in a delayed study start, reduced enrolment in one clinic (WPA), and a protracted enrolment 425 duration of the study overall. Fewer than planned FGD were conducted—including planned discussions 426 at key time points during the study—and they occurred in a single clinical site providing a possibly 427 narrower point of view on the usability topics explored. Additional staff stressors and human resource 428 limitations due to COVID-19 and the political unrest in 2021 were not assessed but may have 429 influenced the results of both the technical and usability components of the study.

431 CONCLUSIONS

The "STANDARD G6PD" Biosensor is a reliable POC tool to support the perinatal care of newborns at
higher risk of neonatal hyperbilirubinemia by demonstrating very high sensitivity in identification of
deficient newborns and high sensitivity in identification of female newborns with intermediate activity.
Its use by trained personnel in rural clinics and birthing centers with a high prevalence of G6PD
deficiency, together with assessment of bilirubin levels before discharge, has the potential to avert
disability and death from hyperbilirubinaemia.

Extending use of the Biosensor for newborn testing in countries where it is already deployed for
malaria case management in resource-constrained settings [37], would provide a higher return on this
investment. Use of Biosensor in populations with prevalent G6PD deficiency outside malaria endemic
regions might increase the benefit-cost ratio of universal screening [38] in all settings [39].

443 ACKNOWLEDGMENTS

The authors wish to thank all the mothers for theier collaboration and understanding; the study would not have been possible without the hard work and dedication of all SMRU staff involved, especially during such a difficult time of political unrest and COVID-19 pandemic. Acknowledgments are also extended to SD Biosensor for donating the devices and the tests for the study.

448 ETHICAL APPROVAL

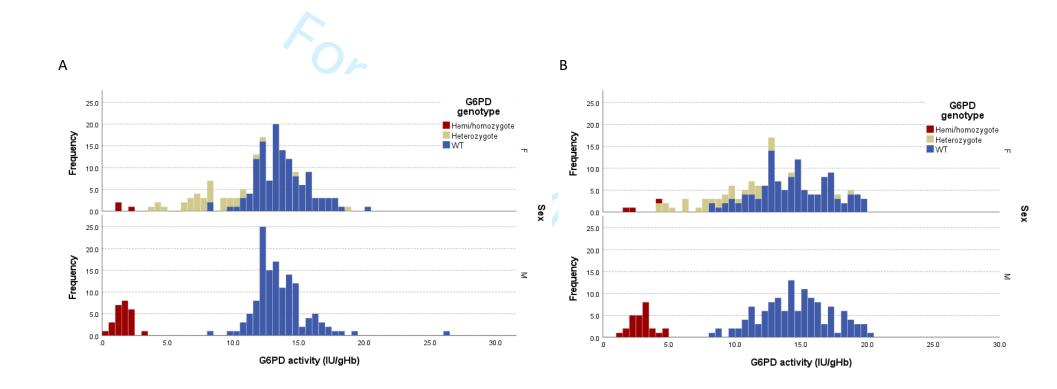
The study was approved by Oxford Tropical Research Ethics Committee, UK (OxTREC 532-19), the Mahidol University Faculty of Tropical Medicine Ethics Committee, Thailand (TMEC 19-048, MUTM 2019-080-02) and the Tak Province Border Community Ethics Advisory Board (TCAB201904). Written informed consent was obtained from literate mothers and midwives; a thumbprint was obtained in the presence of a literate witness for illiterate mothers.

1		
2 3 4	454	AUTHORS' CONTRIBUTION
5 6	455	Substantial contributions to the conception or design of the work: GB, AH, FN, VIV and RM.
7 8	456	Acquisition, analysis or interpretation of data for the work: GB, MEG, EW, GG, PP, PKM, LA, NSW, SW,
9 10 11	457	KKA, AH, BH, FN, VIC and RM. Drafting the work or revising it critically for important intellectual
12 13	458	content: GB, MEG, EW, GG, PP, PKM, LA, NSW, SW, KKA, AH, BH, FN, VIC and RM. Final approval of
14 15	459	the version to be published: all authors. Agreement to be accountable for all aspects of the work in
16 17	460	ensuring that questions related to the accuracy or integrity of any part of the work are appropriately
18 19 20 21	461	investigated and resolved: all authors.
22 23 24	462	COMPETING INTERESTS
25 26	463	None declared.
27 28 29	464	FUNDING
30 31	465	The study was supported by a grant to GB by the Wellcome Trust Institutional Translational Partnership
32 33 34	466	Awards: Thailand Major Overseas Programme (WT-iTP-2019/004). SMRU is supported by the
35 36	467	Wellcome Trust [grant 220111]. For the purpose of Open Access, the authors have applied a CC BY
37 38	468	public copyright licence to any author accepted manuscript version arising from this submission. The
39 40	469	funders had no role in study design, data collection and analysis, decision to publish, or preparation of
41 42 43	470	the manuscript.
44 45		
46 47	471	DATA AVAILABILITY STATEMENT
48	472	De-identified participant data are available from the Mahidol Oxford Tropical Medicine Data Access
49 50 51	473	Committee upon request from this link: <u>https://www.tropmedres.ac/units/moru-bangkok/bioethics-</u>
52 53	474	engagement/datasharing.
54 55	475	
56 57		
58 59		
60		
		20

1		
2		
3 4	476	REFERENCES
5	477	
6		
7	478	1. Bhutani VK, Zipursky A, Blencowe H, Khanna R, Sgro M, Ebbesen F, et al. Neonatal
8 9	479	hyperbilirubinemia and Rhesus disease of the newborn: incidence and impairment estimates
10	480	for 2010 at regional and global levels. Pediatric research. 2013;74 Suppl 1:86-100.
11	481	2. Bhutani VK, Vilms RJ, Hamerman-Johnson L. Universal bilirubin screening for severe
12	482	neonatal hyperbilirubinemia. J Perinatol. 2010;30 Suppl:S6-15.
13 14	483	3. Olusanya BO, Kaplan M, Hansen TWR. Neonatal hyperbilirubinaemia: a global
15	484 485	perspective. Lancet Child Adolesc Health. 2018;2(8):610-20.
16	485	4. Lauer BJ, Spector ND. Hyperbilirubinemia in the newborn. Pediatr Rev.
17	486	2011;32(8):341-9. 5. Bancone G, Gornsawun G, Peerawaranun P, Penpitchaporn P, Paw MK, Poe DD, et al.
18 19	487 488	Contribution of genetic factors to high rates of neonatal hyperbilirubinaemia on the
20	488 489	Thailand-Myanmar border. Plos Global Public Health. 2022.
21	489 490	6. Cappellini MD, Fiorelli G. Glucose-6-phosphate dehydrogenase deficiency. Lancet.
22	490 491	2008;371(9606):64-74.
23 24	491	 Kaplan M, Hammerman C, Vreman HJ, Stevenson DK, Beutler E. Acute hemolysis and
25	493	severe neonatal hyperbilirubinemia in glucose-6-phosphate dehydrogenase-deficient
26	494	heterozygotes. The Journal of pediatrics. 2001;139(1):137-40.
27	495	8. Meloni T, Forteleoni G, Dore A, Cutillo S. Neonatal hyperbilirubinaemia in
28 29	496	heterozygous glucose-6-phosphate dehydrogenase deficient females. British journal of
30	497	haematology. 1983;53(2):241-6.
31	498	9. Molou E, Schulpis KH, Thodi G, Georgiou V, Dotsikas Y, Papadopoulos K, et al.
32 33	499	Glucose-6-Phosphate Dehydrogenase (G6PD) deficiency in Greek newborns: the
33 34	500	Mediterranean C563T mutation screening. Scandinavian journal of clinical and laboratory
35	501	investigation. 2014;74(3):259-63.
36	502	10. WHO Working Group. Glucose-6-phosphate dehydrogenase deficiency. Bulletin of
37 38	503	the World Health Organization. 1989;67(6):601-11.
30 39	504	11. Howes RE, Piel FB, Patil AP, Nyangiri OA, Gething PW, Dewi M, et al. G6PD deficiency
40	505	prevalence and estimates of affected populations in malaria endemic countries: a
41	506	geostatistical model-based map. PLoS medicine. 2012;9(11):e1001339.
42 43	507	12. Bancone G, Chu CS, Somsakchaicharoen R, Chowwiwat N, Parker DM,
43	508	Charunwatthana P, et al. Characterization of G6PD Genotypes and Phenotypes on the
45	509	Northwestern Thailand-Myanmar Border. PloS one. 2014;9(12):e116063.
46	510	13. Turner C, Carrara V, Aye Mya Thein N, Chit Mo Mo Win N, Turner P, Bancone G, et al.
47 48	511	Neonatal intensive care in a Karen refugee camp: a 4 year descriptive study. PloS one.
40 49	512	2013;8(8):e72721.
50	513	14. Thielemans L, Gornsawun G, Hanboonkunupakarn B, Paw MK, Porn P, Moo PK, et al.
51	514	Diagnostic performances of the fluorescent spot test for G6PD deficiency in newborns along
52 53	515	the Thailand-Myanmar border: A cohort study. Wellcome open research. 2018;3:1.
55 54	516	15. Health NCCfWsCs. NICE. Neonatal jaundice: clinical guideline2010.
55	517	16. Bancone G, Chowwiwat N, Somsakchaicharoen R, Poodpanya L, Moo PK, Gornsawun
56	518	G, et al. Single Low Dose Primaquine (0.25mg/kg) Does Not Cause Clinically Significant
57 58	519	Haemolysis in G6PD Deficient Subjects. PloS one. 2016;11(3):e0151898.
58 59	520	17. Asiimwe C, Kyabayinze DJ, Kyalisiima Z, Nabakooza J, Bajabaite M, Counihan H, et al.
60	521	Early experiences on the feasibility, acceptability, and use of malaria rapid diagnostic tests at

1		
2		
3	522	peripheral health centres in Uganda-insights into some barriers and facilitators. Implement
4 5	523	Sci. 2012;7:5.
6	524	18. Bancone G, Gilder ME, Chowwiwat N, Gornsawun G, Win E, Cho WW, et al.
7	525	Prevalences of inherited red blood cell disorders in pregnant women of different ethnicities
8	526	living along the Thailand-Myanmar border. Wellcome open research. 2017;2:72.
9 10	527	19. Bland JM, Altman DG. Statistical methods for assessing agreement between two
10	528	methods of clinical measurement. Lancet. 1986;1(8476):307-10.
12	529	20. Kumar R, Indrayan A. Receiver operating characteristic (ROC) curve for medical
13	530	researchers. Indian pediatrics. 2011;48(4):277-87.
14	531	21. Thielemans L, Peerawaranun P, Mukaka M, Paw MK, Wiladphaingern J, Landier J, et
15 16	532	al. High levels of pathological jaundice in the first 24 hours and neonatal hyperbilirubinaemia
17	533	in an epidemiological cohort study on the Thailand-Myanmar border. PloS one.
18	534	2021;16(10):e0258127.
19	535	22. Aynalem YA, Mulu GB, Akalu TY, Shiferaw WS. Prevalence of neonatal
20 21	536	hyperbilirubinaemia and its association with glucose-6-phosphate dehydrogenase deficiency
21	537	and blood-type incompatibility in sub-Saharan Africa: a systematic review and meta-analysis.
23	538	BMJ Paediatr Open. 2020;4(1):e000750.
24	539	23. Bernardo J, Nock M. Pediatric Provider Insight Into Newborn Screening for Glucose-6-
25	540	Phosphate Dehydrogenase Deficiency. Clin Pediatr (Phila). 2015;54(6):575-8.
26 27	541	24. DelFavero JJ, Jnah AJ, Newberry D. Glucose-6-Phosphate Dehydrogenase Deficiency
28	542	and the Benefits of Early Screening. Neonatal Netw. 2020;39(5):270-82.
29	543	25. Wong RJ, Montiel C, Kunda M, Stevenson DK, Bhutani VK. A novel point-of-care
30	544	device for measuring glucose-6-phosphate dehydrogenase enzyme deficiency. Semin
31 32	545	Perinatol. 2021;45(1):151356.
33	546	26. Alam MS, Kibria MG, Jahan N, Thriemer K, Hossain MS, Douglas NM, et al. Field
34	547	evaluation of quantitative point of care diagnostics to measure glucose-6-phosphate
35	548	dehydrogenase activity. PloS one. 2018;13(11):e0206331.
36	549	27. Pal S, Bansil P, Bancone G, Hrutkay S, Kahn M, Gornsawun G, et al. Evaluation of a
37 38	550	Novel Quantitative Test for Glucose-6-Phosphate Dehydrogenase Deficiency: Bringing
39	551	Quantitative Testing for Glucose-6-Phosphate Dehydrogenase Deficiency Closer to the
40	552	Patient. The American journal of tropical medicine and hygiene. 2019;100(1):213-21.
41	553	28. Pal S, Myburgh J, Bansil P, Hann A, Robertson L, Gerth-Guyette E, et al. Reference and
42 43	554	point-of-care testing for G6PD deficiency: Blood disorder interference, contrived specimens,
44	555	and fingerstick equivalence and precision. PloS one. 2021;16(9):e0257560.
45	556	29. Zobrist S, Brito M, Garbin E, Monteiro WM, Clementino Freitas S, Macedo M, et al.
46	557	Evaluation of a point-of-care diagnostic to identify glucose-6-phosphate dehydrogenase
47 48	558	deficiency in Brazil. PLoS neglected tropical diseases. 2021;15(8):e0009649.
48 49	559	30. Kosaryan M, Mahdavi MR, Jalali H, Roshan P. Why does the Iranian national program
50	560	of screening newborns for G6PD enzyme deficiency miss a large number of affected infants?
51	561	Pediatric hematology and oncology. 2014;31(1):95-100.
52	562	31. Doherty AN, Kring EA, Posey YF, Maisels MJ. Glucose-6-phosphate dehydrogenase
53 54	563	activity levels in white newborn infants. The Journal of pediatrics. 2014;164(6):1416-20.
55	564	32. Kaplan M, Abramov A. Neonatal hyperbilirubinemia associated with glucose-6-
56	565	phosphate dehydrogenase deficiency in Sephardic-Jewish neonates: incidence, severity, and
57	566	the effect of phototherapy. Pediatrics. 1992;90(3):401-5.
58 59	567	33. Ellis D, Sewell CE, Skinner LG. Reticulocyte enzymes and protein synthesis. Nature.
60	568	1956;177(4500):190-1.

2		
3	569	34. Srivastava A, Evans KJ, Sexton AE, Schofield L, Creek DJ. Metabolomics-Based
4	570	Elucidation of Active Metabolic Pathways in Erythrocytes and HSC-Derived Reticulocytes.
5 6	571	Journal of proteome research. 2017;16(4):1492-505.
7	572	35. Engel N, Ghergu C, Matin MA, Kibria MG, Thriemer K, Price RN, et al. Implementing
8	573	radical cure diagnostics for malaria: user perspectives on G6PD testing in Bangladesh.
9	574	Malaria journal. 2021;20(1):217.
10	575	36. Gerth-Guyette E, Adissu W, Brito M, Garbin E, Macedo M, Sharma A, et al. Usability
11	576	of a point-of-care diagnostic to identify glucose-6-phosphate dehydrogenase deficiency: a
12 13	577	
14		multi-country assessment of test label comprehension and results interpretation. Malaria
15	578	journal. 2021;20(1):307.
16	579	37. Chu CS, Bancone G, Kelley M, Advani N, Domingo GJ, Cutiongo-de la Paz EM, et al.
17	580	Optimizing G6PD testing for Plasmodium vivax case management: why sex, counseling, and
18	581	community engagement matter. Wellcome open research. 2020;5:21.
19 20	582	38. Vidavalur R, Bhutani VK. Economic evaluation of point of care universal newborn
20 21	583	screening for glucose-6-Phosphate dehydrogenase deficiency in United States. J Matern
22	584	Fetal Neonatal Med. 2021:1-9.
23	585	39. Watchko JF, Kaplan M, Stark AR, Stevenson DK, Bhutani VK. Should we screen
24	586	newborns for glucose-6-phosphate dehydrogenase deficiency in the United States? J
25	587	Perinatol. 2013;33(7):499-504. 🔿
26 27	500	
27 28	588	
29		
30		Perinatol. 2013;33(7):499-304.
31		
32		
33		
34 35		
36		
37		
38		
39		
40 41		
41		
43		
44		
45		
46		
47 48		
40 49		
50		
51		
52		
53		
54 55		
55 56		
50		


57 58

1

 BMJ Open

Quantitative G6PD point-of-care test can be used reliably on cord blood to identify male and female newborns at increased risk of neonatal hyperbilirubinaemia: a mixed method study

Figure 1. Distribution of G6PD enzymatic activity from cord blood samples detected by gold standard spectrophotometry assay (A) and Biosensor (B) according to sex and genotype

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

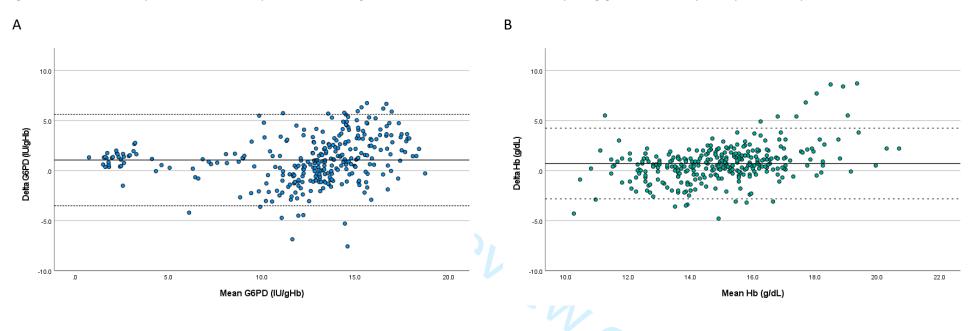
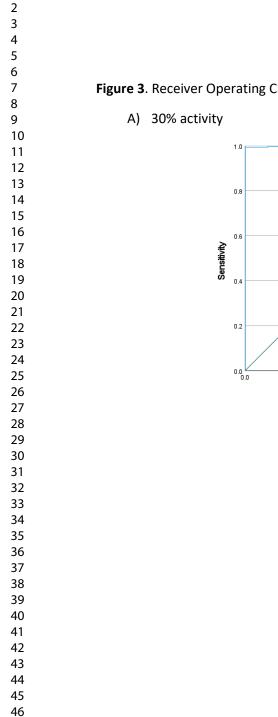



Figure 2. Bland Altman plot of G6PD activity (A) and haemoglobin levels (B) in cord blood comparing gold standard spectrophotometry to Biosensor

Delta G6PD=G6PD Biosensor- G6PD Spectrophotometry Full horizontal line indicates mean difference (1.05IU/gHb); dotted horizontal lines indicate limits of agreement (-3.52 to 5.62IU/gHb) Delta Hb=Hb Biosensor- Hb Spectrophotometry Full horizontal line indicates mean difference (0.70g/dL); dotted horizontal lines indicate limits of agreement (-2.83 to 4.23g/dL) Page 27 of 32

1

BMJ Open

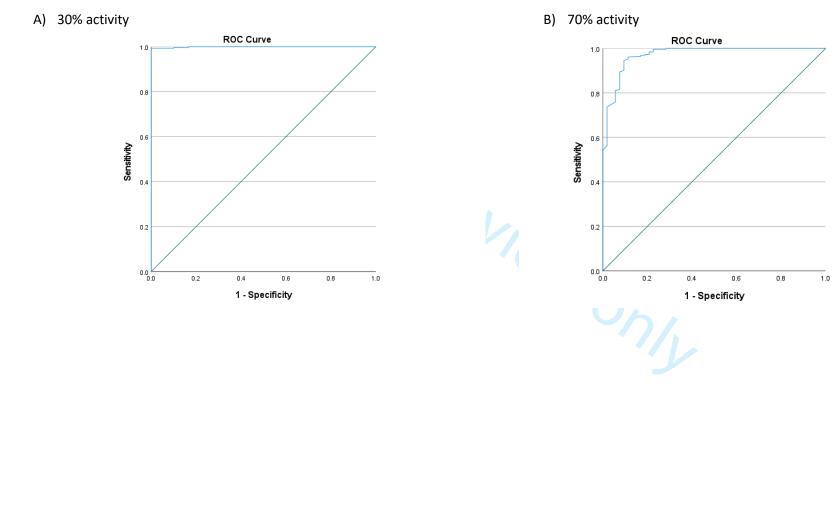
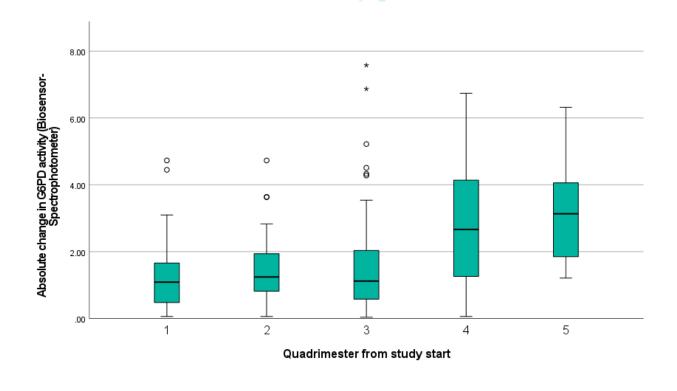


Figure 3. Receiver Operating Characteristic curve of Biosensor for 30% activity (A) and 70% activity (B) thresholds.

Quantitative G6PD point-of-care test can be used reliably on cord blood to identify male and female newborns at increased risk of neonatal hyperbilirubinaemia: a mixed method study

Supplementary Figures and Tables


S Table 1. G6PD enzymatic activity (IU/gHb) of cord blood by spectrophotometry according to genotype

G6PD			Std.		
genotype	Ν	Mean	Deviation	Minimum	Maximum
Hemizygote	26	1.64	0.65	0.09	3.32
Homozygote	3	1.66	0.43	1.38	2.16
Heterozygote	34	8.55	2.97	3.54	18.89
WT	262	13.62	2.02	8.01	26.32
Total	325	12.02	4.14	0.09	26.32

S Table 2. G6PD enzymatic activity (IU/gHb) by Biosensor according to genotype

G6PD			Std.		
genotype	Ν	Mean	Deviation	Minimum	Maximum
Hemizygote	26	2.87	0.81	1.4	4.6
Homozygote	3	2.70	1.23	1.8	4.1
Heterozygote	34	9.50	3.47	4.0	18.6
WT	244	14.46	2.72	8.1	20.0
Total	307	12.82	4.47	1.4	20.0

S Figure 1. Absolute difference in G6PD activity detected by Biosensor as compared to spectrophotometry over time (only MKT clinic)

S Table 3. Characteristics of samples misclassified by Biosensor										
				1						

Clinic	Year	EGA	Sex	Reference G6PD (IU/gHb)	Reference Hb (g/dL)	Percent activity of reference (%)	Reference phenotype	Biosensor G6PD (IU/gHb)	Biosensor Hb (g/dL)	Percent activity of Biosensor (%)	Percent activity of reference (%)	Biosensor phenotype	G6PD genotype Mahidol	Retics (%)	WBC (10³/ uL)
МКТ	2020	42	F	4.4	15	33	INT	4.3	15.2	30	32	DEF	Heterozygote	1.5	13.6
МКТ	2021	40	F	7.1	15.8	54	INT	12.6	16.3	88	95	NOR	Heterozygote	1.3	20.2
МКТ	2021	41	F	7.7	14.1	58	INT	12.5	11.5	87	94	NOR	Heterozygote	ND	20.6
МКТ	2021	39	F	8.0	15.3	60	INT	10.9	11.7	76	82	NOR	WT	2.3	19.3
МКТ	2021	39	F	8.2	14.3	62	INT	4	15.7	28	30	DEF	Heterozygote	2.2	21.1
МКТ	2021	39	F	8.5	14.1	64	INT	11.8	14.1	82	89	NOR	Heterozygote	ND	ND
WPA	2021	39	F	9.4	13.3	71	NOR	9.8	13.7	68	74	INT	Heterozygote	1.6	13.8
WPA	2021	38	F	10.2	14.8	77	NOR	7.5	15.3	52	56	INT	Heterozygote	2.1	11.6
WPA	2021	39	F	10.9	15.6	82	NOR	8.8	16.7	61	66	INT	WT	1.6	12.5
МКТ	2020	38	F	11.4	16.7	86	NOR	9.3	18.8	65	70	INT	WT	4.8	7.1
WPA	2021	39	F	11.7	14.3	88	NOR	8.1	16.5	56	61	INT	WT	1.8	11.1
WPA	2020	39	F	11.8	15.8	89	NOR	9.8	15.3	68	74	INT	WT	1.9	14.3
МКТ	2020	39	F	12.1	12.6	91	NOR	9	13.2	63	68	INT	WT	3.9	14.4
МКТ	2021	40	F	14.2	14	107	NOR	9.7	16.3	67	73	INT	WT	1.7	11.3
МКТ	2021	37	F	15.1	11.2	113	NOR	8.2	12.1	57	62	INT	WT	3.7	15.5

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

S Table 4. Phototherapy treatment in newborns with EGA≥38 weeks with different G6PD
phenotypes

G6PD phenotype by	PT	No PT	% PT	RR	95%CI	P _{Fisher}
spectrophotometry						
Deficient	8	20	28.6	4.9	2.3-10.5	<0.001
Intermediate	3	17	15.0	2.6	0.8-8.1	0.13
Normal	15	242	5.8			reference
G6PD phenotype by Biosensor						
Deficient	9	21	30.0	5.4	2.5-11.6	<0.001
Intermediate	2	20	9.1	1.7	0.4-6.8	0.49
Normal	13	223	5.5			reference
Intermediate Normal						

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

SD G6PD BIOSENSOR (for sample)

Prepare the machine, test device and buffer (step 1-8) BEFORE doing the blood collection (step 9)

24

25

26

27

28 29

30 31 32

33 34 35

36 37

38

39

40

41

42 43

44 45 46

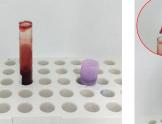
1. Put on gloves

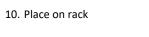
2. Insert codechip (For first time using or open new box of test device)

3. Check the expiry date 4. printed on the foil pouch

Check that codechip number on screen correspond to test device

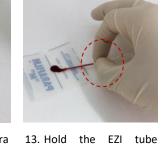
Open the foil pouch and 5. 6. Insert the test device take a test device out and hold the test in the right side


7. Open flap chamber



8. Open buffer tube and place on rack

9. Mix sample tube well by inverting* 10 times *Gently, no bubbles and no shaking



11. Collect blood by using Pasteur pipette

12. Drop blood on para film one drop (Avoid to make bubble)

- 14. Mix the
 - blood with specimen extraction buffer by pressing and releasing the EZI tube 10 times

in the sharp bin

16. Take new EZI tube

17. Hold the EZI tube horizontally, and touch the tip of the EZI tube to the mixed blood specimen. Do not close hole.

18. Apply mixed specimen to the specimen application hole of the test device

19. Close the flap chamber immediately after applying

horizontally, and touch

the tip of the EZI tube

to the blood specimen.

Do not close hole.

20. Wait for 2 min for the test result to appear on the screen (Check date) and report results on the logbook

21. Take the used test device out and discard in sharp bin

Section & Topic	No	Item	Reported on p #
TITLE OR ABSTRACT			
	1	Identification as a study of diagnostic accuracy using at least one measure of accuracy	2
		(such as sensitivity, specificity, predictive values, or AUC)	
ABSTRACT			
	2	Structured summary of study design, methods, results, and conclusions	2
		(for specific guidance, see STARD for Abstracts)	
INTRODUCTION			
	3	Scientific and clinical background, including the intended use and clinical role of the index test	4
	4	Study objectives and hypotheses	4
METHODS			
Study design	5	Whether data collection was planned before the index test and reference standard	5
	_	were performed (prospective study) or after (retrospective study)	-
Participants	6	Eligibility criteria	5
	7	On what basis potentially eligible participants were identified	5
	•	(such as symptoms, results from previous tests, inclusion in registry)	F
	8	Where and when potentially eligible participants were identified (setting, location and dates) Whether participants formed a consecutive, random or convenience series	5
Test methods	9	Index test, in sufficient detail to allow replication	5 C
	10a	Reference standard, in sufficient detail to allow replication	6 6
	10b	Rationale for choosing the reference standard (if alternatives exist)	
	11 120	Definition of and rationale for test positivity cut-offs or result categories	NA 8 0
	12a	of the index test, distinguishing pre-specified from exploratory	8-9
	12b	Definition of and rationale for test positivity cut-offs or result categories	8-9
	120	of the reference standard, distinguishing pre-specified from exploratory	0-5
	13a	Whether clinical information and reference standard results were available	5
		to the performers/readers of the index test	C
	13b	Whether clinical information and index test results were available	5
		to the assessors of the reference standard	
Analysis	14	Methods for estimating or comparing measures of diagnostic accuracy	8-9
, , , , , , , , , , , , , , , , , , ,	15	How indeterminate index test or reference standard results were handled	5
	16	How missing data on the index test and reference standard were handled	NA
	17	Any analyses of variability in diagnostic accuracy, distinguishing pre-specified from exploratory	NA
	18	Intended sample size and how it was determined	8
RESULTS			
Participants	19	Flow of participants, using a diagram	
	20	Baseline demographic and clinical characteristics of participants	10
	21 a	Distribution of severity of disease in those with the target condition	11-12
	21b	Distribution of alternative diagnoses in those without the target condition	NA
	22	Time interval and any clinical interventions between index test and reference standard	NA
Test results	23	Cross tabulation of the index test results (or their distribution)	table 2
		by the results of the reference standard	
	24	Estimates of diagnostic accuracy and their precision (such as 95% confidence intervals)	11-12
	25	Any adverse events from performing the index test or the reference standard	NA
DISCUSSION			
	26	Study limitations, including sources of potential bias, statistical uncertainty, and	16
		generalisability	
	27	Implications for practice, including the intended use and clinical role of the index test	17
OTHER			
INFORMATION			
	28	Registration number and name of registry	NA
	29	Where the full study protocol can be accessed	10
	30	Sources of funding and other support; role of funders For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	9-10

STARD 2015

AIM

STARD stands for "Standards for Reporting Diagnostic accuracy studies". This list of items was developed to contribute to the completeness and transparency of reporting of diagnostic accuracy studies. Authors can use the list to write informative study reports. Editors and peer-reviewers can use it to evaluate whether the information has been included in manuscripts submitted for publication.

EXPLANATION

A **diagnostic accuracy study** evaluates the ability of one or more medical tests to correctly classify study participants as having a **target condition.** This can be a disease, a disease stage, response or benefit from therapy, or an event or condition in the future. A medical test can be an imaging procedure, a laboratory test, elements from history and physical examination, a combination of these, or any other method for collecting information about the current health status of a patient.

The test whose accuracy is evaluated is called **index test.** A study can evaluate the accuracy of one or more index tests. Evaluating the ability of a medical test to correctly classify patients is typically done by comparing the distribution of the index test results with those of the **reference standard**. The reference standard is the best available method for establishing the presence or absence of the target condition. An accuracy study can rely on one or more reference standards.

If test results are categorized as either positive or negative, the cross tabulation of the index test results against those of the reference standard can be used to estimate the **sensitivity** of the index test (the proportion of participants *with* the target condition who have a positive index test), and its **specificity** (the proportion *without* the target condition who have a negative index test). From this cross tabulation (sometimes referred to as the contingency or "2x2" table), several other accuracy statistics can be estimated, such as the positive and negative **predictive values** of the test. Confidence intervals around estimates of accuracy can then be calculated to quantify the statistical **precision** of the measurements.

If the index test results can take more than two values, categorization of test results as positive or negative requires a **test positivity cut-off**. When multiple such cut-offs can be defined, authors can report a receiver operating characteristic (ROC) curve which graphically represents the combination of sensitivity and specificity for each possible test positivity cut-off. The **area under the ROC curve** informs in a single numerical value about the overall diagnostic accuracy of the index test.

The **intended use** of a medical test can be diagnosis, screening, staging, monitoring, surveillance, prediction or prognosis. The **clinical role** of a test explains its position relative to existing tests in the clinical pathway. A replacement test, for example, replaces an existing test. A triage test is used before an existing test; an add-on test is used after an existing test.

Besides diagnostic accuracy, several other outcomes and statistics may be relevant in the evaluation of medical tests. Medical tests can also be used to classify patients for purposes other than diagnosis, such as staging or prognosis. The STARD list was not explicitly developed for these other outcomes, statistics, and study types, although most STARD items would still apply.

DEVELOPMENT

This STARD list was released in 2015. The 30 items were identified by an international expert group of methodologists, researchers, and editors. The guiding principle in the development of STARD was to select items that, when reported, would help readers to judge the potential for bias in the study, to appraise the applicability of the study findings and the validity of conclusions and recommendations. The list represents an update of the first version, which was published in 2003.

More information can be found on <u>http://www.equator-network.org/reporting-guidelines/stard.</u>

BMJ Open

Technical evaluation and usability of a quantitative G6PD POC test in cord blood: a mixed methods study in a lowresource setting

Journal:	RM1 Open
Journal:	BMJ Open
Manuscript ID	bmjopen-2022-066529.R1
Article Type:	Original research
Date Submitted by the Author:	09-Nov-2022
Complete List of Authors:	Bancone, Germana; Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University; University of Oxford Centre for Tropical Medicine and Global Health Gilder, Mary Ellen; Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University Win, Elsie; Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University Gornsawun, Gornpan; Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University Penpitchaporn, Penporn; Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University Moo, Phaw Khu; Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University Moo, Phaw Khu; Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University Archasuksan, Laypaw; Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University Wai, Nan San; Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University Win, Sylverine; Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University Wang, Ko Ko; Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University Hashmi, Ahmar; Institute for Implementation Science, University of Texas Health Sciences Center (UTHealth), Houston, TX USA; Department of Health Promotion and Behavioral Sciences, School of Public Health, University of Texas Health Sciences Center (UTHealth) Hanboonkunupakarn, Borimas; Mahidol-Oxford Tropical Medicine, Mahidol University; University of Oxford Centre for Tropical Medicine,

	McGready, Rose; Shoklo Malaria Research Unit, Mahidol-Oxford Tropic Medicine Research Unit, Faculty of Tropical Medicine, Mahidol Universi University of Oxford Centre for Tropical Medicine and Global Health
Primary Subject Heading :	Diagnostics
Secondary Subject Heading:	Global health, Haematology (incl blood transfusion), Paediatrics, Patie centred medicine
Keywords:	PAEDIATRICS, NEONATOLOGY, MOLECULAR BIOLOGY

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

3		
4 5	1	TITLE
6 7		Technical evaluation and usability of a quantitative G6PD POC test in cord blood: a mixed methods
8 9	3	study in a low-resource setting
9 10	4	
11	5	Germana Bancone ^{1,2,*} , Mary Ellen Gilder ¹ , Elsie Win ¹ , Gornpan Gornsawun ¹ , Penporn Penpitchaporn ¹ ,
12 13	6	Paw Khu Moo ¹ , Laypaw Archasuksan ¹ , Nan San Wai ¹ , Sylverine Win ¹ , Ko Ko Aung ¹ , Ahmar Hashmi ^{4,5} ,
14	7	Borimas Hanboonkunupakarn ³ , Francois Nosten ^{1,2} , Verena I Carrara ^{1,6} , Rose McGready ^{1,2}
15	8	
16 17	9	1. Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical
18 19	10	Medicine, Mahidol University, Mae Sot, Thailand.
20	11	2. Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of
21 22	12	Oxford, Oxford, United Kingdom.
23 24	13	3. Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol
24 25	14	University, Bangkok, Thailand.
26	15	4. Institute for Implementation Science, University of Texas Health Sciences Center (UTHealth),
27 28	16	Houston, TX USA
29	17	5. Department of Health Promotion and Behavioral Sciences, School of Public Health, University of
30 31	18	Texas Health Sciences Center (UTHealth) Houston, TX USA
32 33	19	6. Institute of Global Health, Faculty of Medicine, University of Geneva, Switzerland
34 35	20	* corresponding author: <u>germana@tropmedres.ac</u>
36 37 38	21	
39 40 41	22	
42 43 44	23	
45 46	24	
47 48 49	25	
50 51	26	ABSTRACT
52 53 54	27	Objectives: New point-of-care (POC) quantitative G6PD testing devices developed to provide safe
55 56	28	radical cure for P. vivax malaria may be used to diagnose G6PD deficiency in newborns at risk of severe
57 58 59 60	29	neonatal hyperbilirubinaemia, improving clinical care, and preventing related morbidity and mortality.

> 30 Methods: We conducted a mixed-methods study analyzing technical performance and usability of the 31 "STANDARD G6PD" Biosensor when used by trained midwives on cord blood samples at two rural 32 clinics on the Thailand-Myanmar border.

Results: In 307 cord blood samples, the Biosensor had a sensitivity of 1.000 (95%CI 0.859-1.000) and a
specificity of 0.993 (95% CI 0.971-0.999) as compared to gold standard spectrophotometry to diagnose
G6PD deficient newborns using a receiving operator characteristic (ROC) analysis-derived threshold of
≤4.8IU/gHb. The Biosensor had a sensitivity of 0.727 (95%CI: 0.498-0.893) and specificity of 0.933
(95%CI: 0.876-0.969) for 30-70% activity range in females using ROC analysis-derived range of 4.9 to
9.9IU/gHb. These thresholds allowed identification of all G6PD deficient neonates and 80% of female
neonates with intermediate phenotypes.

40 Need of phototherapy treatment for neonatal hyperbilirubinaemia was higher in neonates with 41 deficient and intermediate phenotypes as diagnosed by either reference spectrophotometry or 42 Biosensor.

Focus group discussions found high levels of learnability, willingness, satisfaction, and suitability for the Biosensor in this setting. The staff valued the capacity of the Biosensor to identify newborns with G6PD deficiency early ("We can know that early, we can counsel the parents about the chances of their children getting jaundice") and at the POC, including in more rural settings ("Because we can know the right result of the G6PD deficiency in a short time. Especially for the clinic which does not have a lab"). Conclusions: The Biosensor is a suitable tool in this resource-constrained setting to identify newborns with abnormal G6PD phenotypes at increased risk of neonatal hyperbilirubinaemia.

51 Strengths and limitations of this study

• The technical performance of the G6PD quantitative point-of-care diagnostic device was assessed against the current gold-standard spectrophotometric assay.

• Receiving operator characteristic analysis was used to identify the best diagnostic thresholds.

BMJ Open

Usability among clinical personnel from a resource-constrained setting was analysed using a
 conceptual framework developed for similar settings.

• Fewer than planned focus group discussions were conducted and they occurred in a single clinical site providing a possibly narrower point of view on the usability topics explored.

59 INTRODUCTION

Pathologically increased levels of bilirubin during the first week of life, i.e. neonatal hyperbilirubinaemia (NH), are common and dangerous for the developing brain. The most severe form of NH, kernicterus, causes neurological sequelae in >80% of neonates (56/100,000 live births globally, [1]). Every year, an estimated twenty-four million newborns are at risk of NH-related adverse outcomes with three-quarters of mortality occurring in sub-Saharan Africa and South Asia [1,2]. These preventable deaths and disabilities disproportionally affect neonates where universal health care and treatment options are scarce, if not absent [3].

67 Several genetic and clinical factors influence the timing and evolution of NH, including G6PD deficiency,
68 ABO blood group incompatibility, prematurity/low birth weight and sepsis [4]. Early identification of
69 these risk factors can dramatically improve neonatal clinical management during the first days of life
70 [5].

The enzymatic defect of G6PD deficiency, caused by mutations on the X-linked G6PD gene, is a known risk factor for increased levels of bilirubin after birth and it is associated with susceptibility to druginduced haemolysis [6]. Risk of severe NH is increased in both deficient and heterozygous newborns with abnormal phenotypes [7-9] and universal neonatal screening of G6PD deficiency is supported by WHO in populations where more than 3-5% of males are affected [10].

G6PD deficiency is particularly prevalent among neonates from tropical regions [11], where clinical
care is often provided in a non-tertiary hospital or clinic context. Knowledge of G6PD status by medical

staff and parents can aid in avoiding potentially haemolytic antibiotics or other agents (such as
naphthalene), improved follow-up, and heightened awareness of signs and symptoms of severe NH.

G6PD deficiency is very common among the Karen and Burman population along the Thailand-Myanmar border (9-18% in males, [12]) where it is associated with an increased risk to develop NH requiring phototherapy both in G6PD deficient (over 4-fold [13]) and in heterozygous females (over 2fold [5]) as compared to wild type genotype neonates. In a recent study, screening of G6PD by qualitative Fluorescent Spot Test (FST) on cord blood failed to identify almost 10% of G6PD deficient neonates [14].

Demonstrating usability of new quantitative Point-Of-Care (POC) G6PD diagnostic tests by locally trained clinical staff can inform clinical deployment in this setting and in other rural settings. This study assessed the technical performance and usability of the "G6PD STANDARD" (SD Biosensor, Korea) test when used by trained midwives in two clinics along the Thailand-Myanmar border.

90 MATERIALS AND METHODS

91 Study design

92 A mixed-methods study was conducted to evaluate both the technical performance of the "G6PD 93 STANDARD" (SD Biosensor, Korea) test (henceforth "Biosensor") and its usability by midwives in a non-94 tertiary setting. G6PD enzymatic activity and haemoglobin concentration measured by the device were 95 compared to the gold standard reference spectrophotometric assay and haematology analyser, 96 respectively. Performance of the G6PD fluorescent spot test (FST) currently used routinely at the point-97 of-care, was also compared to the reference and new test.

Following local staff training, user proficiency was assessed before study start; usability was explored
using focus group discussions (FGD) at the end of the study.

Page 7 of 32

1

1 2	
3	1
4 5	1
5 6 7	-
/ 8	1
9	1
10 11	-
12	1
13 14	-
15	1
16 17	1
18	-
19 20	1
21	1
22 23	_
24	1
25 26	1
27	
28 29	1
30	1
31 32	-
33	1
34 35	1
36	-
37 38	
39	1
40 41	1
42	1
43 44	
45	1
46 47	1
48	
49 50	1
51	1
52 53	
54	1
55 56	
57	1
58 59	1
60	

100 Study setting and population

101 The study was conducted in SMRU clinics situated along the Thailand-Myanmar border in Tak province 102 (Thailand) where free antenatal care and birthing services are provided for migrant women of 103 predominantly Karen and Burman ethnicity.

L04 SMRU midwives come from the same population as the pregnant women and patients seeking care at L05 SMRU clinics. The majority of midwives have primary or secondary education and receive clinical 106 training on-site. Pregnant women attending SMRU clinics at Wang Pha (WPA) and Maw Ker Thai (MKT) were informed about the study at regular antenatal care visits in the 3rd trimester. Informed consent L07 108 procedures and eligibility assessments for mothers were completed before labour commenced. L09 Eligibility of neonates was assessed immediately after delivery, and those born at an estimated 110 gestational age (EGA) by ultrasound ≥35 weeks with no severe maternal complications at delivery and 111 no severe neonatal illness were included. In order to allow laboratory analyses to be performed within 30 hours from collection, only neonates born during week days were included. For all neonates, 112 indication for starting phototherapy treatment followed the recommendations of the UK NICE 113 guidelines [15]. 114

⁸ 115 Blood analyses for technical evaluation of Biosensor

0116Two milliliters of cord blood were collected into EDTA from the umbilical cord using an established2117SMRU SOP. An aliquot of anticoagulated blood was used by the midwives in the delivery room for the3118Biosensor following manufacturer's instructions within one hour of collection (Supplementary file 1).4119Tests were repeated if the test result was an error or "HI" (a result obtained when G6PD activity is very9120high, outside the instrument analytic range). High-level and low-level Biosensor controls were run1121weekly or monthly (depending on availability) from April 2020 until May 2021.

An aliquot of anticoagulated blood was analysed by G6PD fluorescent spot test (FST) at the clinical here a stored at 4°C until shipment to the central SMRU laboratory on the same day.

Gold standard reference testing for G6PD and haemoglobin were performed by spectrophotometric
assay and haematology analyser (with complete blood and reticulocyte counts), respectively, at the
SMRU central laboratory.

G6PD spectrophotometric assay was performed using Pointe Scientific kits (assay kit # G7583-180, Lysis Buffer # G7583-LysSB). Kinetic determination of G6PD activity at 340 nm was performed using a SHIMAZU UV-1800 spectrophotometer with temperature controlled cuvette compartment (30°C). Samples were analysed in double and mean activity was expressed in IU/gHb using the Hb concentration obtained by complete blood count analysis. The final result was calculated using manufacturer's Temperature Control Factor of 1.37. Two controls (Normal, Intermediate or Deficient; Analytic Control Systems, Inc. USA) were analysed at every run and results compared to expected ranges provided by manufacturer. Complete blood count was performed using a CeltacF MEK-8222K haematology analyser (Nihon Kohden, Japan). Three-levels quality controls were run every day and device maintenance and calibration were performed regularly. Reticulocytes were analysed by microscopy after staining with supervital staining Crystal Violet.

Buffy coat recovered from whole blood after centrifugation was stored at -20°C for later DNA extraction using standard columns kit (Favorgen Biotech, Taiwan). Genotyping for G6PD common mutations was performed through established SOPs [16]. Mahidol mutation was analysed in all samples. Other mutations were only analysed in phenotypically deficient or intermediate samples (G6PD < 9.31IU/gHb by reference test) with wild type or heterozygote Mahidol genotypes. Viangchan, Chinese-4, Kaiping, Canton, Union and Mediterranean were analysed first and full gene sequence was performed if none of these mutations were found.

0 146

147 Biosensor training, user proficiency and usability assessment

148 Midwives of WPA and MKT SMRU clinics were trained for use of Biosensor and were eligible to 57 149 participate in the usability component of the study following informed consent. Two to four training 59 150 sessions were provided at each clinic in the local language by an experienced laboratory technician

Page 9 of 32

BMJ Open

(author LA). The sessions lasted from 1 to 2 hours and included a short introduction about the test, a practical demonstration using imitation blood, and supervised use of the biosensor by each midwife. Midwives were allowed to practice the procedure the week following the training prior to taking a user proficiency test. The proficiency test was administered by author LA in the local language and it consisted of a questionnaire (modified from a questionnaire developed by PATH (https://www.finddx.org/wp-content/uploads/2020/09/PATH_STANDARD-G6PD-User-Competency-Assessment-quiz 08oct19.pdf) and direct observation of two consecutive tests. Midwives were asked to explain out-loud their actions while performing the first test. The proficiency test was analysed by authors GB and GG and midwives who scored <85% were re-trained before study start. A visual aid with all critical steps of the procedure was printed and available in the delivery room during the study. The usability component of the study followed the conceptual framework for acceptance and use of a rapid diagnostic test for malaria proposed by Asiimwe et al. [17] that evaluates 6 components: learnability, willingness, suitability, satisfaction, efficacy, and effectiveness. The focus group discussions (FGD) specifically focused on 4 main themes of learnability, willingness, satisfaction, and suitability. Due to COVID, only two of the planned six total FGD were conducted. The midwives were grouped by their seniority, with senior and junior midwives together, and midwife assistants in a separate group in order to encourage honest and open conversation. One researcher (KKA) facilitated the FGD while an experienced assistant took notes; both were fluent in Burmese and Karen languages used in the FGD. Immediately following the FGD, research staff debriefed and noted main themes of the discussion. FGDs were audio-recorded and subsequently translated and transcribed in English. Two researchers (MG and GB) independently analysed the transcript using thematic analysis based on the pre-set framework [17] using Taguette (a free and open access qualitative data analysis software, https://joss.theoj.org/papers/10.21105/joss.03522) and confirmed findings with KKA. Face-to-face meeting and exchange of notes allowed for triangulation between the researchers.

1 2		
3 4	175	Blood analysis for assessment of neonatal hyperbilirubinaemia
5 6	176	Routine clinical care for newborns included at least one total serum bilirubin (TSB) test before
7 8	177	discharge (around 48h of life) using capillary blood measured on-site by the rapid quantitative
9 10	178	bilirubinometer BR-501 (Apel Co. Ldt, Japan).
11 12 13 14	179	
15 16	180	Sample size and statistical analyses
17 18	181	The expected prevalence of G6PD deficiency in the population living at the border is 9-18% in males
19 20	182	and 2-4% in female [12, 16] corresponding to approximately 20-30% heterozygous females, 60% of
21 22	183	whom have intermediate activity [18]. Assuming that the proportion of females and males in the
23 24 25	184	neonate population is 50%, 9% were expected to be G6PD deficient and 7% to be G6PD intermediate.
25 26 27	185	In order to obtain 95% CI of the limits of agreement within 0.5 SD of the difference, about 31 neonates
28 29	186	with deficiency and 25 with intermediate phenotypes were needed, with a minimum total sample size
30 31	187	of 350 samples.
32 33	188	Clinical data were double entered in MACRO and collated with laboratory data; data were analysed
34 35 36	189	using SPSSv27.
37 38	190	Male median (MM) was calculated in all males with wild type genotypes in both the references
39 40 41	191	spectrophotometric assay and the Biosensor. Deficiency was defined as enzymatic activity below 30%
42 43	192	of MM by reference spectrophotometry and receiving operator characteristic (ROC)-derived 30%
44 45	193	threshold by Biosensor; intermediate phenotypes were defined as enzymatic activity between 30%
46 47	194	and 70% of the MM or ROC-derived threshold.
48 49 50	195	Mean and standard deviation (SD) were reported for continuous variables. Categorical variables were
50 51 52 53 54	196	compared by Chi-squared test and ANOVA. Bland-Altman plot was used to inspect correspondence
	197	between G6PD activity detected by Biosensor compared to the spectrophotometry assay [19].
55 56	198	Correlation was assessed using Pearson's coefficient of correlation and Interclass Correlation
57 58 59	199	Coefficient (ICC). Area under the curve (AUC) of the ROC curve [20] was calculated at different activity
60	200	thresholds to analyse clinical performances (i.e. sensitivity and specificity) of the Biosensor. Cohen's

BMJ Open

2		
3 4	201	Kappa coefficient was calculated for categories of phenotypes identified by Biosensor and
5 6	202	spectrophotometry.
7 8 9	203	For analysis of haematologic features and risk of neonatal hyperbilirubinaemia, neonates gestational
9 10 11	204	ages assessed by ultrasound were categorized as \leq 38 and $>$ 38 weeks according to epidemiologic
12 13	205	studies conducted previously in the same population [21].
14 15	206	Statistical significance was assessed at the 5% level.
16 17	207	Patient and Public Involvement statement
18 19	208	At the outset of the study, the research team engaged the local population through a local ethics and
20 21 22	209	research advisory committee, the Tak Province Community Advisory Board, Thailand. This group is
22 23 24	210	comprised of community leaders who were asked to advise on study design, process, and outcomes of
25 26	211	interest, and subsequently approved the study (TCAB201904).
27 28		
29 30 31	212	RESULTS
31 32 33	213	A total of 331 cord blood samples were collected between April 2020 and November 2021; six were
34 35	214	clotted and excluded from all analysis. Of the remaining 325 samples, 257 (79%) were collected in MKT
36 37	215	clinic and 68 in WPA clinic, in 166 (51%) female and 159 male neonates. Mean (SD) of estimated
38 39 40	216	gestational age of newborns was 39.1 (1.0) weeks.
41 42	217	General haematologic characteristics
43	218	As expected for this specimen, haematological characteristics of cord blood (Table 1) showed higher
44 45	219	white blood cell count, haemoglobin concentrations, reticulocyte counts and larger cellular volumes
46 47		
48 49	220	compared to adult blood. Reticulocyte counts and red cell distribution width were higher in neonates
50 51	221	<38 weeks gestational age (P=0.02 and P=0.01 respectively) while the other indexes did not differ by
52 53	222	gestational age groups.
54 55	223	
56 57	224	
58 59		
60		

Table 1. Haematologic characteristics of cord blood samples according to newborn gestational age. Results are shown as mean (SD)

EGA		WBC	NEU	LYM	RBC	HGB	НСТ	MCV	МСН	мснс	RDW	PLT	Reticulocyte
(weeks)	N*	(10 ³ / uL)	(10 ³ / uL)	(10 ³ / uL)	(10 ⁶ / uL)	(g/dL)	(%)	(fL)	(pg)	(g/dL)	(%)	(10 ³ / uL)	(%)
<38	19	13.1	9.6	2.7	4.3	14.4	48.0	110.9	33.2	29.9	16.8	259.2	2.8
		(3.6)	(3.3)	(1.7)	(0.4)	(1.7)	(5.4)	(6.6)	(2.7)	(1.5)	(1.5)	(66.2)	(1.8)
≥38	298	14.3	10.8	2.8	4.5	14.5	49.0	109.0	32.3	29.6	16.0	261.4	2.1
		(3.8)	(3.6)	(1.6)	(0.5)	(1.7)	(5.2)	(7.9)	(3.0)	(1.4)	(1.2)	(47.7)	(1.1)
P _{ANOVA}		0.17	0.16	0.88	0.14	0.68	0.43	0.30	0.21	0.41	0.01	0.85	0.02

gy analyser was סבר ב * Number of samples analysed by haematology analyser was 317 out of 325; 7 samples were analysed by Hemocue and result used to calculate G6PD

enzymatic activity.

1		
2 3	230	G6PD genotypes
4 5	230	A total of 26 hemizygous mutated males (21 Mahidol, 2 Kaiping, 1 Viangchan, 1 Coimbra, 1 Orissa), 3
6 7	232	homozygous mutated females (Mahidol), 34 heterozygous females (32 Mahidol, 1 Canton, 1
8 9	233	Viangchan) and 262 wild type (129 females and 133 males) were found. Overall allelic frequency of all
10 11		
12 13	234	mutated alleles was 13.4%. The distribution of G6PD activity by spectrophotometry and biosensor
14 15	235	associated with different genotypes are shown in Figures 1 and Supplementary Tables 1 and 2.
16 17	236	Fluorescent spot test
18 19	237	The poor performances of the FST in cord blood were confirmed here, with the FST failing to identify
20 21 22	238	23% (7/30) of deficient neonates and 100% of the intermediate females (22/22; Table 2).
23 24	239	Technical evaluation of Biosensor
25 26	240	Male medians by reference spectrophotometric assay and Biosensor
27 28	241	MM G6PD activity by spectrophotometer was 13.3 IU/gHb giving a 30% threshold of 4.0 IU/gHb for
29 30	242	diagnosis of deficiency; intermediate activity (30-70%) in females ranged between 4.1 and 9.3 IU/gHb.
31 32	243	The cord blood-specific 30% spectrophotometric threshold identified all the hemizygous male and
33 34 35	244	homozygous female newborns (Figure 1A).
36 37	245	MM of G6PD activity by Biosensor calculated on 307 samples was 14.4 IU/gHb giving a 30% threshold
38 39	246	of 4.3 IU/gHb for diagnosis of deficiency. Intermediate activity (30-70%) in females ranged between
40 41	247	4.4 and 10.1 IU/gHb (Figure 1B).
42 43 44	248	In 7% of cases (23/325), the Biosensor provided an initial result of "HI" activity without a numeric value.
45 46	249	Of the 19 samples retested, 14 had "HI" results again and 5 samples had an activity ranging from 17.3
47 48	250	to 20.0 IU/gHb; all samples with initial or confirmed "HI" results were normal by spectrophotometry
49 50	251	and had a wild type genotype. Overall, 18 samples (5.5% of the total) did not have a final numeric
51 52 53	252	result by Biosensor but would have been considered "normal", according to the spectrophotometric
54 55	253	assay.
56		
57 58		
59 60		
55		

254 Biosensor performance

Biosensor performance was assessed for 307/325 samples that yielded numeric results. The mean
(±1.96SD) difference in enzymatic activity between Biosensor and spectrophotometry was 1.05 IU/gHb
(LoA: -3.52 to 5.62 IU/gHb) as represented in the Bland-Altman plot in Figure 2A. A very strong
correlation between enzymatic activity by Biosensor and reference spectrophotometry was observed
(Pearson's r=0.855, p<0.001; ICC=0.905, p<0.001).

The mean (±1.96SD) difference in Hb between the Biosensor and haematology analyser was 0.70 g/dL (LoA: -2.83 to 4.23 g/dL) (Figure 2B). A moderate correlation between Hb levels by Biosensor and haematology analyser was observed (Pearson's r=0.637, p<0.001; ICC=0.728, p<0.001).

Area under the curve (AUC) of the ROC analysis (Figure 3A) of the 30% threshold was 0.999 (95%CI: 0.997-1.000); ROC analysis showed that 30% of Biosensor MM (4.3IU/gHb) was associated with sensitivity of 0.931 (95%CI: 0.758-0.988) and specificity of 0.989 (95%CI: 0.966-0.997) while a threshold of 4.8IU/gHb had a sensitivity of 1.000 (95%CI: 0.859-1.000) and a specificity of 0.993 (95% CI: 0.971-0.999). This second threshold was therefore used for the subsequent analyses.

AUC of the ROC analysis (Figure 3B) for the 70% threshold was 0.972 (95%CI: 0.949-0.994) and ROC analysis showed that a threshold of 9.9IU/gHb had a better sensitivity and specificity as compared to the 70% of Biosensor MM (10.1 IU/gHb). The ROC-derived threshold had a sensitivity of 0.842 (95%CI: 0.716-0.921) and specificity of 0.984 (95%CI: 0.957-0.995) to identify samples with ≤70% activity and was used for subsequent analyses.

AUC of the ROC analysis for the range 30-70% activity was 0.935 (95%CI: 0.887-0.983); sensitivity and
 specificity for intermediate phenotypes in females were 0.727 (95%CI 0.498-0.893) and 0.933 (95%CI:
 0.876-0.969) respectively based on ROC-derived thresholds as compared to 0.592 (95%CI: 0.390-0.770)
 and 0.953 (95%CI: 0.897-0.980) using Biosensor MM thresholds.

When comparing phenotypes defined according to the 30% and 70% thresholds of spectrophotometry
 When comparing phenotypes defined according to the 30% and 70% thresholds of spectrophotometry
 and ROC-derived threshold for Biosensor (Table 2), the Biosensor correctly identified all deficient and

BMJ Open

normal males and all deficient females. In females, the Biosensor incorrectly identified 9% (2/22) of intermediate females (activity by spectrophotometry 33% and 62%) as deficient, and 7% (9/130) of phenotypically normal female neonates as intermediate (activity by spectrophotometer ranging from 71% to 113%). It also misdiagnosed 18% (4/22) of intermediate samples as normal. Of these 4 samples, 3 were Mahidol heterozygotes and 1 was a wild type and their enzymatic activity by spectrophotometry ranged from 54% to 64%. Cohen's kappa coefficient was 0.841, p<0.001. Overall, the majority of samples with discordant results (11/15) were identified by the Biosensor as having a "worse" phenotype. Characteristics of the 15 samples with discordant results are reported in Supplementary Table 3.

Table 2. Diagnostic performance of FST and Biosensor as compared to gold standard spectrophotometry.

		Spectrophotometry						
		Ma	ale					
		Deficient	Normal	Deficient	Intermediate	Normal		
	Deficient	20	0	2	0	0		
FST	Normal	6*	133	2*	22	137		
FS	Total	26	133	4	22	137		
				·				
Biosensor	Deficient	26	0	4	2#	0		
	Intermediate	NA	NA	0	16	9 ^{\$}		
	Normal	0	125	0	4 ^{&}	121		
B	Total	26	125	4	22	130		

Phenotypes are based on 30% and 70% thresholds for spectrophotometry. For Biosensor, threshold for deficiency is ≤ 4.8 IU/gHb and 4.9 to 9.9IU/gHb for intermediate, both obtained by ROC analysis. Total sample for Biosensor was 307; total sample for FST was 322 (3 samples were not analysed by FST at the clinic)

*Enzymatic activities ranging from 12% to 27% of spectrophotometry MM.

[#]Two Mahidol heterozygotes with activity by spectrophotometry of 33% and 62% of MM.

^{\$} Two Mahidol heterozygotes and 7 wild type samples with enzymatic activity by spectrophotometry ranging from 71% to 113%.

- [&] Three Mahidol heterozygotes and 1 wild type samples with enzymatic activity by
- spectrophotometry ranging from 54% to 64%.
- Characteristics of discordant samples are reported in Supplementary Table 1.

2 3 4 5	315 316	
6 7	317	No difference in results were observed by clinic (ICC=0.899, p<0.001 in MKT and ICC=0.930, p<0.001 in
8 9 10	318	WPA) or user. In MKT clinic where the test was used over 20 months, a trend of larger absolute mean
10 11 12	319	differences in activity (Biosensor - Spectrophotometry) were observed in the last 4-8 months of use as
13 14	320	compared to the first 12 months (Supplementary Figure 1).
15 16 17	321	Risk of neonatal hyperbilirubinaemia
18	322	Risk of neonatal hyperbilirubinemia by phenotype (determined by spectrophotometry) was assessed
19 20 21	323	in term neonates (EGA≥38weeks). A significantly larger proportion of G6PD deficient neonates (29%)
22 23	324	underwent phototherapy for treatment of NH as compared to G6PD normal (6%, RR[95%CI] =4.9 [2.3-
24 25	325	10.5]; P<0.001). A larger proportion of female neonates with intermediate phenotypes (90% of whom
26 27 28	326	were heterozygotes) required phototherapy (15%), although in this small cohort the difference did not
20 29 30	327	reach statistical significance (RR[95%CI] =2.6 [0.8-8.1]; P=0.13; supplementary Table 4. Relative risk by
31 32	328	quantitative phenotypes were similar to those already established by genotypes in the same
33 34 35	329	population [5].
36	330	Biosensor training, user proficiency and usability assessment
37 38 39	331	A total of 22 midwives in two clinics were initially trained and completed the users' proficiency test,
40 41	332	including 7 senior, 10 junior and 5 assistant midwives. Median (min-max) observed score from the
42 43	333	questionnaire (max 7 points) and observed tests (max 18 points) was 22.1 (18-24.5). The median score
44 45	334	did not differ by seniority: assistant 21.4 (18.0-23.5), junior 22.0 (19.3-24.5), senior 22.8 (21.0-24.5);
46 47 48	335	most midwives (72%) had a score >21 points (>85% of maximum score). The most common mistakes
49 50	336	in the questionnaire were on how to mix the blood and the buffer (pipetting 10 times vs shaking the
51 52	337	buffer tube) and on volume of blood mixture to transfer into the device. On observation, the most
53 54	338	common mistakes were failure to check the date on Biosensor screen and failure to check test expiry
55 56 57	339	date (rated as minor mistakes since expired test strips are automatically recognized by the Biosensor
57 58 59 60	340	and rejected).

BMJ Open

2	
3	
4	
5	
6	
7	
, 8 9 10 11 12 13	
9	
10	
11	
12	
13	
14	
14 15	
16 17	
17	
18	
19	
20	
21	
18 19 20 21 22 23	
23	
24	
24 25	
26	
26 27	
28	
29	
30	
31	
32	
33	
34 35	
36	
36 37 38 39	
38	
30	
40	
40 41	
41	
42 43	
45 44	
44 45	
46	
47	
48	
49 50	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
~~	

60

341 Two focus group discussions were held in December 2021 in MKT clinic, four weeks after completion 342 of the sample collection at that site; one FGD included 6 senior and junior midwives, and one included 6 assistant midwives. Discussions on satisfaction, learnability, willingness, and suitability and future 343 use are summarized in Table 3. Overall satisfaction was high, although staff were concerned with 344 345 invalid results, and found it challenging to dedicate one member of the team to perform the biosensor 346 test in the delivery room in the busy postpartum period. In terms of learnability, the midwife assistants 347 reported learning the device more easily, though some were anxious about missing steps. The senior 348 staff were anxious about mistakes and clotted blood, and reported the need to refer to the instructions 349 as a problem. Contrary to the positive expressions to keep using the device at the clinic, the midwives' 350 willingness to use the device was not high and they requested a dedicated staff to perform the test or 351 the test to be done in the laboratory. In terms of suitability and future use, the midwives found the 352 results clinically useful and a valuable diagnostic tool in both their setting and field clinics. However, 353 they were concerned about neglecting clinical care while doing a laboratory test, the cost of the device, 354 and emphasized the need for good training.

Table 3. Selected quotes by theme from focus group discussions.

Theme	Quotes
A. Satisfaction	"It is very good for the children. It is good to know if the child has G6PD deficiency or not from birth. The advantage of the device is that it can detect the children without having
	to do a heel stick on the baby. On the other hand, there is an increase in work But now that we are good at using it, it's fine." [FGD1]
	"Sometimes if someone is doing the test by using the device it means there are fewer staffs to be with mothers and babies which is not good." [FGD1]
B. Learnability	"After the one-time training, we had 1 or 2 times experiences practically. Then we can do it." [FGD2]
	"I am really scared I will forget the steps." [FGD2]
	"We have to look at the book very often, if not we forget the process of what to put and how to put it." [FGD1]
C. Willingness	"Facilitator: Yes. What do you think about keeping on using this device in the future? Participant: Of course. It is good.
	Participant: Yes, it is good. But if we can have a specific staff to do it then it will be better." [FGD2]
	"To make changes, take out the blood and send it to the lab. Then only lab staff have to

2 3 4	
5	
6 7	
8 9	
10 11	
12 13	356
14	
15 16	357
17 18	250
19 20	358
21	359
22 23	360
24 25	361
26 27	262
28 29	362
30 31 32 33 34	363
	364
	365
35 36	366
37 38	
39	367
40 41 42 43 44 45	368
	369
	370
46 47	570
48	371
49 50	372
51 52	373
53 54	374
55 56	375
57 58	
59 60	376

	do that." [FGD1]
D. Suitability &	"Because we can know that early, we can have counseling with the parents about the
Future Use	chances of their children getting yellow skin. We can take time to counsel." [FGD1]
	"Because we can know the right result of the G6PD deficiency in a short time. Especially
	for the clinic which doesn't have a lab then it is difficult to know the G6PD status. But
	with this device, they will only need to take a little blood from the baby and they can
	know the result of G6PD." [FGD2]

357 DISCUSSION

8 This is the first study to assess clinical performance and usability by locally trained health workers of 9 the "STANDARD G6PD" Biosensor test for identification of G6PD deficient and intermediate 0 phenotypes in cord blood. Current data, together with previously collected evidence from clinical trials 1 in the same population [5], clearly indicate that newborn heterozygous girls with G6PD intermediate 2 phenotypes, who are not identified by the FST, are at increased risk of NH and require phototherapy 3 [7, 8]. The availability of a validated POC quantitative test such as the Biosensor and its inclusion in 4 diagnostics guidelines for neonatal care at birth will allow identification of this group of neonates and 5 better clinical care in several settings [22-25]. Together with other easy-to-use non-invasive tools for 6 diagnosis of NH (e.g. Transcutaneous bilirubinometers), this study provides evidence that Biosensor 7 could be used in non-tertiary rural settings for identification of neonates who need referral to higher 8 levels of care. In settings where phototherapy is available, this study indicates that the Biosensor is a 9 better option than FST to support clinical management of neonates. Technical performance of the 0 Biosensor using ROC-derived threshold was comparable to that observed in adult blood in laboratory 1 and field studies [26-29].

The phenotypic classification provided by the Biosensor was superior to the currently available qualitative test (FST) both for deficient and for intermediate phenotypes. Among intermediate phenotypes, 80% were identified as either deficient or intermediate, allowing a better identification of neonates at potential jaundice risk as compared to the currently used FST-based diagnosis [14, 30]. Poor performance of FST can be explained by the higher G6PD enzymatic activity at birth as compared

BMJ Open

to adulthood [31, 32]; this is probably the result of several haematological factors including younger
red cell age, increased number of reticulocytes with higher G6PD activity [33, 34] and higher WBC
count [28] as observed here. Importantly, because of higher enzymatic activity in cord blood,
thresholds established in adult blood cannot be used to identify deficient or intermediate phenotypes
by either spectrophotometry or Biosensor at birth and would have missed identification of 10% (3/29)
deficient neonates (2/26 deficient males and 1/4 deficient females) and 86% (19/22) intermediate

Biosensor haemoglobin values had a moderate correlation with those assessed by automatic haematology analyser. Although cord (and neonatal) blood samples have higher haemoglobin levels and increased viscosity, Biosensor's performance in measuring G6PD activity was not worse at higher haemoglobin levels.

While the Biosensor provided a numeric result in 94.5% of cases, in few cases an "error" message or a
"HI" result was obtained which, according to the protocol, required re-analysis of the sample. Samples
that tested "HI" were confirmed to be normal, both phenotypically by spectrophotometry and by
genotype (all wild type). In routine practice it will not be needed to repeat the test in samples showing
"HI" result should the manufacturers include this information in the instructions for use.

The usability component of the study highlighted important themes to be taken into consideration for future use of the Biosensor at birth. The midwives have been involved in previous research regarding neonatal jaundice and appreciated the importance of early G6PD diagnosis to identify newborns most at risk of neonatal hyperbilirubinaemia and to facilitate optimal clinical care and parental counselling. The non-invasive nature of cord blood analysis was considered an advantage. In this setting, the SMRU midwives recommended that the test be performed by dedicated staff or by the available laboratory to assure appropriate clinical care is provided to the newborns and mothers; nevertheless, they estimated that in more rural contexts it may be appropriate for trained birth attendants to perform the test. Of note, midwives considered their reliance on reading the visual aid while performing the test (which is standard practice in laboratories) a weakness and this aspect might need to be taken

> into account when training clinic field staff. Usability results obtained here might not be generalizable to every other context but there are data being collected in several rural and community-based settings that corroborate ease of use of this device to guide malaria treatment after appropriate training [26, 35, 36].

Although midwives felt uncertain about properly conducting the test at the beginning of the study, the laboratory data showed highly accurate results in the first 12 months of use and very good results in the latter 8 months, supporting suitability of the test among health care workers without prior experience in diagnostics. Follow up studies should explore the causes of this slight decrease in quality over time which could be attributed to environmental or users' factors as well as device durability over >1 year of use in tropical conditions.

Limitations

A practical limitation of Biosensor testing on cord blood is the extra step needed to collect the blood with a syringe from the cord. A sampling device that collects a fixed volume of blood directly from the cord would streamline the process.

It is very likely that performance and reference ranges observed here in cord blood could apply to neonatal capillary or venous blood collected within the first 24 hours of life but this was not evaluated during the study.

The study was conducted in a period critically influenced by the COVID-19 pandemic. Travel restrictions resulted in a delayed study start, reduced enrolment in one clinic (WPA), and a protracted enrolment duration of the study overall. Fewer than planned FGD were conducted—including planned discussions at key time points during the study—and they occurred in a single clinical site providing a possibly narrower point of view on the usability topics explored. Additional staff stressors and human resource limitations due to COVID-19 and the political unrest in Myanmar in 2021 were not assessed but may have influenced the results of both the technical and usability components of the study.

CONCLUSIONS

1		
2		
3 4	429	The "STANDARD G6PD" Biosensor is a reliable POC tool to support the perinatal care of newborns at
5 6	430	higher risk of neonatal hyperbilirubinemia by demonstrating very high sensitivity in identification of
7 8	431	deficient newborns and high sensitivity in identification of female newborns with intermediate activity.
9 10 11	432	Its use by trained personnel in rural clinics and birthing centers with a high prevalence of G6PD
12 13	433	deficiency, together with assessment of bilirubin levels before discharge, has the potential to avert
14 15	434	disability and death from hyperbilirubinaemia.
16		
17 18	435	Extending use of the Biosensor for newborn testing in countries where it is already deployed for
19 20 21	436	malaria case management in resource-constrained settings [37], would provide a higher return on this
21 22 23	437	investment. Use of Biosensor in populations with prevalent G6PD deficiency outside malaria endemic
24 25	438	regions might increase the benefit-cost ratio of universal screening [38] in all settings [39].
26		
27 28	439	Figures Legends and Captions
29	440	Figure 1. Distribution of CCDD ensurantic activity from court blood concellor detected by cold standard
30	440	Figure 1 . Distribution of G6PD enzymatic activity from cord blood samples detected by gold standard
31 32	441	spectrophotometry assay (A) and Biosensor (B) according to sex and genotype
33	442	
34		
35	443	Figure 2. Bland Altman plot of G6PD activity (A) and haemoglobin levels (B) in cord blood comparing
36	444	gold standard spectrophotometry to Biosensor
37	445	(A) Delta G6PD=G6PD Biosensor- G6PD Spectrophotometry
38 39	446	Full horizontal line indicates mean difference (1.05IU/gHb); dotted horizontal lines indicate limits of
39 40	447	agreement (-3.52 to 5.62IU/gHb)
41	448	(B) Delta Hb=Hb Biosensor- Hb Spectrophotometry
42	449	Full horizontal line indicates mean difference (0.70g/dL); dotted horizontal lines indicate limits of
43	450	agreement (-2.83 to 4.23g/dL)
44 45	451	
45 46	452	Figure 2 Desciver Operating Characteristic survey of Disconcer for 200/ activity (A) and 700/ activity
47	452	Figure 3 . Receiver Operating Characteristic curve of Biosensor for 30% activity (A) and 70% activity
48	453	(B) thresholds.
49	454	
50		
51	455	
52 53	456	
54 55 56	457	ACKNOWLEDGMENTS
56 57 58	458	The authors wish to thank all the mothers for their collaboration and understanding; the study would
59 60	459	not have been possible without the hard work and dedication of all SMRU staff involved, especially

460 during such a difficult time of political unrest and COVID-19 pandemic. Acknowledgments are also461 extended to SD Biosensor for donating the devices and the tests for the study.

462 ETHICAL APPROVAL

The study was approved by Oxford Tropical Research Ethics Committee, UK (OxTREC 532-19), the Mahidol University Faculty of Tropical Medicine Ethics Committee, Thailand (TMEC 19-048, MUTM 2019-080-02) and the Tak Province Border Community Ethics Advisory Board (TCAB201904). Written informed consent was obtained from literate mothers and midwives; a thumbprint was obtained in the presence of a literate witness for illiterate mothers.

468 AUTHORS' CONTRIBUTION

469 Substantial contributions to the conception or design of the work: GB, AH, FN, VIC and RM.
470 Acquisition, analysis or interpretation of data for the work: GB, MEG, EW, GG, PP, PKM, LA, NSW, SW,
471 KKA, AH, BH, FN, VIC and RM. Drafting the work or revising it critically for important intellectual
472 content: GB, MEG, EW, GG, PP, PKM, LA, NSW, SW, KKA, AH, BH, FN, VIC and RM. Final approval of
473 the version to be published: all authors. Agreement to be accountable for all aspects of the work in
474 ensuring that questions related to the accuracy or integrity of any part of the work are appropriately
475 investigated and resolved: all authors.

476 COMPETING INTERESTS

477 None declared.

478 FUNDING

479 The study was supported by a grant to GB by the Wellcome Trust Institutional Translational Partnership
 480 Awards: Thailand Major Overseas Programme (WT-iTP-2019/004). SMRU is supported by the
 481 Wellcome Trust [grant 220211]. For the purpose of Open Access, the authors have applied a CC BY
 482 public copyright licence to any author accepted manuscript version arising from this submission. The

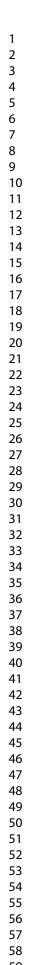
2		
3 4	483	funders had no role in study design, data collection and analysis, decision to publish, or preparation of
5 6	484	the manuscript.
7		
8 9	485	DATA AVAILABILITY STATEMENT
10		
11 12	486	De-identified participant data are available from the Mahidol Oxford Tropical Medicine Data Access
13 14	487	Committee upon request from this link: <u>https://www.tropmedres.ac/units/moru-bangkok/bioethics-</u>
15 16	488	engagement/datasharing.
17		
18 19	489	
20		
21		
22 23	490	REFERENCES
24	491	
25 26	492	1. Bhutani VK, Zipursky A, Blencowe H, Khanna R, Sgro M, Ebbesen F, et al. Neonatal
27	493	hyperbilirubinemia and Rhesus disease of the newborn: incidence and impairment estimates
28	494	for 2010 at regional and global levels. Pediatric research. 2013;74 Suppl 1:86-100.
29 30	495	2. Bhutani VK, Vilms RJ, Hamerman-Johnson L. Universal bilirubin screening for severe
31	496	neonatal hyperbilirubinemia. J Perinatol. 2010;30 Suppl:S6-15.
32	497	3. Olusanya BO, Kaplan M, Hansen TWR. Neonatal hyperbilirubinaemia: a global
33	498	perspective. Lancet Child Adolesc Health. 2018;2(8):610-20.
34 25	499	4. Lauer BJ, Spector ND. Hyperbilirubinemia in the newborn. Pediatr Rev.
35 36	500	2011;32(8):341-9.
37	501	5. Bancone G, Gornsawun G, Peerawaranun P, Penpitchaporn P, Paw MK, Poe DD, et al.
38	502	Contribution of genetic factors to high rates of neonatal hyperbilirubinaemia on the
39	503	Thailand-Myanmar border. Plos Global Public Health. 2022. 🦳
40 41	504	6. Cappellini MD, Fiorelli G. Glucose-6-phosphate dehydrogenase deficiency. Lancet.
42	505	2008;371(9606):64-74.
43	506	7. Kaplan M, Hammerman C, Vreman HJ, Stevenson DK, Beutler E. Acute hemolysis and
44	507	severe neonatal hyperbilirubinemia in glucose-6-phosphate dehydrogenase-deficient
45 46	508	heterozygotes. The Journal of pediatrics. 2001;139(1):137-40.
47	509	8. Meloni T, Forteleoni G, Dore A, Cutillo S. Neonatal hyperbilirubinaemia in
48	510	heterozygous glucose-6-phosphate dehydrogenase deficient females. British journal of
49	511	haematology. 1983;53(2):241-6.
50 51	512	9. Molou E, Schulpis KH, Thodi G, Georgiou V, Dotsikas Y, Papadopoulos K, et al.
52	513	Glucose-6-Phosphate Dehydrogenase (G6PD) deficiency in Greek newborns: the
53	514	Mediterranean C563T mutation screening. Scandinavian journal of clinical and laboratory
54	515	investigation. 2014;74(3):259-63.
55 56	516	10. WHO Working Group. Glucose-6-phosphate dehydrogenase deficiency. Bulletin of
56 57	517	the World Health Organization. 1989;67(6):601-11.
58	518	11. Howes RE, Piel FB, Patil AP, Nyangiri OA, Gething PW, Dewi M, et al. G6PD deficiency
59	519	prevalence and estimates of affected populations in malaria endemic countries: a
60	520	geostatistical model-based map. PLoS medicine. 2012;9(11):e1001339.

12. Bancone G, Chu CS, Somsakchaicharoen R, Chowwiwat N, Parker DM, Charunwatthana P, et al. Characterization of G6PD Genotypes and Phenotypes on the Northwestern Thailand-Myanmar Border. PloS one. 2014;9(12):e116063. Turner C, Carrara V, Aye Mya Thein N, Chit Mo Mo Win N, Turner P, Bancone G, et al. 13. Neonatal intensive care in a Karen refugee camp: a 4 year descriptive study. PloS one. 2013;8(8):e72721. 14. Thielemans L, Gornsawun G, Hanboonkunupakarn B, Paw MK, Porn P, Moo PK, et al. Diagnostic performances of the fluorescent spot test for G6PD deficiency in newborns along the Thailand-Myanmar border: A cohort study. Wellcome open research. 2018;3:1. 15. Health NCCfWsCs. NICE. Neonatal jaundice: clinical guideline2010. 16. Bancone G, Chowwiwat N, Somsakchaicharoen R, Poodpanya L, Moo PK, Gornsawun G, et al. Single Low Dose Primaquine (0.25mg/kg) Does Not Cause Clinically Significant Haemolysis in G6PD Deficient Subjects. PloS one. 2016;11(3):e0151898. Asiimwe C, Kyabayinze DJ, Kyalisiima Z, Nabakooza J, Bajabaite M, Counihan H, et al. 17. Early experiences on the feasibility, acceptability, and use of malaria rapid diagnostic tests at peripheral health centres in Uganda-insights into some barriers and facilitators. Implement Sci. 2012;7:5. 18. Bancone G, Gilder ME, Chowwiwat N, Gornsawun G, Win E, Cho WW, et al. Prevalences of inherited red blood cell disorders in pregnant women of different ethnicities living along the Thailand-Myanmar border. Wellcome open research. 2017;2:72. Bland JM, Altman DG. Statistical methods for assessing agreement between two 19. methods of clinical measurement. Lancet. 1986;1(8476):307-10. 20. Kumar R, Indrayan A. Receiver operating characteristic (ROC) curve for medical researchers. Indian pediatrics. 2011;48(4):277-87. Thielemans L, Peerawaranun P, Mukaka M, Paw MK, Wiladphaingern J, Landier J, et 21. al. High levels of pathological jaundice in the first 24 hours and neonatal hyperbilirubinaemia in an epidemiological cohort study on the Thailand-Myanmar border. PloS one. 2021;16(10):e0258127. Aynalem YA, Mulu GB, Akalu TY, Shiferaw WS. Prevalence of neonatal 22. hyperbilirubinaemia and its association with glucose-6-phosphate dehydrogenase deficiency and blood-type incompatibility in sub-Saharan Africa: a systematic review and meta-analysis. BMJ Paediatr Open. 2020;4(1):e000750. 23. Bernardo J, Nock M. Pediatric Provider Insight Into Newborn Screening for Glucose-6-Phosphate Dehydrogenase Deficiency. Clin Pediatr (Phila). 2015;54(6):575-8. DelFavero JJ, Jnah AJ, Newberry D. Glucose-6-Phosphate Dehydrogenase Deficiency 24. and the Benefits of Early Screening. Neonatal Netw. 2020;39(5):270-82. 25. Wong RJ, Montiel C, Kunda M, Stevenson DK, Bhutani VK. A novel point-of-care device for measuring glucose-6-phosphate dehydrogenase enzyme deficiency. Semin Perinatol. 2021;45(1):151356. Alam MS, Kibria MG, Jahan N, Thriemer K, Hossain MS, Douglas NM, et al. Field 26. evaluation of quantitative point of care diagnostics to measure glucose-6-phosphate dehydrogenase activity. PloS one. 2018;13(11):e0206331. 27. Pal S, Bansil P, Bancone G, Hrutkay S, Kahn M, Gornsawun G, et al. Evaluation of a Novel Quantitative Test for Glucose-6-Phosphate Dehydrogenase Deficiency: Bringing Quantitative Testing for Glucose-6-Phosphate Dehydrogenase Deficiency Closer to the Patient. The American journal of tropical medicine and hygiene. 2019;100(1):213-21.

1		
2 3		
4	567	28. Pal S, Myburgh J, Bansil P, Hann A, Robertson L, Gerth-Guyette E, et al. Reference and
5	568	point-of-care testing for G6PD deficiency: Blood disorder interference, contrived specimens,
6	569	and fingerstick equivalence and precision. PloS one. 2021;16(9):e0257560.
7 8	570 571	29. Zobrist S, Brito M, Garbin E, Monteiro WM, Clementino Freitas S, Macedo M, et al. Evaluation of a point-of-care diagnostic to identify glucose-6-phosphate dehydrogenase
9	572	deficiency in Brazil. PLoS neglected tropical diseases. 2021;15(8):e0009649.
10	573	30. Kosaryan M, Mahdavi MR, Jalali H, Roshan P. Why does the Iranian national program
11 12	574	of screening newborns for G6PD enzyme deficiency miss a large number of affected infants?
12	575	Pediatric hematology and oncology. 2014;31(1):95-100.
14	576	31. Doherty AN, Kring EA, Posey YF, Maisels MJ. Glucose-6-phosphate dehydrogenase
15	577	activity levels in white newborn infants. The Journal of pediatrics. 2014;164(6):1416-20.
16 17	578	32. Kaplan M, Abramov A. Neonatal hyperbilirubinemia associated with glucose-6-
18	579	phosphate dehydrogenase deficiency in Sephardic-Jewish neonates: incidence, severity, and
19	580	the effect of phototherapy. Pediatrics. 1992;90(3):401-5.
20	581	33. Ellis D, Sewell CE, Skinner LG. Reticulocyte enzymes and protein synthesis. Nature.
21 22	582	1956;177(4500):190-1.
23	583	34. Srivastava A, Evans KJ, Sexton AE, Schofield L, Creek DJ. Metabolomics-Based
24	584	Elucidation of Active Metabolic Pathways in Erythrocytes and HSC-Derived Reticulocytes.
25	585	Journal of proteome research. 2017;16(4):1492-505.
26 27	586	35. Engel N, Ghergu C, Matin MA, Kibria MG, Thriemer K, Price RN, et al. Implementing
28	587	radical cure diagnostics for malaria: user perspectives on G6PD testing in Bangladesh.
29	588	Malaria journal. 2021;20(1):217.
30	589	36. Gerth-Guyette E, Adissu W, Brito M, Garbin E, Macedo M, Sharma A, et al. Usability
31 32	590	of a point-of-care diagnostic to identify glucose-6-phosphate dehydrogenase deficiency: a
33	591	multi-country assessment of test label comprehension and results interpretation. Malaria
34	592	journal. 2021;20(1):307.
35 36	593	37. Chu CS, Bancone G, Kelley M, Advani N, Domingo GJ, Cutiongo-de la Paz EM, et al.
30	594	Optimizing G6PD testing for Plasmodium vivax case management: why sex, counseling, and
38	595	community engagement matter. Wellcome open research. 2020;5:21.
39	596	38. Vidavalur R, Bhutani VK. Economic evaluation of point of care universal newborn
40 41	597 598	screening for glucose-6-Phosphate dehydrogenase deficiency in United States. J Matern Fetal Neonatal Med. 2021:1-9.
42	598 599	39. Watchko JF, Kaplan M, Stark AR, Stevenson DK, Bhutani VK. Should we screen
43	600	newborns for glucose-6-phosphate dehydrogenase deficiency in the United States? J
44	601	Perinatol. 2013;33(7):499-504.
45 46		r crinatol. 2013,33(7).433 304.
47	602	
48		
49 50		
50		
52		
53		
54 55		
56		
57		
58 50		
59 60		
50		

Sex

BMJ Open


25.0 20.0

15.0

Figure 1. Distribution of G6PD enzymatic activity from cord blood samples detected by gold standard

spectrophotometry assay (A) and Biosensor (B) according to sex and genotype

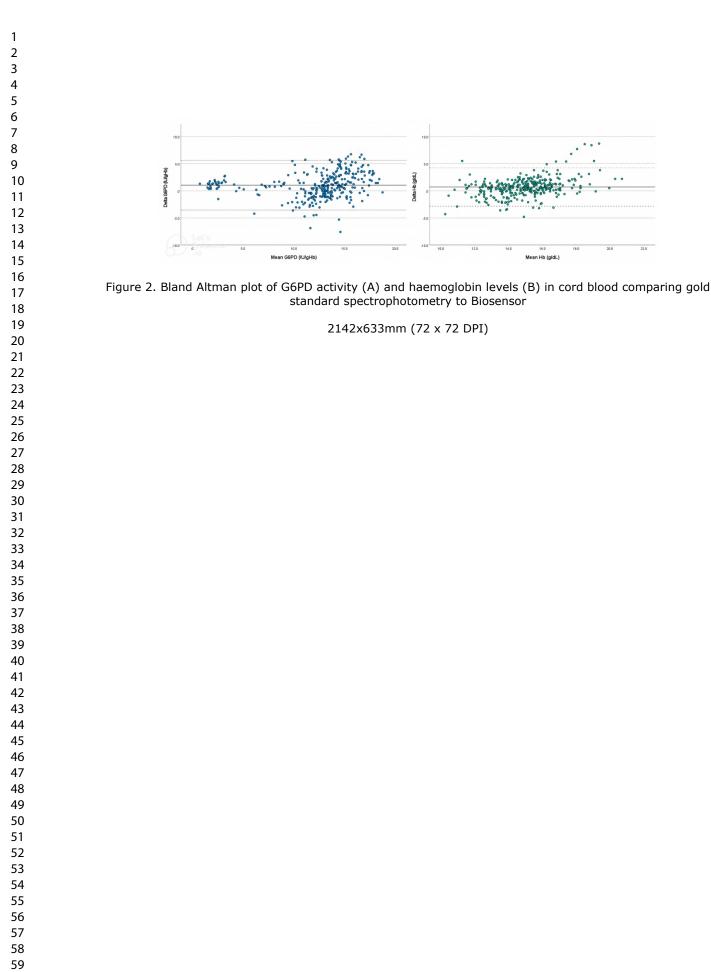
2217x675mm (72 x 72 DPI)

25.0 20.0

15.0

10.0

0.0


25.0

20.0

15.0

G6PD activity (IU/gHb)

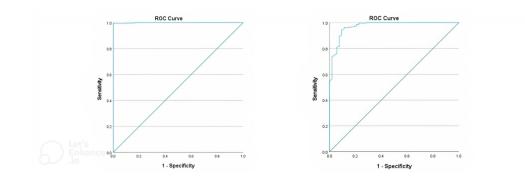


Figure 3. Receiver Operating Characteristic curve of Biosensor for 30% activity (A) and 70% activity (B) thresholds.

1972x642mm (72 x 72 DPI)

SD G6PD BIOSENSOR (for sample)

Prepare the machine, test device and buffer (step 1-8) BEFORE doing the blood collection (step 9)

24

25

26

27

28 29

30 31 32

33 34 35

36 37

38

39

40

41

42 43

44 45 46

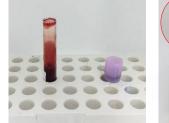
1. Put on gloves

2. Insert codechip (For first time using or open new box of test device)

3. Check the expiry date 4. printed on the foil pouch

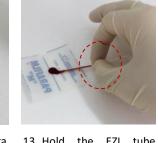
Check that codechip number on screen correspond to test device

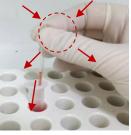
Open the foil pouch and 5. 6. Insert the test device take a test device out and hold the test in the right side



7. Open flap chamber

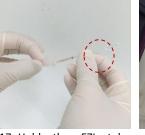
- 8. Open buffer tube and place on rack
- 9. Mix sample tube well by inverting* 10 times *Gently, no bubbles and no shaking


10. Place on rack


11. Collect blood by using Pasteur pipette

12. Drop blood on para film one drop (Avoid to make bubble)

14. Mix 13. Hold the EZI tube horizontally, and touch the tip of the EZI tube to the blood specimen.



the blood with specimen extraction buffer by pressing and releasing the EZI tube 10 times

15. Discard used EZI tube in the sharp bin

16. Take new EZI tube

17. Hold the EZI tube horizontally, and touch the tip of the EZI tube to the mixed blood specimen. Do not close hole.

to the specimen application hole of the test device

19. Close the flap chamber immediately after applying

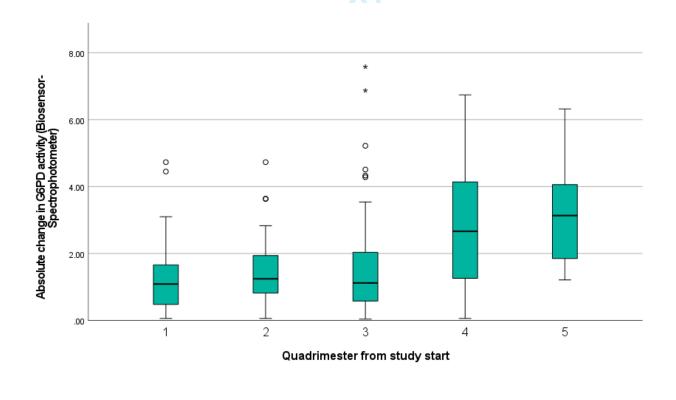
Do not close hole.

20. Wait for 2 min for the test result to appear on the screen (Check date) and report results on the logbook

21. Take the used test device out and discard in sharp bin

Quantitative G6PD point-of-care test can be used reliably on cord blood to identify male and female newborns at increased risk of neonatal hyperbilirubinaemia: a mixed method study

Supplementary Figures and Tables


S Table 1. G6PD enzymatic activity (IU/gHb) of cord blood by spectrophotometry according to genotype

G6PD			Std.		
genotype	Ν	Mean	Deviation	Minimum	Maximum
Hemizygote	26	1.64	0.65	0.09	3.32
Homozygote	3	1.66	0.43	1.38	2.16
Heterozygote	34	8.55	2.97	3.54	18.89
WT	262	13.62	2.02	8.01	26.32
Total	325	12.02	4.14	0.09	26.32

S Table 2. G6PD enzymatic activity (IU/gHb) by Biosensor according to genotype

G6PD			Std.		
genotype	Ν	Mean	Deviation	Minimum	Maximum
Hemizygote	26	2.87	0.81	1.4	4.6
Homozygote	3	2.70	1.23	1.8	4.1
Heterozygote	34	9.50	3.47	4.0	18.6
WT	244	14.46	2.72	8.1	20.0
Total	307	12.82	4.47	1.4	20.0

S Figure 1. Absolute difference in G6PD activity detected by Biosensor as compared to spectrophotometry over time (only MKT clinic)

S	Table	3. Cha	racte	ristics of sample	s misclassifi	ed by Biosen	sor	

Clinic	Year	EGA	Sex	Reference G6PD (IU/gHb)	Reference Hb (g/dL)	Percent activity of reference (%)	Reference phenotype	Biosensor G6PD (IU/gHb)	Biosensor Hb (g/dL)	Percent activity of Biosensor (%)	Percent activity of reference (%)	Biosensor phenotype	G6PD genotype Mahidol	Retics (%)	WBC (10³/ uL)
МКТ	2020	42	F	4.4	15	33	INT	4.3	15.2	30	32	DEF	Heterozygote	1.5	13.6
МКТ	2021	40	F	7.1	15.8	54	INT	12.6	16.3	88	95	NOR	Heterozygote	1.3	20.2
МКТ	2021	41	F	7.7	14.1	58	INT	12.5	11.5	87	94	NOR	Heterozygote	ND	20.6
МКТ	2021	39	F	8.0	15.3	60	INT	10.9	11.7	76	82	NOR	WT	2.3	19.3
МКТ	2021	39	F	8.2	14.3	62	INT	4	15.7	28	30	DEF	Heterozygote	2.2	21.1
МКТ	2021	39	F	8.5	14.1	64	INT	11.8	14.1	82	89	NOR	Heterozygote	ND	ND
WPA	2021	39	F	9.4	13.3	71	NOR	9.8	13.7	68	74	INT	Heterozygote	1.6	13.8
WPA	2021	38	F	10.2	14.8	77	NOR	7.5	15.3	52	56	INT	Heterozygote	2.1	11.6
WPA	2021	39	F	10.9	15.6	82	NOR	8.8	16.7	61	66	INT	WT	1.6	12.5
МКТ	2020	38	F	11.4	16.7	86	NOR	9.3	18.8	65	70	INT	WT	4.8	7.1
WPA	2021	39	F	11.7	14.3	88	NOR	8.1	16.5	56	61	INT	WT	1.8	11.1
WPA	2020	39	F	11.8	15.8	89	NOR	9.8	15.3	68	74	INT	WT	1.9	14.3
МКТ	2020	39	F	12.1	12.6	91	NOR	9	13.2	63	68	INT	WT	3.9	14.4
МКТ	2021	40	F	14.2	14	107	NOR	9.7	16.3	67	73	INT	WT	1.7	11.3
МКТ	2021	37	F	15.1	11.2	113	NOR	8.2	12.1	57	62	INT	WT	3.7	15.5

S Table 4. Phototherapy treatment in newborns with EGA≥38 weeks with different G6PD
phenotypes

G6PD phenotype by	PT	No PT	% PT	RR	95%CI	P _{Fisher}
spectrophotometry						, ioner
Deficient	8	20	28.6	4.9	2.3-10.5	<0.001
Intermediate	3	17	15.0	2.6	0.8-8.1	0.13
Normal	15	242	5.8			reference
G6PD phenotype by Biosensor						
Deficient	9	21	30.0	5.4	2.5-11.6	<0.001
Intermediate	2	20	9.1	1.7	0.4-6.8	0.49
Normal	13	223	5.5			reference
Intermediate Normal						

Page 33 of 32

Section & Topic	No	Item	Reported on pa #
TITLE OR ABSTRACT			
	1	Identification as a study of diagnostic accuracy using at least one measure of accuracy	2
		(such as sensitivity, specificity, predictive values, or AUC)	
ABSTRACT			
	2	Structured summary of study design, methods, results, and conclusions	2
		(for specific guidance, see STARD for Abstracts)	
INTRODUCTION			
	3	Scientific and clinical background, including the intended use and clinical role of the index test	4
	4	Study objectives and hypotheses	4
METHODS			
Study design	5	Whether data collection was planned before the index test and reference standard	5
		were performed (prospective study) or after (retrospective study)	
Participants	6	Eligibility criteria	5
	7	On what basis potentially eligible participants were identified	5
		(such as symptoms, results from previous tests, inclusion in registry)	
	8	Where and when potentially eligible participants were identified (setting, location and dates)	5
	9	Whether participants formed a consecutive, random or convenience series	5
Test methods	10a	Index test, in sufficient detail to allow replication	6
	10b	Reference standard, in sufficient detail to allow replication	6
	11	Rationale for choosing the reference standard (if alternatives exist)	NA
	12a	Definition of and rationale for test positivity cut-offs or result categories	8-9
		of the index test, distinguishing pre-specified from exploratory	
	12b	Definition of and rationale for test positivity cut-offs or result categories	8-9
		of the reference standard, distinguishing pre-specified from exploratory	
	13a	Whether clinical information and reference standard results were available	5
		to the performers/readers of the index test	
	13b	Whether clinical information and index test results were available	5
		to the assessors of the reference standard	
Analysis	14	Methods for estimating or comparing measures of diagnostic accuracy	8-9
, ,	15	How indeterminate index test or reference standard results were handled	5
	16	How missing data on the index test and reference standard were handled	NA
	17	Any analyses of variability in diagnostic accuracy, distinguishing pre-specified from exploratory	NA
	18	Intended sample size and how it was determined	8
RESULTS			
Participants	19	Flow of participants, using a diagram	
	20	Baseline demographic and clinical characteristics of participants	10
	 21a	Distribution of severity of disease in those with the target condition	11-12
	21a 21b	Distribution of alternative diagnoses in those without the target condition	NA
	22	Time interval and any clinical interventions between index test and reference standard	NA
Test results	23	Cross tabulation of the index test results (or their distribution)	table 2
. correctino		by the results of the reference standard	
	24	Estimates of diagnostic accuracy and their precision (such as 95% confidence intervals)	11-12
	25	Any adverse events from performing the index test or the reference standard	NA
DISCUSSION	23	They develop events from performing the index tost of the reference standard	
DISCOSSION	26	Study limitations, including sources of potential bias, statistical uncertainty, and	16
	20	generalisability	10
	27	Implications for practice, including the intended use and clinical role of the index test	17
OTHER	<i>∠1</i>	ווועמו זטו אומכוניב, ווכועטווא נופ ווונפוועפט עצפ מווע כוווונמו זטופ טו נוופ ווועפא נפגנ	1/
INFORMATION			
	20	Pogistration number and name of registry	ΝΙΔ
	28 20	Registration number and name of registry	NA 10
	29 20	Where the full study protocol can be accessed	10
	30	Sources of funding and other support; role of funders For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	9-10

STARD 2015

AIM

STARD stands for "Standards for Reporting Diagnostic accuracy studies". This list of items was developed to contribute to the completeness and transparency of reporting of diagnostic accuracy studies. Authors can use the list to write informative study reports. Editors and peer-reviewers can use it to evaluate whether the information has been included in manuscripts submitted for publication.

EXPLANATION

A **diagnostic accuracy study** evaluates the ability of one or more medical tests to correctly classify study participants as having a **target condition.** This can be a disease, a disease stage, response or benefit from therapy, or an event or condition in the future. A medical test can be an imaging procedure, a laboratory test, elements from history and physical examination, a combination of these, or any other method for collecting information about the current health status of a patient.

The test whose accuracy is evaluated is called **index test.** A study can evaluate the accuracy of one or more index tests. Evaluating the ability of a medical test to correctly classify patients is typically done by comparing the distribution of the index test results with those of the **reference standard**. The reference standard is the best available method for establishing the presence or absence of the target condition. An accuracy study can rely on one or more reference standards.

If test results are categorized as either positive or negative, the cross tabulation of the index test results against those of the reference standard can be used to estimate the **sensitivity** of the index test (the proportion of participants *with* the target condition who have a positive index test), and its **specificity** (the proportion *without* the target condition who have a negative index test). From this cross tabulation (sometimes referred to as the contingency or "2x2" table), several other accuracy statistics can be estimated, such as the positive and negative **predictive values** of the test. Confidence intervals around estimates of accuracy can then be calculated to quantify the statistical **precision** of the measurements.

If the index test results can take more than two values, categorization of test results as positive or negative requires a **test positivity cut-off**. When multiple such cut-offs can be defined, authors can report a receiver operating characteristic (ROC) curve which graphically represents the combination of sensitivity and specificity for each possible test positivity cut-off. The **area under the ROC curve** informs in a single numerical value about the overall diagnostic accuracy of the index test.

The **intended use** of a medical test can be diagnosis, screening, staging, monitoring, surveillance, prediction or prognosis. The **clinical role** of a test explains its position relative to existing tests in the clinical pathway. A replacement test, for example, replaces an existing test. A triage test is used before an existing test; an add-on test is used after an existing test.

Besides diagnostic accuracy, several other outcomes and statistics may be relevant in the evaluation of medical tests. Medical tests can also be used to classify patients for purposes other than diagnosis, such as staging or prognosis. The STARD list was not explicitly developed for these other outcomes, statistics, and study types, although most STARD items would still apply.

DEVELOPMENT

This STARD list was released in 2015. The 30 items were identified by an international expert group of methodologists, researchers, and editors. The guiding principle in the development of STARD was to select items that, when reported, would help readers to judge the potential for bias in the study, to appraise the applicability of the study findings and the validity of conclusions and recommendations. The list represents an update of the first version, which was published in 2003.

More information can be found on <u>http://www.equator-network.org/reporting-guidelines/stard.</u>

