Supporting Information for

Iridium single atoms incorporated in Co₃O₄ efficiently catalyze the

oxygen evolution in acidic conditions

Zhu et al.

Supplementary Figures

Supplementary Figure 1. Additional (a, b) TEM images and (c, d) AFM images for Ir-Co₃O₄.

Supplementary Figure 2. HRTEM images of Ir-Co₃O₄. Yellow circles represent the defective pores on Ir-Co₃O₄.

Supplementary Figure 3. (a, b) SEM images, (c, d) TEM images and (e, f) HRTEM images of as-synthesized Co_3O_4 . Yellow circles represent the defective pores on Co_3O_4 .

Supplementary Figure 4. Rietveld refinements of XRD patterns on Ir-Co₃O₄.

Supplementary Figure 5. Rietveld refinements of XRD patterns on as-synthesized Co₃O₄.

Supplementary Figure 6. SEM-EDS spectrum of Ir-Co₃O₄.

Supplementary Figure 7. (a) AC HAADF-STEM image of Ir-Co₃O₄. (b) The intensity profiles along the dash lines in (a). (c) AC HAADF-STEM image and the corresponding elemental mappings of Ir-Co₃O₄.

Supplementary Figure 8. XPS survey spectrum of Ir-Co₃O₄.

Supplementary Figure 9. (a-c) k^3 -weighted k-space Ir L_3 -edge experimental and fitting spectra of Ir-Co₃O₄ and references. (d-e) Corresponding k^3 -weighted R-space Ir L_3 -edge experimental and fitting spectra of Ir-Co₃O₄ and references.

Supplementary Figure 10. WT-EXAFS analysis of Co K-edge on (a) Ir-Co₃O₄ and (b) Co₃O₄.

Supplementary Figure 11. SEM images of (a, b) commercial Co₃O₄ and (c, d) commercial IrO₂.

Supplementary Figure 12. Potential calibration of the calomel reference electrode at 25 $\,^{\circ}$ C in H₂-saturated 0.5 M H₂SO₄ solution.

Supplementary Figure 13. CV curves within the Co redox potential range on Ir- Co_3O_4 and Co_3O_4 in 0.5 M H₂SO₄. Scan rates are 50 mV s⁻¹.

Supplementary Figure 14. The onset potentials for OER on Ir-Co₃O₄, IrO₂, Co₃O₄ and C-Co₃O₄.

Supplementary Figure 15. Polarization curves without 95% iR compensation on Ir-Co₃O₄, IrO₂, Co₃O₄ and C-Co₃O₄ in 0.5 M H_2 SO₄ at a scanning rate of 5 mV s⁻¹.

Supplementary Figure 16. The graphs that plot Tafel slope as a function of overpotential on (a) $Ir-Co_3O_4$, (b) IrO_2 , (c) Co_3O_4 and (d) $C-Co_3O_4$. Insets are the Tafel plots of these catalysts.

Supplementary Figure 17. Electrochemical cyclic voltammetry scans recorded for (a) $Ir-Co_3O_4$, (b) IrO_2 , (c) Co_3O_4 and (d) $C-Co_3O_4$. Scan rates are 20, 40, 60, 80 and 100 mV s⁻¹. (e) Linear fitting of the capacitive currents versus cyclic voltammetry scans for these catalysts. (d) The calculated ECSA values for $Ir-Co_3O_4$, IrO_2 , Co_3O_4 and $C-Co_3O_4$.

Supplementary Figure 18. (a) The TOF values that normalized to Co sites per geometric area of Ir-Co₃O₄, Co₃O₄ and C-Co₃O₄. The calculated TOF values that normalized to (a) Ir sites on Ir-Co₃O₄ and IrO₂ and (b) Co sites on Ir-Co₃O₄, Co₃O₄, Co₃O₄, Co₃O₄, Co₃O₄ and C-Co₃O₄ and C-Co₃O₄ per ECSA.

Supplementary Figure 19. N₂ absorption-desorption isotherms of (a) Ir-Co₃O₄ and (b) Co₃O₄. (c) The polarization curves normalized to BET surface areas and (d) corresponding normalized current densities of Ir-Co₃O₄ and Co₃O₄ at the overpotential of 236 mV.

Supplementary Figure 20. (a) The OER polarization curves of $Ir-Co_3O_4$ and IrO_2 collected on the carbon paper electrode. (b) Corresponding mass activities of these catalysts at overpotential of 300 mV.

Supplementary Figure 21. The equivalent circuit applied in the EIS tests of these catalysts.

Supplementary Figure 22. Polarization curves of (a) Ir-Co₃O₄, (b) IrO₂, (c) Co₃O₄ and (d) C-Co₃O₄ before and after 3000 CV cycles in 0.5 M H₂SO₄ solution

Supplementary Figure 23. (a) The dissolved Ir ion concentrations measured for Ir-Co₃O₄ and IrO₂, and (b) the dissolved Co ion concentrations measured for Ir-Co₃O₄, Co₃O₄ and C-Co₃O₄ in electrolyte during the chronopotentiometry at 10 mA cm⁻² by ICP-OES.

Supplementary Figure 24. Corresponding (a) SEM image, (b) TEM image, (c) HRTEM image, (d) elemental mappings and (e) XRD pattern of $Ir-Co_3O_4$ after stability test. Yellow circles represent the defective pores on $Ir-Co_3O_4$.

Supplementary Figure 25. Corresponding (a) Ir 4f, (b) Co 2p, (c) O1*s* XPS spectrum of Ir-Co₃O₄ before and after stability test.

Supplementary Figure 26. Chronopotentiometric measurements of $Ir-Co_3O_4$ and IrO_2 at 50 mA cm⁻², carbon paper was used as the catalyst support.

Supplementary Figure 27. (a) The setup used for conducting the OER on $Ir-Co_3O_4$ and was connected to GC to detect the amount of generated O_2 . (b) Corresponding I-t curves of $Ir-Co_3O_4$ under various overpotentials for 2000s. (c) The GC signals of generated O_2 amount detected under various overpotentials on $Ir-Co_3O_4$.

Supplementary Figure 28. (a) Digital photo, (b) SEM image, (c) TEM image, (d,e) HRTEM images, (f) XRD pattern, (g) elemental mappings, (h) SEM-EDS spextra and (i) polarization curves of the scale-up Ir-Co₃O₄.

Supplementary Figure 29. (a) The schematic diagram of the custom-built electrochemical cell for operando XAS test. (b) The i-t curves were sequentially obtained under the applied potentials of OCP, 1.6 V and the reverse to OCP again, the $Ir-Co_3O_4$ was maintained under each potential for 1800 s. Red curves were conducted in the home-built electrochemical cell for collecting the operando XAS data and blue curves were conducted in the lab cell under the same condition for comparison, only slight difference can be distinguished between them.

Supplementary Figure 30. (a) Operando Ir- L_3 XANES spectra of Ir-Co₃O₄ at OCP and 1.6 V. La₂CoIrO₆, Sr₂CoIrO₆ and Sr₂ZnIrO₆ represent the Ir⁴⁺, Ir⁵⁺ and Ir⁶⁺ references, respectively. (b) Ir valence state-absorption energy standard curves determined by La₂CoIrO₆ and Sr₂CoIrO₆, and the calculated Ir valence state of Ir-Co₃O₄ at 1.6 V.

Supplementary Figure 31. Operando Co-*K* XANES spectra of Ir-Co₃O₄ at OCP and 1.6 V. La₂CoIrO₆, EuCoO₃ and BaCoO₃ represent the Co²⁺, Co³⁺ and Co⁴⁺ references, respectively.

Supplementary Figure 32. The Gibbs free energy diagrams of the four-electron OER process on the Ir sites and Co sites of these catalysts under the applied overpotentials of 0 V vs. RHE, respectively.

Compounds	<i>a</i> (Å)	<i>b</i> (Å)	<i>c</i> (Å)	$V(Å^3)$
Ir-Co ₃ O ₄	8.097	8.097	8.097	530.9
Co ₃ O ₄	8.075	8.075	8.075	526.6

Supplementary Table 1. Results of XRD refinements for Ir-Co₃O₄ and Co₃O₄.

Supplementary Table 2. Fit goodness and R-factor of XRD refinements for Ir-Co₃O₄ and Co₃O₄.

Compounds	χ^2	R _F	R _B	R _P	R _{WP}
Ir-Co ₃ O ₄	1.78	0.412%	0.561%	10.1%	6.41%
Co ₃ O ₄	1.34	0.771%	0.919%	15.6%	9.05%

Supplementary Table 3. EXAFS fitting parameters of Ir-Co₃O₄, Ir foil and IrO₂.

Compounds	Path	Ν	S02	$\sigma^2 / \mathring{A}^2$	R / Å	ΔΕ0	R-factor
Ir-Co ₃ O ₄	Ir-O1	1.685	0.759	$0.00779\pm$	1.769±	6.396	0.00207
				0.009	0.0985		
	Ir-O2	3.370	1.519	$0.00409\pm$	1.968±		
				0.003	0.0222		
	Ir-O-Co	3.290	1.464	$0.01115\pm$	2.910±		
				0.005	0.0251		
Ir foil	Ir-Ir1	12	0.638	$0.00269\pm$	$2.707\pm$	6.717	0.0065
				0.003	0.0033		
	Ir-Ir2	6	0.638	$0.00246\pm$	$3.838\pm$		
				0.001	0.0725		
IrO ₂	Ir-O	6	0.901	$0.00650\pm$	2.012±	9.881	0.0186
				0.003	0.0206		
	Ir-Ir	2	0.901	$0.00801\pm$	3.151±		
				0.009	0.0746		

Catalysts	Overpotential (mV)	Tafel slope (mV dec ⁻¹)	Ref.
Ir-NiCo ₂ O ₄ NSs	240	60	1
IrO ₂ /GCN	276	57	2
IrO _x /9R-BaIrO ₃	230	80	3
Ru ₃ Ir ₁ O _X	231	93.2	4
Rh ₂₂ Ir ₇₈	292	101	5
Ir@Fe/NCNT	250	58.2	6
DO-IrTe ₂	298	49.4	7
Au _{0.5} Ir _{0.5}	257	77.6	8
Ir ₆ Ag ₉ NTs	285	61.1	9
Mesoporous Ir NSs	240	49	10
P-IrO _X @DG	290	67.5	11
IrO ₂	298	82	This work
Ir-Co ₃ O ₄	236	52.6	

Supplementary Table 4. Comparisons of the Tafel slopes and overpotentials at the current density of 10 mA cm⁻² of reported Ir-based catalysts for OER in 0.5 M H_2SO_4 .

Supplementary Table 5. Fitting parameters of EIS for Ir-Co₃O₄, IrO₂, Co₃O₄ and C-Co₃O₄.

Samples	$R_{s}\left(\Omega ight)$	$R_{ct}\left(\Omega ight)$	$C_{dl} (F s^{n-1})$	s (Ω s ^{-1/2})
Ir-Co ₃ O ₄	4.41	2.37	0.0001	0.001
IrO ₂	4.24	4.18	0.015	0.0015
Co ₃ O ₄	4.80	20.55	0.005	0.001
C-Co ₃ O ₄	4.31	115.5	0.001	0.001

Supplementary References

- 1. Yin, J. et al. Iridium single atoms coupling with oxygen vacancies boosts oxygen evolution reaction in acid media. *J. Am. Chem. Soc.* **142**, 18378-18386 (2020).
- 2. Chen, J. et al. Low-coordinate iridium oxide confined on graphitic carbon nitride for highly efficient oxygen evolution. *Angew. Chem. Int. Ed.* **58**, 12540-12544 (2019).
- 3. Li, N. et al. Identification of the active-layer structures for acidic oxygen evolution from 9R-BaIrO₃ electrocatalyst with enhanced iridium mass activity. *J. Am. Chem. Soc.* **143**, 18001-18009 (2021).
- 4. He, J., Zhou, X., Xu, P. & Sun, J. Regulating electron redistribution of intermetallic iridium oxide by incorporating Ru for efficient acidic water oxidation. *Adv. Energy Mater.* **11**, 2102883 (2021)
- 5. Guo, H. et al. Rational design of rhodium-iridium alloy nanoparticles as highly active catalysts for acidic oxygen evolution. *ACS Nano* **13**, 13225-13234 (2019).
- 6. Luo, F. et al. Robust and stable acidic overall water splitting on Ir single atoms. *Nano Lett.* **20**, 2120-2128 (2020).
- 7. Pi, Y. et al. Selective surface reconstruction of a defective iridium-based catalyst for highefficiency water splitting. *Adv. Funct. Mater.* **30**, 2004375 (2020).
- 8. Hu, H. et al. Electronically delocalized Ir enables efficient and stable acidic water splitting. *J. Mater. Chem. A* **8**, 20168 (2020).
- 9. Zhu, M., Shao, Q., Qian, Y. & Huang, X. Superior overall water splitting electrocatalysis in acidic conditions enabled by bimetallic Ir-Ag nanotubes. *Nano Energy* **56**, 330-337 (2019).
- 10. Jiang, B. et al. Mesoporous metallic iridium nanosheets. J. Am. Chem. Soc. 140, 12434-12441 (2018).
- 11. Zhuang, L. et al. Porous structure engineering of iridium oxide nanoclusters on atomic scale for efficient pH-universal overall water splitting. *Small* **17**, 2100121 (2021).