Supplementary Information

Biodiversity–stability relationships strengthen over time in a longterm grassland experiment

Cameron Wagg*, Christiane Roscher, Alexandra Weigelt, Anja Vogel, Anne Ebeling, Enrica de Luca, Anna Roeder, Clemens Kleinspehn, Vicky M. Temperton, Sebastian T. Meyer, Michael Scherer-Lorenzen, Nina Buchmann, Markus Fischer, Wolfgang W. Weisser, Nico Eisenhauer, Bernhard Schmid*

Species name	FG	Species name	FG
Alopecurus pratensis	Grass	Glechoma hederacea	Short herb
Anthoxanthum odoratum	Grass	Leontodon autumnalis	Short herb
Arrhenatherum elatius	Grass	Leontodon hispidus	Short herb
Avenula pubescens	Grass	Plantago lanceolata	Short herb
Bromus erectus	Grass	Plantago media	Short herb
Bromus hordeaceus	Grass	Primula veris	Short herb
Cynosurus cristatus	Grass	Prunella vulgaris	Short herb
Dactylis glomerata	Grass	Ranunculus repens	Short herb
Festuca pratensis	Grass	Taraxacum officinale	Short herb
Festuca rubra	Grass	Veronica chamaedrys	Short herb
Holcus lanatus	Grass	Achillea millefolium	Tall herb
Luzula campestris	Grass	Anthriscus sylvestris	Tall herb
Phleum pratense	Grass	Campanula patula	Tall herb
Poa pratensis	Grass	Cardamine pratensis	Tall herb
Poa trivialis	Grass	Carum carvi	Tall herb
Trisetum flavescens	Grass	Centaurea jacea	Tall herb
Lathyrus pratensis	Legume	Cirsium oleraceum	Tall herb
Lotus corniculatus	Legume	Crepis biennis	Tall herb
Medicago lupulina	Legume	Daucus carota	Tall herb
Medicago varia	Legume	Galium mollugo	Tall herb
Onobrychis viciifolia	Legume	Geranium pratense	Tall herb
Trifolium campestre	Legume	Heracleum sphondylium	Tall herb
Trifolium dubium	Legume	Knautia arvensis	Tall herb
Trifolium fragiferum	Legume	Leucanthemum vulgare	Tall herb
Trifolium hybridum	Legume	Pastinaca sativa	Tall herb
Trifolium pratense	Legume	Pimpinella major	Tall herb
Trifolium repens	Legume	Ranunculus acris	Tall herb
Vicia cracca	Legume	Rumex acetosa	Tall herb
Ajuga reptans	Short herb	Sanguisorba officinalis	Tall herb
Bellis perennis	Short herb	Tragopogon pratensis	Tall herb

Table S1. Plant species and their functional group (FG) identities.

		FG	R		
SR	1	2	3	4	Total
1	16				16
2	8	8			16
4	4	4	4	4	16
8	4	4	4	4	16
16	2	4	4	4	14
Total	34	20	12	12	78

Table S2. Experimental design where numbers indicate the number of plots per plant functional group richness (FGR) and sown plant species richness (SR) levels.

Table S3. Mixed-model ANOVA results for assessing the changes in the species richness– community productivity (square-root transformed) and the species richness–relative yield (logtransformed) relationship (see also Fig. 1a and b). Species richness was always log-transformed (SR_{log}) and the change in the effect of richness was assessed using year as a linear term (Y_{linear}) followed by year as a factor with 17 levels (Y_{factor}). Tests for significance are two-sided.

			Productiv	ity	Relative yield				
Fixed	DF	DF_{den}	F	Р	DF_{den}	F	Р		
SR _{log}	1	71.3	69.45	4.08 10-12	71.2	80.62	2.54 10-13		
Ylinear	1	440.0	354.30	< 2 10 ⁻¹⁶	437.1	65.96	0.076		
Y _{factor}	15	1074.8	18.08	< 2 10 ⁻¹⁶	1072.1	6.55	1.42 10 ⁻¹³		
$SR_{log} \times Y_{linear}$	1	329.9	8.34	0.004	331.1	44.29	1.18 10-10		
$SR_{log} \times Y_{factor}$	15	1074.8	1.40	0.138	1072.1	2.11	0.008		
Random		Var.	SE		Var (10 ⁻³)	SE (10 ⁻³)			
Block		0.39	0.84		2.23	4.32			
Plot		8.97	2.07		43.22	9.79			
Residual		20.17	1.18		93.76	5.37			
Year ρ_{AR1}		0.51	0.03		0.490	0.028			

Table S4. Slopes and standard errors (SE) for the slope along with the significance (P) for a difference from 0 (no relationship) are provided along with the intercept (Inter.) for the relationship between log-transformed sown species richness and a) the square-root transformed community productivity and b) the log-transformed relative yield. The relationships are shown on the original scale in Fig. 1a. Tests for significance are two-sided for a difference from 0.

	a)	Commu	nity proc	ductivity		b) Relative yield					
Year	Inter.	Slope	SE	Р	Inter.	Slope	SE	Р			
2003	21.76	2.48	0.65	1.34 10-4	0.642	0.105	0.045	0.018			
2004	21.91	1.79	0.65	0.006	0.603	0.072	0.044	0.104			
2005	15.26	2.39	0.65	2.38 10-4	0.577	0.131	0.045	0.003			
2006	15.33	3.56	0.65	5.23 10-8	0.614	0.200	0.045	8.33 10-6			
2007	16.91	3.86	0.65	3.07 10-9	0.652	0.208	0.045	3.37 10-6			
2008	11.26	3.79	0.64	3.45 10-9	0.628	0.288	0.045	1.09 10-10			
2009	12.70	3.85	0.65	2.52 10-9	0.550	0.244	0.045	4.55 10-8			
2010	11.16	3.21	0.64	5.84 10 ⁻⁷	0.673	0.258	0.045	8.14 10-9			
2011	13.18	2.58	0.64	5.86 10 ⁻⁵	0.702	0.183	0.045	4.18 10-5			
2012	11.60	3.77	0.65	6.14 10 ⁻⁹	0.534	0.250	0.045	2.62 10-8			
2013	11.62	3.17	0.64	8.77 10 ⁻⁷	0.717	0.256	0.045	1.06 10-8			
2014	11.29	3.91	0.64	1.24 10-9	0.675	0.290	0.045	9.08 10 ⁻¹¹			
2015	9.80	3.66	0.64	1.24 10-8	0.673	0.322	0.045	5.88 10-13			
2016	7.58	3.74	0.64	5.79 10 ⁻⁹	0.566	0.359	0.045	1.31 10 ⁻¹⁵			
2017	9.05	4.33	0.64	1.62 10 ⁻¹¹	0.592	0.361	0.045	5.82 10-16			
2018	7.77	4.06	0.66	7.17 10 ⁻¹⁰	0.531	0.373	0.046	3.98 10 ⁻¹⁶			
2019	6.41	4.88	0.65	5.36 10-14	0.488	0.459	0.045	5.89 10 ⁻²⁵			

Table S5. Mixed-model ANOVA results for the change in community productivity relative to community productivity in year 1 (2003) (see also Fig. 1d). Richness is a factor (SR_{factor}) and year is linear (Y_{linear}). The model was fit with the intercept fixed at 0 (log(1)) hence the degrees of freedom for richness is 5. Tests for significance are two-sided.

Fixed	DF	DF_{den}	F	Р
SR _{factor}	5	30.7	17.64	1.93 10-4
Ylinear	1	244.3	211.9	< 2 10 ⁻¹⁶
$SR_{factor} imes Y_{linear}$	4	244.3	13.79	3.73 10-10
Random		Var.	SE	
Block		0.041	0.046	
Plot		0.191	0.051	
Residual		0.629	0.036	
Year ρ_{AR1}		0.498	0.028	

Table S6. Mixed-model ANOVA results for assessing the changes in the species richness–yearly biodiversity effects and the species richness–relative yield total (log-transformed) relationships (see also Fig. 2a–d). Species richness was always log-transformed (SR_{log}) and the change in the effect of richness was assessed using year as a linear term (Y_{linear}) followed by year as a factor with 17 levels (Y_{factor}). Outliers that were more than 6 times the inner quartile range above or below the upper and lower quartiles were removed prior to analyses. See Table S7 for analyses with outliers included that influenced the ANOVA results of the complementarity and selection effects. Tests for significance are two-sided.

			1177 1/							
		Relative Yi	eld Total (1	RYT)		Net effect				
Fixed	DF	DF_{den}	F	Р	DF	DF_{den}	F	Р		
SR _{log}	1	57.8	50.49	1.81 10 ⁻⁹	1	57.3	40.91	2.84 10-8		
Ylinear	1	588.9	8.32	0.958	1	474.1	28.91	0.493		
Y_{factor}	14	732.5	2.57	0.001	15	872.5	10.17	$< 2 10^{-16}$		
$SR_{log} \times Y_{linear}$	1	495.2	7.33	0.007	1	290.1	1.00	0.318		
$SR_{log} \times Y_{factor}$	14	738.2	0.55	0.901	15	872.8	1.41	0.135		
Random		Var. 10 ³	SE 10 ³			Var. 10 ⁻³	SE 10 ⁻³			
Block		9.46	15.35			0.59	0.99			
Plot		97.84	26.93			4.97	1.88			
Residual		529.67	27.14			33.55	1.99			
Year ρ_{AR1}		0.120	0.039			0.44	0.03			

		Complem	entarity eff	fect		Selection effect				
Fixed	DF	DF_{den}	F	Р	DF	DF_{den}	F	Р		
SR _{log}	1	57.4	39.87	3.87 10-8	1	61.3	22.04	1.27 10-5		
Ylinear	1	623.1	4.02	0.449	1	606.1	1.05	0.673		
Y_{factor}	14	746.6	1.42	0.140	14	677.4	0.92	0.540		
$SR_{log} \times Y_{linear}$	1	417.7	0.01	0.932	1	397.7	0.00	0.975		
$SR_{log} \times Y_{factor}$	14	750.5	0.91	0.545	14	685.8	0.95	0.500		
Random		Var. 10 ⁻⁴	SE 10 ⁻⁴			Var. 10 ⁻⁴	SE 10 ⁻⁴			
Block		-0.48	0.53			< 0.01	< 0.01			
Plot		10.33	3.17			9.52	2.69			
Residual		79.04	3.98			59.81	3.14			
Year ρ_{AR1}		0.09	0.04			0.06	0.04			

Table S7. Mixed-model ANOVA results with (a) no outliers removed and (b) the top three most extreme outliers removed for assessing the changes in the species richness–yearly biodiversity effects and the species richness–relative yield total (log-transformed) relationships. Species richness was always log-transformed (SR_{log}) and the change in the effect of richness was assessed using year as a linear term (Y_{linear}) followed by year as a factor with 17 levels (Y_{factor}). Tests for significance are two-sided.

a)		Compleme	entarity eff	ect	Selection effect			
Fixed	DF	DF_{den}	F	Р	DF	DF_{den}	F	Р
SR _{log}	1	57.7	0.07	0.795	1	343.1	0.01	0.926
Ylinear	1	674.2	0.01	0.717	1	766.6	0.00	0.772
Y_{factor}	14	797.5	1.25	0.232	14	783.0	1.42	0.136
$SR_{log} \times Y_{linear}$	1	440.6	0.03	0.873	1	514.6	0.03	0.853
$SR_{log} \times Y_{factor}$	14	798.3	0.17	1.000	14	788.0	0.22	0.999
Random		Var. 10 ⁸	SE 10 ⁸			Var. 10 ⁸	SE 10 ⁸	
Block		-0.08	0.28			0.00	0.00	
Plot		-0.11	1.31			0.00	0.00	
Residual		102.86	4.88			110.68	5.27	
Year ρ_{AR1}		-0.001	0.035			-0.002	0.034	

b)		Compleme	entarity effe	ect	Selection effect				
Fixed	DF	DF_{den}	F	Р	DF	DF_{den}	F	Р	
SR _{log}	1	57.8	6.56	0.013	1	64.7	5.25	0.028	
Ylinear	1	664.4	3.61	0.147	1	670.2	2.99	0.139	
Y_{factor}	14	789.0	1.47	0.117	14	735.1	1.49	0.109	
$SR_{log} \times Y_{linear}$	1	439.8	0.02	0.883	1	430.1	0.08	0.774	
$SR_{log} \times Y_{factor}$	14	789.3	0.54	0.910	14	742.6	0.43	0.967	
Random		Var. 10 ⁸	SE 10 ⁸			Var. 10 ⁻⁴	SE 10 ⁻⁴		
Block		-0.03	0.02			0.00	0.00		
Plot		0.19	0.14			19.74	15.53		
Residual		8.93	0.42			964.40	47.64		
Year ρ_{AR1}		-0.036	0.036			-0.037	0.038		

Table S8. Mixed-model ANOVA results of the analysis of the community stability, population stability and asynchrony. The log of species richness is a linear term (SR_{log}) along a five-year rolling window (13 consecutive 5-year windows) as linear (W_{linear}) to assess components of stability changed through time followed by window as a factor (W_{factor}) to assess whether effects varied among the five-year windows (see also Fig. 3). Community and population stability was log-transformed prior to analyses. Tests for significance are two-sided.

	Community stability (CV_{net}^{-1})										
Fixed	DF	DF_{den}	F	Р							
SR _{log}	1	74	44.99	1.23 10-9							
Wlinear	1	888.0	0.13	0.008							
W _{factor}	11	888.0	2.66	0.002							
$SR_{log} imes W_{linear}$	1	888.0	14.23	1.16 10-5							
$SR_{log} \times W_{factor}$	11	888.0	0.46	0.929							
Random		Var 10 ³	SE 10 ³								
Block		< 0.01	< 0.01								
Plot		89.94	16.68								
Residual		149.20	7.08								
		Popula	tion stabili [.]	ty (CV_{pop}^{-1})							
Fixed	DF	DF_{den}	F	Р							
SR _{log}	1	74.0	4.97	0.029							
Wlinear	1	888.0	0.83	0.019							
W _{factor}	11	888.0	0.89	0.553							
$SR_{log} imes W_{linear}$	1	888.0	17.43	3.28 10-5							
$SR_{log} imes W_{factor}$	11	888.0	0.48	0.917							
Random		Var 10 ⁻³	SE 10 ⁻³								
Block		0.00	0.00								
Plot		70.02	12.79								
Residual		100.86	4.79								
		Asyı	nchrony (1-	- <i>θ</i>)							
Fixed	DF	DF_{den}	F	Р							
SR _{log}	1	71.2	260.70	< 2 10 ⁻¹⁶							
Wlinear	1	888.0	0.86	0.272							
W _{factor}	11	888.0	2.11	0.017							
$SR_{\text{log}} \times W_{\text{linear}}$	1	888.0	0.29	0.591							
$SR_{log} \times W_{factor}$	11	888.0	1.49	0.129							
Random		Var 10 ⁻³	SE 10 ⁻³								
Block		0.49	0.87								
Plot		9.61	1.84								
Residual		17.70	0.84								

Table S9. Mixed-model ANOVA results of the analysis of the community stability, population stability and asynchrony. The log of species richness is a linear term (SR_{log}) along a three-year rolling window (15 consecutive three-year windows) as linear (W_{linear}) to assess components of stability changed through time followed by window as a factor (W_{factor}) to assess whether effects varied among the three-year windows (see also Fig. 3). Population stability was log transformed and community stability and asynchrony were square root-transformed prior to analyses to improve homoscedasticity. Tests for significance are two-sided.

	Community stability (CV_{net}^{-1})									
Fixed	DF	DF_{den}	F	Р						
SR _{log}	1	73.9	54.20	1.92 10-10						
Wlinear	1	1033.2	2.50	0.023						
W _{factor}	13	1033.9	5.30	3.24 10-09						
$SR_{log} imes W_{linear}$	1	1033.1	10.40	0.001						
$SR_{log} \times W_{factor}$	13	1033.0	0.60	0.891						
Random		Var 10 ³	SE 10 ³							
Block		0.00	0.00							
Plot		5.98	1.30							
Residual		28,36	1.25							
		Popula	tion stabili	ty (CV_{pop}^{-1})						
Fixed	DF	DF_{den}	F	Р						
SR _{log}	1	74.0	3.35	0.073						
W _{linear}	1	1033.3	4.99	0.002						
W _{factor}	13	1033.0	4.62	8.73 10 ⁻⁸						
$SR_{log} \times W_{linear}$	1	1033.2	14.57	1.43 10 ⁻⁵						
$SR_{log} \times W_{factor}$	13	1033.1	0.44	0.956						
Random		Var 10 ⁻³	SE 10 ⁻³							
Block		0.00	0.00							
Plot		63.0	13.0							
Residual		240.1	10.6							
		Asyı	nchrony (1	- <i>θ</i>)						
Fixed	DF	DF_{den}	F	Р						
SR_{log}	1	71.3	265.60	< 2 10 ⁻¹⁶						
Wlinear	1	1033.5	0.20	0.603						
Wfactor	13	1033.1	1.82	0.035						
$SR_{log} \times W_{linear}$	1	1033.4	0.02	0.886						
$SR_{log} \times W_{factor}$	13	1033.3	1.04	0.408						
Random		Var 10 ⁻³	SE 10 ⁻³							
Block		0.57	0.86							
Plot		6.41	1.54							
Residual		40.79	1.79							

Table S10. Results from the multigroup structural equation model showing the pairwise differences (*Diff*) in coefficients between the groups of non-overlapping five-year windows: 1 = years 2003-2007, 2 = years 2009-2013, 3 = years 2015-2019. Tests for significance are two-sided. No adjustment was made for comparisons among groups.

Effects	of richne	ess on:													
		CE			SE			ANPP		Popula	ation sta	ability	As	ynchron	<i>y</i>
Group	Diff	SE	Р	Diff	SE	Р	Diff	SE	Р	Diff	SE	Р	Diff	SE	Р
1 vs 2	-0.16	0.21	0.324	0.34	0.22	0.053	0.11	0.16	0.267	-0.18	0.21	0.391	-0.21	0.17	0.280
1 vs 3	-0.19	0.22	0.253	0.41	0.23	0.026	-0.15	0.18	0.708	-0.11	0.22	0.624	0.08	0.19	0.809
2 vs 3	-0.03	0.21	0.841	0.07	0.23	0.699	-0.26	0.14	0.070	0.07	0.24	0.778	0.29	0.19	0.223
Effects	of CE or	n:													
		ANPP		Popul	ation st	ability	As	ynchror	ny						
Group	Diff	SE	Р	Diff	SE	Р	Diff	SE	Р						
1 vs 2	-0.87	0.16	<0.001	0.86	0.30	0.003	0.06	0.18	0.795						
1 vs 3	-0.36	0.19	0.269	0.32	0.26	0.216	-0.69	0.23	0.006						
2 vs 3	0.51	0.18	0.053	-0.54	0.37	0.110	-0.75	0.25	0.006						
Effects	of SE on	:													
		ANPP		Popul	ation st	ability	As	ynchror	ny						
Group	Diff	SE	Р	Diff	SE	Р	Diff	SE	Р						
1 vs 2	-0.42	0.15	0.138	0.57	0.25	0.023	0.47	0.17	0.024						
1 vs 3	-0.19	0.18	0.719	0.63	0.23	0.014	-0.26	0.21	0.216						
2 vs 3	0.23	0.16	0.327	0.06	0.31	0.981	-0.73	0.22	0.004						
Effects	of ANPF	on:													
	popula	tion sta	bility												
Group	Diff	SE	Р												
1 vs 2	-0.21	0.27	0.035												
1 vs 3	-0.23	0.22	0.028												
2 vs 3	-0.02	0.32	0.802												

Fig S1. Scatterplots of the raw biomass data for each plot (points) are shown for each of the 17 years where community productivity was collected. The red line highlights the trend between consecutive sown species richness means. The dashed line highlights the most productive monoculture.

Fig. S2. Change in species realized richness over the 17-year period for each sown richness level. Dotted lines highlight the initial sown species richness (SR).

Fig. S3. Scatter plots showing the relationship between sown species richness and (a) stability (CV_{net}^{-1}) , (b) asynchrony and (c) population stability (CV_{pop}^{-1}) over the entire 17-year period. Solid lines are the regression trends for the log-log relationship and associated ANOVA results for the relationship are provided. Tests for significance are two-sided.

Fig. S4. Effects of species richness on community stability and its underlying components. In (**a**) the richness-community stability (CV_{net}^{-1}) relationships are sown for each three-year window indicated by different colors (1 = 2003, 17 = 2019). (**b**) The change in the slope of the log–log relationship between richness and community stability (power exponent *b* of curves shown in **a**) for each consecutive three-year rolling window. The solid regression line was fit using the relationship slope~log(window). Similarly, (**c**) are the regression coefficients of richness on the three-year temporal mean and SD in community productivity and (**d**) on the population stability (CV_{pop}^{-1}) and asynchrony (async.) of the log-log relationships. These coefficients are relative effects of richness on community stability (b_{CVnet}^{-1}) shown in (**b**) (see Methods). Black and dashed regression lines respectively highlight significant and non-significant trends along the rolling winnows. Tests for significance are two-sided.

Fig. S5. The direct effects, indirect effects, and the total summed effect, of species richness on **a** asynchrony and **b** population stability for each of the sequential three-year rolling windows (light blue = 2003 - 2005 to dark blue 2017 - 2019).

Fig. S6. Indirect effects of species richness on community stability the three-year complementarity (*CE*) and selection (*SE*) effects across three-year rolling windows. **a** indirect effects through the *CE* and *SE* on community stability by their effects on *ANPP* (richness -> *CE/SE* -> *ANPP* -> population stability -> community stability), **b** by their effects on population stability (richness -> *CE/SE* -> *ASynchrony* -> community stability), and **c** by their effects on asynchrony (richness -> *CE/SE* -> *Asynchrony* -> community stability). Solid lines indicate significant regression trends and dotted lines non-significant trends. Tests for significance are two-sided for a difference from 0.