SP140 inhibits STAT1 signaling, induces IFN-gamma in tumor-associated macrophages, and is a predictive biomarker of immunotherapy response

Running title: SP140 and immunotherapy

Supplementary Materials

Supplementary table 1- List of primers used in this study

Supplementary table 2- Top GSEA gene sets (hallmark and GO: biological pathways) with FWER < 0.05

Supplementary Figure 1- Distributions of SP140 expression levels in TCGA pan cancer are displayed using box plots. The statistical significance computed by the Wilcoxon test is annotated by the number of stars (*: p-value < 0.05; **: p-value <0.01; ***: p-value <0.001). Normal tissues are depicted in blue and displayed in gray columns when normal data were available in the TCGA dataset.

Supplementary Figure 2- Relative delta delta Ct expression value for SP140 gene transcript expression in CAL27, FaDu and THP1-derivd naïve macrophages. Results is presented as average of three independent experiment.

Supplementary Figure 3- Disease specific survival of patients with high levels of SP140 (n=261) and low levels of SP140 (n=261) in TCGA HNSCC. The p-value was calculated based on the log-rank test.

Supplementary Figure 4- Correlation of SP140 expression in HPV positive and HPV negative HNSCC with M1 macrophage (A) and CD8 T cell infiltrations levels (B). P-values are calculated after FDR corrections of Spearman's Rho.

Supplementary Figure 5- A, B) SP140 was downregulated using siRNA in naïve (undifferentiated) macrophages and cells were collected for RNA expression analysis by qPCR for IL6 and STAT5a, after 24h. 18s was used as endogenous normalizer. Delta-delta Ct method was used to identify the relative gene expression. Data is presented as mean and SD of fold change compared to the control. ** indicates p < 0.01

Supplementary Figure 6- SP140 binding to STAT1 promoter sites by ChIP assays. The ChIP assays showed a binding of SP140 to STAT1 promoter sites in THP-1-derived macrophages treated with SP140 siRNA or control siRNA. Data is presented as means \pm SD.

Supplementary Figure 7- A-D) Patients with metastatic melanoma who underwent anti-PD-1 therapy were dichotomized to high expression and low expression group based on median expression of SP140. Tumors with high expression of SP140 (n=13) versus tumors with low levels of SP140 (n=12) showed higher infiltration of M1 macrophages, CD8 T cells, CD4 memory activated T cells, and overall immune score. The Wilcoxon test was used for statistical analysis and p-value was corrected for multiple comparison. * indicates p < 0.05

Supplementary Figure 8- A) The levels of SP140 in thymic carcinoma tumors were significantly higher in anti-PD1 treatment responders versus non-responders (n=9). B) The expression levels of SP140 in recurrent glioblastoma patients who received neoadjuvant anti-PD-1 were significantly higher in treatment responders versus non-responders (n=17). C) Patients

with recurrent glioblastoma were dichotomized to high expression (n=8) and low expression (n=9) groups based on median expression of SP140, deconvolution of immune cells showed higher infiltration of CD8 T-cells and M1 macrophages in the SP140 high group. * indicates p < 0.05

Supplementary table 1- List of primers used in this study

Gene	Forward Primer	Reverse Primer
SP140	CCAGGTGGGGGGGGGGGGTGTCCTGT	TCTCCCCTGGTGCTGTGCTGT
STAT1	ACGCCCAGAGATTTAATCAGG	CACTCTTTGCCACACCATTG
IL-1RA	GAATGACGCCCTCAATCAAAGT	TCATCTTGGGCAGTCACATACA
Arginase	ACAGTTTGGCAATTGGAAGCA	CACCCAGATGACTCCAAGATCAG
IL6	AGACAGCCACTCACCTCTTCAG	TTCTGCCAGTGCCTCTTTGCTG
STAT5a	TTACTGAAGATCAAGCTGGGG	TCATTGTACAGAATGTGCCGG
18S	GTAACCCGTTGAACCCCATT	CCATCCAATCGGTAGTAGCG
STAT1 promotor	AGCCCCTTAAGAGTAGGCGA	CCCCATGCCTTCTCAGTTGT

Supplementary table 2- Top GSEA gene sets (hallmark and GO: biological pathways) with FWER < 0.05

HALLMARK						
Name		FS	NES	NOM n	EDP a	EWE
Nume	SIZE	LO	NLS	val	val	R p-
					, ui	val
Positive						
HALLMARK_ALLOGRAFT_REJECTION		0.72	2.38	0	0	0
HALLMARK_INTERFERON_GAMMA_RESPONSE	169	0.64	2.10	0	0	0
HALLMARK_INFLAMMATORY_RESPONSE	139	0.62	2.01	0	0	0
HALLMARK_IL6_JAK_STAT3_SIGNALING	57	0.62	1.94	0	0	0
HALLMARK_INTERFERON_ALPHA_RESPONSE		0.60	1.92	0	0	0
HALLMARK_COMPLEMENT	123	0.55	1.79	0	6.86E-	0.006
HALLMARK_IL2_STAT5_SIGNALING		0.51	1.66	0	0.0049	0.05
Negative						
HALLMARK MYC TARCETS VI	52	0.516	2.05	0	0	0
HALLWARK_MIC_IARGEIS_VI	33	-0.510	-3.25	0	0	0 002
HALLMARK_P35_PATHWAY	99	-0.29	-1.97	0	0.01	0.003
HALLMARK_HIPOAIA	82	-0.28	-1.90	0	0.009	0.003
HALLMARK_ULICULISIS	83 95	-0.31	-1.80	0	0.034	0.01
TION	85	-0.29	-1.09	0	0.043	0.018
CO. BIOLOCICAL PATHWAY						
Positive						
GOBP IMMUNE RESPONSE REGULATING CELL SU	178	0.72	2 30	0	0	0
RFACE RECEPTOR SIGNALING PATHWAY	170	0.72	2.37	0	0	0
GOBP ADAPTIVE IMMUNE RESPONSE	299	0.71	2.39	0	0	0
GOBP ADAPTIVE IMMUNE RESPONSE	299	0.71	2.39	0	0	0
GOBP LYMPHOCYTE ACTIVATION	417	0.69	2.35	0	0	0
GOBP POSITIVE T CELL SELECTION	25	0.83	2.35	0	0	0
GOBP LYMPHOCYTE ACTIVATION INVOLVED IN I	113	0.73	2.35	0	0	0
MMUNE RESPONSE						
GOBP_REGULATION_OF_LYMPHOCYTE_ACTIVATIO		0.70	2.34	0	0	0
N						
GOBP_NEGATIVE_REGULATION_OF_LEUKOCYTE_C	73	0.73	2.34	0	0	0
ELL_CELL_ADHESION						
GOBP_B_CELL_MEDIATED_IMMUNITY		0.71	2.33	0	0	0
GOBP_ANTIGEN_RECEPTOR_MEDIATED_SIGNALIN		0.72	2.33	0	0	0
G_PATHWAY				-		
GOBP_DENDRITIC_CELL_MIGRATION	22	0.84	2.33	0	0	0
GOBP_T_CELL_ACTIVATION	297	0.70	2.33	0	0	0
GOBP_REGULATION_OF_LEUKOCYTE_PROLIFERAT		0.70	2.32	0	0	0
GOBP LYMPHOCYTE MEDIATED IMMUNITY	195	0.70	2 31	0	0	0
GOBP REGULATION OF T CELL ACTIVATION	206	0.70	2.31	0	0	0
GOBP ANTIGEN PROCESSING AND PRESENTATIO	0.83	2 31	0	0	0	0
N OF EXOGENOUS PEPTIDE ANTIGEN VIA MHC	0.05	2.51	0	0	0	0
CLASS_II						
Negative						
GOBP_KERATINIZATION		-0.91	-4.17	0	0	0
GOBP_SKIN_DEVELOPMENT		-0.54	-4.11	0	0	0
GOBP_KERATINOCYTE_DIFFERENTIATION		-0.68	-3.87	0	0	0
GOBP_EPIDERMAL_CELL_DIFFERENTIATION		-0.56	-3.73	0	0	0
GOBP_RIBOSOMAL_LARGE_SUBUNIT_BIOGENESIS		-0.62	-2.85	0	0	0
GOBP_KERATINOCYTE_PROLIFERATION		-0.62	-2.69	0	0	0
GOBP_INTERMEDIATE_FILAMENT_BASED_PROCES	31	-0.51	-2.52	0	2.11E-	0.002

S					04	
					2.03E-	
GOBP_RIBOSOME_ASSEMBLY	22	-0.57	-2.50	0	04	0.002
					2.92E-	
GOBP_MOLTING_CYCLE	44	-0.46	-2.47	0	04	0.003
					7.08E-	
GOBP_CYTOPLASMIC_TRANSLATION	39	-0.45	-2.40	0	04	0.007

ES: enrichment score; NES: normalized enrichment score; NOM-p-val: nominal p-value; FDR q-val: false discovery rate corrected p-value; FWER p-val: Familywise-error rate p-value

Supplementary Figure 1- Distributions of SP140 expression levels in TCGA pan cancer are displayed using box plots. The statistical significance computed by the Wilcoxon test is annotated by the number of stars (*: p-value < 0.05; **: p-value <0.01; ***: p-value <0.001). Normal tissues are depicted in blue and displayed in gray columns when normal data were available in the TCGA dataset.

7

Supplementary Figure 2- Relative delta delta Ct expression value for SP140 gene transcript expression in CAL27, FaDu and THP1-derivd naïve macrophages. Results is presented as average of three independent experiment.

Supplementary Figure 3- Disease specific survival of patients with high levels of SP140 (n=261) and low levels of SP140 (n=261) in TCGA HNSCC. The p-value was calculated based on the log-rank test.

Supplementary Figure 5- A, B) SP140 was downregulated using siRNA in naïve (undifferentiated) macrophages and cells were collected for RNA expression analysis by qPCR for IL6 and STAT5a, after 24h. 18s was used as endogenous normalizer. Delta-delta Ct method was used to identify the relative gene expression. Data is presented as mean and SD of fold change compared to the control. ** indicates p < 0.01

Supplementary Figure 6- SP140 binding to STAT1 promoter sites by ChIP assays. The ChIP assays showed a binding of SP140 to STAT1 promoter sites in THP-1-derived macrophages treated with SP140 siRNA or control siRNA. Data is presented as means \pm SD.

Supplementary Figure 7- A-D) Patients with metastatic melanoma who underwent anti-PD-1 therapy were dichotomized to high expression and low expression group based on median expression of SP140. Tumors with high expression of SP140 (n=13) versus tumors with low levels of SP140 (n=12) showed higher infiltration of M1 macrophages, CD8 T cells, CD4 memory activated T cells, and overall immune score. The Wilcoxon test was used for statistical analysis and p-value was corrected for multiple comparison. * indicates p < 0.05

Supplementary Figure 8- A) The levels of SP140 in thymic carcinoma tumors were significantly higher in anti-PD1 treatment responders versus non-responders (n=9). B) The expression levels of SP140 in recurrent glioblastoma patients who received neoadjuvant anti-PD-1 were significantly higher in treatment responders versus non-responders (n=17). C) Patients with recurrent glioblastoma were dichotomized to high expression (n=8) and low expression (n=9) groups based on median expression of SP140, deconvolution of immune cells showed higher infiltration of CD8 T cells and M1 macrophages in the SP140 high group. * indicates p < 0.05