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Reviewers' comments:

Reviewer #1 (Remarks to the Author): 

In this study, Ríos et al. examine which electrode locations for deep brain stimulation of the fornix lead 
to beneficial cognitive effects in Alzheimer patients. In particular, the authors performed a post hoc 

analysis on a series of patients from the phase I trial by Laxton et al 2010, the phase II trial (ADvance 
trial) by Lozano et al 2016 and an on-going trial on biomarkers and dose optimization of fornix DBS 

(NCT04856072). In these patients, the variability in DBS electrode placement was investigated on 
three levels: i) effects of focal electric fields of stimulation on white matter tracts traversing the 
stimulation volumes ii) optimal stimulation sites on a localized voxel level, and iii) impact of fornix DBS 

on distributed whole-brain functional networks. The authors have validated their electrode localization 
method and subsequent DBS fiber filtering and network mapping approaches in an impressive and 

convincing set of previous publications (for example Horn et al., Neuroimage 2019; Baldermann et al., 
Biol Psych 2019). 

Overall, this study provides a very interesting and promising tool to define the most optimal 
stimulation target of fornix DBS in AD. Despite elegant sets of experiments and the application of a 

very sophisticated technique, some questions remain open. 

Specifically: 
The majority of patients used in the present study stem from the ADvance trial (N= 40). What can be 
said about the ADvance trial retrospectively? The conclusion of the trial was that only patients over 65 

years seem to benefit while there was possible worsening in patients below age 65 years with 
stimulation. Can the findings of the current study shed light on why only “older” patients derived 

benefit? Was there a difference in electrode locations? I miss a more thorough discussion specifically 
with regard to the conclusions of previous trials. 

Another conclusion of the ADvance trial was that the stimulation parameters applied to AD patients 
were not disease-specific. Developing AD-specific stimulation parameters is also likely to improve the 

current approach of DBS in AD. The authors do not discuss stimulation parameters at all in the 
present manuscript. Can the authors speculate which stimulation parameters of their target location 

would yield most optimal effects in patients? 

Minor comments: 
1) Most figures are not very clear. For example the asterisk in Figure 3 is hard to see. In Figure 4, A 

and B are missing in the figure and in B axes and legends are not legible. Figure 5, yellow is hard to 
see. 

2) P.13 line 312 sentence is not complete. 

3) The ADvance trial included 42 patients, but only 40 patients were used in the current study. Why 
were 2 patients excluded? 

Reviewer #2 (Remarks to the Author): 

This paper presents a well-researched work on investigating the effect of fornix-DBS in AD. The 
authors perform extensive cross-validation of their proposed method on a large cohort of 50 subjects. 

Normative atlas based tractogram is used to discern the tracts that provide positive or negative 
outcomes. Further, functional connectivity related to the outcome is also shown. Map of the sweet and 

sour spots 
For stimulation are presented. One drawback seems to be that each individual subject T1/T2 data is 



registered to a healthy brain atlas — which could create inaccuracies in the localization as 
acknowledged by the authors. 

For example, if the fornix has significantly atrophied in an AD subject, how accurate is the localization 
of this anatomy to a healthy subject? — perhaps this point could be emphasized in the limitations a bit 

further. 

But otherwise, a nice piece of work. 

Comments: 

1. Figure 2 caption and text: Poor responders are said to be those with increase in ADAS-cog-11 

score — whereas in the plot, poor responders are ones with decrease in ADAS-cog-11 scores. 
Please fix the caption and the relevant text. 

2. The peak or maximum E-field based on which the fiber scores are calculated are by nature noisy 
(since the max values can vary based on model parameters). 

Any reason why only the max E-field value was used and not the “capture of the fiber population 
stimulated” as depicted by the red and blue “blobs” in Figure 2B and 2C ? 

3. Line 217: The use of the word test-retest seems inappropriate here - as it is typically used when the 
same set of subject data is acquired and tested twice or more number of times. 

Recommend using “separate validation” or equivalent word. 

4. The software where Wrapdrive was implemented and made available should be provided. 

5. Line 562: Not sure where or how the number 103-105 axons per fiber bundle was arrived at. 

Most axons in the human brain are less than 5 um with an overwhelming majority being around 2 um 
or less. 

So a cubic millimeter could have many more than 103-105 axons. 

6. Line 588: Is the E-field vector or the peak magnitude of the E-field vector that was correlated with 

outcome? 
If it is not the magnitude, please explain how the vector was used in the correlation. 

7. Did the stimulation parameters vary during the year ? i.e. were adjustments made to the 
parameters for each subject. If so, which setting was used in the analysis and why? 

This would determine the peak E-field and thus the fiber-score as well as the selected fibers. Please 
clarify. 

8. The “optimal predictor fibers” seem to be looping in Figure 2 — is that realistic anatomy? If so, 
please provide some reference on the existence of such a tract. 

Minor: 

Line 194: BNST: acronym used without definition 
Line 585: MIO : acronym not defined 

Reviewer #3 (Remarks to the Author): 

Summary: In this work, the authors curated a multi-site data set comprised of 50 patients with mild 
Alzheimer’s Disease that underwent deep brain stimulation. The aim of their study is to understand 

the neural substrates associated with successful fornix DBS, where success is defined as a clinical 
improvement (measured as improvement in cognitive scores one year after DBS treatment). Their 

analyses were conducted at three levels: local, structural/tract, and functional connectivity. The 



authors conclude that their results “propose a potential optimal stimulation target for Alzheimer’s 
Disease treatment with fx-DBS.” 

Strengths: The authors tested multiple prediction models using different cross validation approaches 

and the results appear to be robust across these different approaches. They use advanced, state-of-
the-art methods for the modeling of the DBS data and also use a tool (that included manual edits) for 
proper normalization of the data given the atrophy. Their methods for preparing the data have 

convinced me that this is high-quality data being fed into the predictive models and this helps with my 
concerns regarding the small sample size for predictive modeling (while N=50 might be considered 

large for a DBS study, it is considered a very small sample size for machine learning). Their research 
question is framed well, and enough clinical background is given for non-clinical audience to 

understand why this study is interesting and important. 

Weaknesses: I am unable to properly review this paper as I am not a clinician, neuroanatomist, or 

DBS expert. It seems that reviewers from these backgrounds have been provided enough details to 
review the work. I was asked by the editors to review this work given my expertise in machine 

learning, connectivity and neuroimaging applications of ML, however, from my perspective (reviewing 
the predictive modeling aspects of the paper), there are simply not enough details provided to assess 
if any modeling mistakes or statistical violations have been made. I found that overall it was difficult to 

follow and understand their analysis and the input data. There is essentially no detail about how the 
predictive model was formulated, meaning there are no equations, descriptions of software tools used 

for statistical modeling, or any analysis code shared. After reading the paper (and supplemental files) 
three times, I cannot tell what the input data was to the predictive model. It is unclear if individual 
resting state data from each subject was used or if the functional data was used from some other 

study. Functional data from the AD patient groups is not described, and supplemental files state only 
that 1.5T structural MRI data was acquired. There is reference to 1,000 healthy subjects functional 

data, “normative connectome” and “connectivity fingerprints” but it is never described what these are 
and how these data were generated. There is also a description of a DWI dataset acquired from a 

single subject, but no description of the DWI data from each AD patient. It seems that the only MRI 
data acquired from each subject was the T1w/T2w volumes and no DWI or fMRI data. This is very 
misleading as the narrative makes it seem as if there is DWI and fMRI from each subject that went 

into the predictive model. If there is individual level DWI and fMRI data, these data need to be 
described (acquisition parameters, preprocessing methods, quality checking). The authors make 

claims regarding generalizability and robustness, however these claims are not supported by the 
statiscal framework presented to the reader. Given the strong clinical claims (“Potentially, our results 
can be useful to guide DBS programming in existing patients with fx-DBS and potentially inform 

surgical targeting in AD within future investigational trials”), this lack of detail is very concerning and 
needs to be addressed before consideration of publication in any journal. Without much to go off of in 

terms of evaluating the machine learning framework, my main concerns are regarding the lack of 
model comparison across all of the test sets and different cross validation strategies and the lack of 
clarity about what data each subject contributed to the predictive model. Several statement made 

throughout the paper are concerning to me and are suggestive that proper statistical inference has 
not been performed and therefore the analysis/results do not support the conclusions of the paper. 

“Purely visual test-retest comparison of results” 
No permutation testing or any null hypothesis testing 

Only reporting cross validated pearson correlation and p-values that are averaged across folds. There 
are no error bars/confidence intervals, or accuracy evaluation metrics (i.e., mean squared error, 
median absolute error) reported. This is a huge red flag 

(https://www.sciencedirect.com/science/article/pii/S1053811917305311 & 
https://jamanetwork.com/journals/jamapsychiatry/article-abstract/2756204)
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General remark to all reviewers: 
After discussions with the editor and all co-authors, we decided to exclude four patients 
from an on-going trial on biomarkers and dose optimization that were originally included 
in the first version of the manuscript. While the present study could be considered 
completely independent to the ongoing trial (NCT04856072), we mutually agreed on the 
necessity to avoid conflicts with reporting & design of the ongoing trial. Hence, the 
present study retrospectively included 6 patients from the phase I trial (Laxton et al. 2010, 
NCT00658125) and 40 patients from the phase II trial (ADvance trial, NCT01608061).  
 
Results and all key conclusions remained largely unchanged and significant. 

 
Reviewer #1 (Remarks to the Author): 
 
In this study, Ríos et al. examine which electrode locations for deep brain stimulation of the 
fornix lead to beneficial cognitive effects in Alzheimer patients. In particular, the authors 
performed a post hoc analysis on a series of patients from the phase I trial by Laxton et al 
2010, the phase II trial (ADvance trial) by Lozano et al 2016 and an on-going trial on 
biomarkers and dose optimization of fornix DBS (NCT04856072). In these patients, the 
variability in DBS electrode placement was investigated on three levels: i) effects of focal 
electric fields of stimulation on white matter tracts traversing the stimulation volumes ii) 
optimal stimulation sites on a localized voxel level, and iii) impact of fornix DBS on distributed 
whole-brain functional networks. The authors have validated their electrode localization 
method and subsequent DBS fiber filtering and network mapping approaches in an 
impressive and convincing set of previous publications (for example Horn et al., 
Neuroimage 2019; Baldermann et al., Biol Psych 2019). 

 
Overall, this study provides a very interesting and promising tool to define the most optimal 
stimulation target of fornix DBS in AD. Despite elegant sets of experiments and the 
application of a very sophisticated technique, some questions remain open. 
 

We would like to thank the reviewer for their overall very positive evaluation of our 
manuscript. 

 
Specifically: 
The majority of patients used in the present study stem from the ADvance trial (N= 40). What 
can be said about the ADvance trial retrospectively? The conclusion of the trial was that only 
patients over 65 years seem to benefit while there was possible worsening in patients below 
age 65 years with stimulation. Can the findings of the current study shed light on why only 
“older” patients derived benefit? Was there a difference in electrode locations? I miss a more 
thorough discussion specifically with regard to the conclusions of previous trials. 
 

We would like to thank the reviewer for raising this very important point, while reiterating 
that in the Advance trial, this difference was shown post-hoc and only in one arm of the 
study. We have now amended multiple strands of analyses with the aim to compare i) 
stimulation sites and ii) response tracts between ages with age below and above 65 
years, separately. Results did not show clear effects of age regarding these factors, 
which we now discuss in light of results from the ADvance trial: 

 
“Age has emerged as a possible treatment effect modifier in the ADvance trial. Here, 
among individuals in the early-on arm during phase 1 (but not in phase 2), participants 
below the age of 65 worsened on the ADAS-cog13 significantly more than older 
participants33.“ – Introduction, p. 5 
 
 
“Effects of age 
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Prior results had shown differences in clinical improvements related to age groups, 
where among individuals in the early-on arm during phase 1 (but not in phase 2), 
participants below the age of 65 worsened on the ADAS-cog13 significantly more than 
older participants, while those showed improvement33. The robustness of models in the 
present study to successfully cross-estimate clinical improvements across the entire 
group regardless of age (and regardless of slicing up the data into leave-one-out, 10-, 
7-, 5- and 3-fold cross-validation designs) does not a priori confirm such an effect (i.e., 
the same model seemed to be predictive in both age groups). An alternate reason for 
age differences could be (potentially atrophy related) systematic shifts in electrode 
placements. However, as can be seen in figure S10, no apparent difference in 
electrode placements was observed between the groups, if at all more variability on the 
z-axis in the young cohort. Furthermore, there was no significant difference in fiber 
scores obtained across the two age groups (p = 0.790). This does not suggest a 
systematic shift between groups (such as stimulation in younger participants 
systematically modulating optimal fiber connections less strongly than in older 
participants).” – results, p. 15 
 
“In this regard, we were not able to find apparent differences in i) electrode placement or 
ii) fiber-score activations between patients younger than versus older than 65, which 
suggests other factors might have influenced the clinical outcome in the younger group 
(Figure S10). As previously reported, possible explanations for the decline in early onset 
subjects include a more aggressive presentation of the condition, greater brain atrophy 
and comparably more reduced glucose metabolism in this subgroup of patients29,60,66,67.” 
– discussion, p. 21 
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Figure S10. Effects of Age. A) Axial, coronal, and sagittal overlay of maps created from stimulation volumes of 
subjects older than 65 years (left), younger than 65 years (middle) and whole cohort (right). B) Fiberscores obtained 
through DBS fiber filtering analysis explained in Methods and Results sections, by the stimulation volumes of 
younger than 65-year-old patients (top), and patients 65-year-old or older (bottom), p(T-test) = 0.790. The model 
used to estimate these scores was calculated in a leave-one-patient out design across the entire cohort. -
Supplementary Information 

 
Another conclusion of the ADvance trial was that the stimulation parameters applied to 
AD patients were not disease-specific. Developing AD-specific stimulation parameters 
is also likely to improve the current approach of DBS in AD. The authors do not discuss 
stimulation parameters at all in the present manuscript. Can the authors speculate 
which stimulation parameters of their target location would yield most optimal effects in 
patients?  
 

Unfortunately, the retrospective nature of our study prevents us from analyzing different 
stimulation paradigms (all patients received continuous stimulation of 130 Hz frequency 
with pulse-widths of 90 ms). Then, stimulation parameters (frequency and pulse width) 
would not have a clear effect on the stimulation volumes since these are analyzed in 
static fashion while frequency and pulse width will likely have effects predominantly on 
the temporal domain. Modeling this in the fornix region is complex, since different 
bundles of question (e.g., fornix itself, stria terminalis, etc.) have different (in part 
unknown) axonal properties.  
 
So stated differently, while our results may add clarity to the question of *where* to 
stimulate, much less if nothing can be said about *how* and *when* to stimulate. The 
following paragraph was added to the limitations section to clarify this: 
 
“The retrospective nature of our study prevented us from analyzing different effects of 
stimulation frequencies, pulse widths, or stimulation patterns, which would enfold 
different signals onto the network over time. Instead, the imaging nature of our study 
analyzes results in static fashion (both on a stimulation volume and network level). Future 
research is needed to investigate effects of variations in stimulation parameters, such as 
the ongoing trial to optimize electrical stimulation parameters of fornix-DBS for AD 
(NCT04856072). Alternatively, neuromodulation delivered through distinct approaches, 
namely, the ongoing trial on gamma entrainment via sensory stimulus at a 40Hz 
frequency (NCT04055376) could extend our knowledge on the effect of diverse 
parameters in brain stimulation for AD.” – discussion, p. 20 

 
 
Minor comments: 
1) Most figures are not very clear. For example, the asterisk in Figure 3 is hard to see. In 
Figure 4, A and B are missing in the figure and in B axes and legends are not legible. Figure 
5, yellow is hard to see. 
 

All mentioned figures were revised for clarity. For figure 5 and related figures (2, S8, 
S9), we now decided to not color-code by improvement, because it was redundant 
information, and the groups (top, middle, poor responders) did not inform our statistical 
analysis in any way. The revised versions of mentioned figures are pasted below: 
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Figure 3. Probabilistic mapping of sweet and sour spots associated with clinical outcome. A) Identified clusters of sweet (red) 
and sour (blue)-spots in a 3D view, superimposed on slices of a 100-µm, 7T brain scan in MNI 152 space48. Since the result was 
symmetric, on the bottom of the panel, we flipped stimulation volumes across hemispheres to further increase robustness on 
a voxel-level (effectively doubling the number of electrodes used in each hemisphere). B) Axial, coronal, and sagittal views of 
sweet and sourspot peak coordinates (also see table S6). Projections of cluster center coordinates are marked by a black 
asterisk and directly project onto the intersection between fornix and bed nucleus of stria terminalis (BNST, see also Fig. S6). 
C) Axial, coronal, and sagittal sections showing DBS fiber filtering results obtained from the whole cohort at MNI: X = -3.6, Y = 
-1.5, and Z = -3.6. Abbr: Put: Putamen, Cdt: Caudate, ALIC: Anterior limb of the internal capsule, AC: Anterior commissure, 
GPe/i: external / internal pallidum, Thal: thalamus, RN: red nucleus, MB: mamillary bodies, Fx: Fornix. Fornix is shown in blue-
green color, informed by the CoBrALab Atlas47. Bed nucleus of the stria terminalis shown in light brown color, informed by 
Neudorfer et al.39.  
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Figure 4: A) Functional networks associated with optimal improvements across training (left), test (middle) and combined 

(right) cohorts. Brain regions are color-coded by correlations between degree of functional connectivity with DBS electrodes 

and clinical improvements across the cohorts. Since results were highly symmetric, only the left hemisphere is shown. B) 

Optimal network associations to Neurosynth database terms, left: highlighted relevant regions for the most similar networks 

identified; right: similarity plots between same networks and optimal network identified by Network Mapping results (x-axis 

= specific network meta-analysis, z-score, y-axis = DBS Network Map).  
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Figure 5. Results summary including the models from DBS fiber filtering, sweetspot mapping and network-mapping. The three 

levels of analysis were able to explain a similar amount of variance of clinical outcomes when analyzed in a circular nature 

(see scatterplots; ∼16-19%) and led to significant cross-predictions of clinical outcomes across leave-one-patient-out and 

multiple k-fold designs. Three level analysis results were superimposed on slices of a brain cytoarchitecture atlas  in MNI 152 

space52. Gray shaded areas represent 95% confidence intervals, see figure S7 for additional metrics on each validation 

approach. 

 

2) P.13 line 312 sentence is not complete. 

 
This was fixed, the sentence now reads: 
 
“To allow a certain 299 degree of reverse inference of these network results50, they were 
spatially compared to maps 300 associated with a total of 1307 terms present in the 
Neurosynth database 301 (https://neurosynth.org/)51” –Results, p. 13 

 
 
3) The ADvance trial included 42 patients, but only 40 patients were used in the current 
study. Why were 2 patients excluded? 
 
 

Indeed, for the missing 2 patients, imaging data to reconstruct DBS electrodes was 
unavailable (as was the case in previous imaging studies, e.g. Neudorfer et al. Brain 
2021, Germann et al. Alzheimers Dement. 2020). This was clarified: 
 
“While the ADvance trial included 42 patients, imaging data was only available for 40 

patients 31,32 (also see figure S1).”– Methods, p. 23 
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Figure S1. Flowchart explaining patient inclusion for this work. 

 
 
 
Reviewer #2 (Remarks to the Author): 
 
This paper presents a well-researched work on investigating the effect of fornix-DBS in AD. 
The authors perform extensive cross-validation of their proposed method on a large cohort of 
50 subjects. 
Normative atlas based tractogram is used to discern the tracts that provide positive or 
negative outcomes. Further, functional connectivity related to the outcome is also shown. 
Map of the sweet and sour spots 
For stimulation are presented. One drawback seems to be that each individual subject T1/T2 
data is registered to a healthy brain atlas — which could create inaccuracies in the 
localization as acknowledged by the authors. 
For example, if the fornix has significantly atrophied in an AD subject, how accurate is the 
localization of this anatomy to a healthy subject? — perhaps this point could be emphasized 
in the limitations a bit further. 
 
 

We would like to thank the reviewer for their overall very positive evaluation of our 
manuscript. Indeed, the registration includes bias but allowed the tract analysis, in the 
first place (patients need to be registered to a joint space for the fiber filtering concept to 
work, by design). In fact, we had failed in creating registrations in this cohort that met our 
satisfaction/quality standards in the past (as opposed to e.g., cohorts with Parkinson’s 
Disease or OCD). Only the development of the WarpDrive tool allowed us to carry out 
this study. We would like to point the reviewer to Video S1 which demonstrates this 
approach. In our view, WarpDrive allowed us to accurately register the fornix regions 
satisfactorily, which was a key “ingredient” and innovation allowing us to carry out this 
study. 
 
We still agree registration inaccuracy constitutes a potential source of bias and have 
further emphasized the discussion of this point in our limitations section: 
 
“For the present study, this was crucial, since in the field of DBS, electrode displacements 
of a few millimeters will lead to substantially different effects35,37. To account for this, we 
applied a novel method, termed WarpDrive67, to manually refine registrations into 
template space (see video S1). Briefly, WarpDrive provides a graphical interface allowing 
precise alignment of source and target landmarks by directly visualizing the normalized 
images, together with the template and atlases in MNI space. WarpDrive allows to 
correct for misalignments and recomputes a refined deformation field in real time.” – 
Methods, p. 24 
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But otherwise, a nice piece of work. 
 

Thank you! 
 
 
Comments: 
 
1. Figure 2 caption and text: Poor responders are said to be those with increase in ADAS-
cog-11 score — whereas in the plot, poor responders are ones with decrease in ADAS-cog-
11 scores. 
Please fix the caption and the relevant text. 
 
 

We agree and flipped the signs accordingly also for the % improvement (had been 
calculated as (pre-post)/pre, now is (post-pre)/pre, resulting in a sign flip) as well as 
showed values for each patient in novel table S3 (along with the equation that was 
used to calculate them): 

 
Table S3. ADAS-cog 11 scores and group assignment of patients. Absolute change calculated subtracting Baseline ADAS-cog 
11 from 12-month ADAS-cog 11 value. 

Patient 
ID 

Baseline 
ADAS-cog 

11 

12-month 
ADAS-cog 

11 

Absolute 
change 

(post-pre) 

Relative 
change 
(post-

pre)/pre 

Group 

01 28 34 6 21.42 Poor responders 

02 22 30 8 36.36 Poor responders 

03 19 34 5 78.94  Poor responders 

04 17 39 22 129.41 Poor responders 

05 19 21 2 10.52 Middle responders 

06 13 18 5 38.46 Poor responders 

07 13 15 2 15.38 Middle responders 

08 24 31 7 29.16 Poor responders 

09 23 30 7 30.43 Poor responders 

10 13 24 11 84.61 Poor responders 

11 12 7 -5 -41.67 Top responders 

12 15 24 9 60 Poor responders 

13 31 36 5 16.13 Middle responders 

14 29 43 14 48.28 Poor responders 

15 19 26 7 36.84 Poor responders 

16 32 33 1 3.13 Middle responders 

17 16 29 13 81.25 Poor responders 

18 18 23 5 27.78 Poor responders 
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Patient 
ID 

Baseline 
ADAS-cog 

11 

12-month 
ADAS-cog 

11 

Absolute 
change 

(post-pre) 

Relative 
change 
(post-

pre)/pre 

Group 

19 23 24 1 4.35 Middle responders 

20 15 36 11 140 Poor responders 

21 22 10 -12 -54.55 Top responders 

22 16 19 3 18.75 Middle responders 

23 16 22 6 37.5 Poor responders 

24 21 42 21 100 Poor responders 

25 17 30 13 76.48 Poor responders 

26 24 29 5 20.83 Middle responders 

27 28 38 10 35.71 Poor responders 

28 14 15 1 7.14 Middle responders 

29 20 28 8 40 Poor responders 

30 16 15 -1 -6.25 Top responders 

31 17 12 -5 -29.41 Top responders 

32 35 51 16 45.71 Poor responders 

33 22 39 17 72.27 Poor responders 

34 21 23 2 9.52 Middle responders 

35 17 35 18 105.88 Poor responders 

36 22 18 -4 -18.18 Top responders 

37 19 19 0 0 Middle responders 

38 18 17 -1 -5.56 Top responders 

39 16 15 -1 -6.25 Top responders 

40 13 21 8 61.54 Poor responders 

41 18 17 -1 -5.56 Top responders 

42 11 17 6 54.55 Poor responders 

43 21 22 1 4.76 Middle responders 

44 13 40 27 207.69 Poor responders 

45 10 19 9 90 Poor responders 

46 22 19 -3 -13.64 Top responders 
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2. The peak or maximum E-field based on which the fiber scores are calculated are by nature 
noisy (since the max values can vary based on model parameters). 
Any reason why only the max E-field value was used and not the “capture of the fiber 
population stimulated” as depicted by the red and blue “blobs” in Figure 2B and 2C? 
 
 

We apologize this was unclear, indeed we did the latter (populations of tracts were 
used to calculate scores). However, each E-field intersects with each tract on multiple 
points along the tract. From these points, only the peak was used (*.  The rationale is 
that the recruitment of the fiber is defined by the local perturbation of the extracellular 
field, hence the higher the peak of the E-field magnitude, the more likely is the 
recruitment by the stimulation. And while the cable model defines the fiber activation by 
the second derivative of the extracellular potential, the rationale is appropriate for 
conventional DBS stimulations, where the electric field distribution is trivial.  
  
This was further clarified: 
 
“Model definition (Figure 1A): Whole brain structural connectivity profiles seeding from 
bilateral E-fields were calculated using a state-of-the-art multi-shell diffusion-weighted 
imaging dataset acquired across 18 scanning hours of a single individual at 760 µm 
isotropic resolution41 using the generalized q-sampling approach (default parameters) 
and whole-brain tracking (default parameters) as implemented in DSI studio84. The 
patients were distributed into two cohorts: Training (N = 28) and Test (N = 18). For each 
subject of the training cohort, fibers traversing each voxel of the E-field were selected 
from the 5 million tracts in the normative connectome and projected to a voxelized 
volume in MNI space. Each of these fibers were weighted according to the E-field 
magnitude at each voxel, considering only fibers that traversed > 20% of stimulation 
volumes with an E-field magnitude > 0.36 V/mm. Each fiber was then appointed an R-
value dependent on the Spearman correlation between its weighting and the respective 
clinical outcome scores across the group, i.e., a high R-value indicates that the 
modulation of that tract is associated with clinical improvement. Given the mass-
univariate nature of this approach (and subsequent alpha-error accumulations), the 
resulting correlation coefficients were not considered significant, but were rather used to 
discriminate and visualize a specific set of bundles that was later validated by estimating 
clinical outcome in out of sample data (Figure 1, table S5).” – Methods, page 25-26. 
 
(* As an aside, the Lead-DBS software also includes the function to use the 5% top 
peak points on each tract – we tested this and results were unchanged. 

 
3. Line 217: The use of the word test-retest seems inappropriate here - as it is typically used 
when the same set of subject data is acquired and tested twice or more number of times. 
Recommend using “separate validation” or equivalent word. 
 

This was changed to “separate validation”, throughout the revised manuscript. 
 
4. The software where Warpdrive was implemented and made available should be provided. 
 

Warpdrive is available as a module in 3DSlicer (Add package -> SlicerNetstim) and 
available as open source here: https://github.com/netstim/SlicerNetstim. 
It is also included in Lead-DBS when using the develop branch openly available when 
using github to install Lead-DBS: 
https://netstim.gitbook.io/leaddbs/installation#installation-via-github 
Finally, WarpDrive is explained to some degree here: 
https://elifesciences.org/articles/72929 and has been presented as a posted at multiple 

https://github.com/netstim/SlicerNetstim
https://netstim.gitbook.io/leaddbs/installation#installation-via-github
https://elifesciences.org/articles/72929


 12 

conferences (e.g. http://www.netstim.org/wp-
content/uploads/2022/03/DBSExpertSummit_Poster_Oxenford.pdf, additional demo 
video available at https://youtu.be/VcBXu5BURVI). 
 
A link to the github code for WarpDrive was added to the manuscript: 
 
“Briefly, WarpDrive provides a graphical interface allowing precise alignment of source 
and target landmarks by directly visualizing the normalized images, together with the 
template and atlases in MNI space (the software is openly available here: 
https://github.com/netstim/SlicerNetstim). WarpDrive allows the user to manually correct 
misalignments from the standard normalization and recomputes a refined deformation 
field in real time.” – Methods, p. 24 

 
 
5. Line 562: Not sure where or how the number 103-105 axons per fiber bundle was arrived 
at. 
Most axons in the human brain are less than 5 um with an overwhelming majority being 
around 2 um or less. 
So a cubic millimeter could have many more than 103-105 axons. 

 
We are sorry for this formatting error; the sentence was supposed to state 103-105 axons. 
This was corrected and the reference (Zalesky, A. & Fornito, A. A DTI-derived measure 
of cortico-cortical connectivity. IEEE Trans Med Imaging 28, 1023–1036 (2009).) was 
added to the correct place in the sentence. 

 
6. Line 588: Is the E-field vector or the peak magnitude of the E-field vector that was 
correlated with outcome? 
If it is not the magnitude, please explain how the vector was used in the correlation. 

 
The E-field magnitude was used; this was made clear as follows: 
 
“Each of these fibers were weighted according to the E-field magnitude at each voxel, 
considering only fibers that traversed > 20% of voxels with an E-field magnitude > 0.36 
V/mm and Spearman rank correlated to the respective clinical outcome scores across 
the group.” – Methods, p. 26 

 
7. Did the stimulation parameters vary during the year? i.e. were adjustments made to the 
parameters for each subject. If so, which setting was used in the analysis and why? 
This would determine the peak E-field and thus the fiber-score as well as the selected fibers. 
Please clarify. 
 

Stimulation parameters did not vary during the year. 12 month stim data was used across 
all patients building on the ADvance trial data: 
 
“Patients were diagnosed by standardized criteria after expert examination rated with 0.5 
or 1 on the Clinical Dementia Rating scale (CDR) and scored 12-24 on the Alzheimer’s 
Disease Assessment Scale 11 (ADAS-cog)72, further inclusion and exclusion criteria for 
the trials can be found in supplementary tables S1 and S2, patients received monopolar 
stimulation at a frequency of 130 Hertz with a 90 millisecond pulse width for 12 months 
without adjustment.” – Methods, p. 23 

 
8. The “optimal predictor fibers” seem to be looping in Figure 2 — is that realistic anatomy? If 
so, please provide some reference on the existence of such a tract. 
 

The perspective gives the illusion of a closed loop, however, this is a conflation of fornix 
and anterior commissure fibers. We have revised figure S4 to include other viewpoint 

http://www.netstim.org/wp-content/uploads/2022/03/DBSExpertSummit_Poster_Oxenford.pdf
http://www.netstim.org/wp-content/uploads/2022/03/DBSExpertSummit_Poster_Oxenford.pdf
https://github.com/netstim/SlicerNetstim
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angles that debunk this illusion. The following discussion sections were added to prevent 
readers from perceiving the results: 
 
“Lateral and top views of fibertract superimposed with structures of interest, white arrow 
indicates intersection of streamlines of the fornix and AC that could give the illusion of a 
loop on lateral projection views.” – legend to figure S4 (see below) 
 
“Predictive fibers calculated on training and test cohorts alone were remarkably similar, 
each suggesting a strong involvement of fornix, anterior nuclei of the thalamus and stria 
terminalis, the anterior commissure was involved only when analyzing the training cohort, 
and the combined cohort.” – Discussion, p. 18 
 

 

 
Figure S4. Fiber tracts associated with optimal clinical response superimposed on slices of a 100-µm, 7T brain scan in MNI 152 

space. From a set of 5 million fiber tracts sampled from a high-resolution connectome, the ones preferably modulated by top-

responding (and not by poor-responding) patients were selected using the DBS fiber filtering method and visualized.  The 

process was repeated on the training-cohort (N = 30) (A), the test-cohort (N = 20) (B), and both cohorts combined (N = 50) (C). 

Fiber tracts are color-coded by the resulting Spearman’s rank correlation coefficients which shows how strongly modulating 

each bundle correlated with clinical response across patients.  D) Results from panel C superimposed on atlas structures 

forming part of the circuit of Papez, also visualized by dotted arrows. E) Lateral and top views of fibertract superimposed with 

structures of interest, white arrow indicates intersection of streamlines of the fornix and AC that could give the illusion of a 

loop on lateral projection views. 1. Hipp = Hippocampus, 2. Fx. = Fornix, 3. MB = mamillary bodies, 4. MMT = mamillothalamic 
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tract, 5. Thal. = thalamus, 6. Cg Cingulate gyrus, 7. Cingulum and 8. Parahipp: Parahippocampal gyrus. The backdrop features 

an ultra-high resolution (100 µm) template of the human brain6. Structures: Fornix (blue-green), Hippocampus (pink), 

Thalamus(blue) informed by the CoBrALab Atlas5, Bed nucleus of the stria terminalis (light brown) informed by the Atlas of 

the Human Hypothalamus7.   

 
Minor: 
Line 194: BNST: acronym used without definition 
Line 585: MIO : acronym not defined 
 

Thank you, both were clarified (Bed nucleus of the Stria Terminalis; Millions). 
 
 
 
Reviewer #3 (Remarks to the Author): 
 
Summary: In this work, the authors curated a multi-site data set comprised of 50 patients 
with mild Alzheimer’s Disease that underwent deep brain stimulation. The aim of their study 
is to understand the neural substrates associated with successful fornix DBS, where success 
is defined as a clinical improvement (measured as improvement in cognitive scores one year 
after DBS treatment). Their analyses were conducted at three levels: local, structural/tract, 
and functional connectivity. The authors conclude that their results “propose a potential 
optimal stimulation target for Alzheimer’s Disease treatment with fx-DBS.” 
 

We would like to thank the reviewer for their thorough evaluation of our work. We 
apologize, that when seen from a machine-learning standpoint, several points had been 
written up too vaguely (written with a medical audience/readership in mind).  
 
We now i) share code and anonymized data to reproduce the presented plots 
(https://osf.io/bckuf) and ii) added a multitude of additional analyses after conferring with 
Russ Poldrack and Gaël Varoquax. Our study may not fulfill all criteria imposed by them 
in their excellent JAMA article (especially the N of the patient cohort, while representing 
almost all patients available, world-wide, to date, does not fulfill their community 
standards). However, their guidelines were developed for the field of psychology / 
neuroimaging and may not be 100% transferable to DBS. In fact, our study is the first in 
the field of DBS to show i) training -> test predictions in DBS for Alzheimer’s and ii) a 
multitude of levels of cross-validations. Beyond sharing all data & a portable code that 
reproduces all data figures, we now add additional sub-analyses and report metrics that 
may further clarify our approach and robustness of results. 

 
Strengths: The authors tested multiple prediction models using different cross validation 
approaches and the results appear to be robust across these different approaches. They use 
advanced, state-of-the-art methods for the modeling of the DBS data and also use a tool 
(that included manual edits) for proper normalization of the data given the atrophy. Their 
methods for preparing the data have convinced me that this is high-quality data being fed 
into the predictive models and this helps with my concerns regarding the small sample size 
for predictive modeling (while N=50 might be considered large for a DBS study, it is 
considered a very small sample size for machine learning). Their research question is framed 
well, and enough clinical background is given for non-clinical audience to understand why 
this study is interesting and important. 
 

We would like to thank the reviewer for highlighting these positive points. We agree that 
the N of the study is a limitation, hence the multiple layers of cross-validation given the 
potential clinical importance of our study. The models we assume are linear, so it could 

https://osf.io/bckuf
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be seen as a study using classical statistics (with out-of-sample estimates) rather than a 
proper machine learning study (which may often use SVMs, neural networks or similar).  

 
Weaknesses: I am unable to properly review this paper as I am not a clinician, 
neuroanatomist, or DBS expert. It seems that reviewers from these backgrounds have been 
provided enough details to review the work. I was asked by the editors to review this work 
given my expertise in machine learning, connectivity and neuroimaging applications of ML, 
however, from my perspective (reviewing the predictive modeling aspects of the paper), 
there are simply not enough details provided to assess if any modeling mistakes or statistical 
violations have been made. I found that overall it was difficult to follow and understand their 
analysis and the input data. There is essentially no detail about how the predictive model 
was formulated, meaning there are no equations, descriptions of software tools used for 
statistical modeling, or any analysis code shared.  
 

We would like to apologize again. Code & anonymized data are now transparently 
shared (https://osf.io/bckuf). The repository includes scripts with the statisical analyses 
and regenerate plots from figures 2 and 5 as well as some novel supplementary figures 
and should work out-of-the-box (without dependencies) using Matlab. The models are 
simple linear models based on a single regressor. However, this regressor is defined 
based on a fiber score, sweet spot score and DBS network score, which makes the 
analysis slightly more complex. We have published a multitude of studies that the present 
one builds upon (e.g., Horn 2017 Annals of Neurology, Al-Fatly 2019 Brain, Li 2020 
Nature Communications, Li 2019 Biological Psychiatry) each building on the same 
concepts (alongside methodological work, e.g., Horn 2014, 15, 17 & 19, Ewert 2018 & 
19, Treu 2020 and Wang 2021, all published in NeuroImage). We hope that the added 
sections (see below) may further explain our concepts to readers unfamiliar with DBS / 
this body of the literature. 
 
We have now added simple step-by-step instructions that explain all concepts to the 
supplementary material (which are also reproduced below in the response to the 
reviewer). 

 

After reading the paper (and supplemental files) three times, I cannot tell what the input data 
was to the predictive model. It is unclear if individual resting state data from each subject was 
used or if the functional data was used from some other study. Functional data from the AD 
patient groups is not described, and supplemental files state only that 1.5T structural MRI 
data was acquired. There is reference to 1,000 healthy subjects functional data, “normative 
connectome” and “connectivity fingerprints” but it is never described what these are and how 
these data were generated. There is also a description of a DWI dataset acquired from a 
single subject, but no description of the DWI data from each AD patient. It seems that the 
only MRI data acquired from each subject was the T1w/T2w volumes and no DWI or fMRI 
data. This is very misleading as the narrative makes it seem as if there is DWI and fMRI from 
each subject that went into the predictive model. If there is individual level DWI and fMRI 
data, these data need to be described (acquisition parameters, preprocessing methods, 
quality checking).  
 

We are very sorry this was misleading and further emphasized the concept of using 
normative connectomes. Indeed, no connectivity data was acquired in these patients 
(and cannot be easily done due to the indwelling hardware). As in numerous prior studies 
(e.g., see Horn & Fox 2020 NeuroImage for a review), to investigate DBS effects on 
networks, we have registered DBS electrode data with normative connectomes acquired 
in i) an ultra-high-resolution scan of a single brain scanned for 18 hours to acquire a 
precise structural connectome (at 760 um isotropic resolution) defining the tracts in the 
models and ii) a cohort of 1,000 subjects from the Genomic Superstruct Project for 
functional connectivity. 
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By doing so, we are asking the following question:  
 
The modulation of which network in the average human brain would be associated with 
optimal improvements in Fx-DBS for AD. 
 
This addition, “in the average human brain”, is crucial. 
 
An independent research question could be, whether the same networks are associated 
in individual patients. Due to the lack of dMRI or rsfMRI scans in this rare patient 
population, we cannot ask this question. However, we have investigated this question in 
other diseases (Parkinson’s and OCD) where individual connectivity data was available 
(e.g., Wang et al. 2020, NeuroImage; Baldermann et al. 2019, Biological Psychiatry). We 
could show that results from normative connectomes and patient-specific or disease-
matched connectomes were comparable in these diseases. In the present study, we 
showed that the conclusions drawn from one cohort (training) can estimate variance in 
outcomes of a second cohort (test), i.e., that the conclusions seem meaningful to make 
estimates for unseen data in the case of structural connectivity. 
 
We have further emphasized the use of normative connectomes in the abstract and 
methods, as well as discussion: 
 
“Using normative structural and functional connectivity data, we demonstrate that 
stimulation of the circuit of Papez and stria terminalis robustly associated with cognitive 
improvement (R = 0.45, p = 0.031). On a local level, the optimal stimulation site resided 
at the direct interface between these structures (R = 0.33, p = 0.016). Finally, modulating 
specific distributed brain networks accounted for optimal outcomes (R = 0.38, p = 0.006). 
Findings were robust to multiple cross-validation designs and may now define an optimal 
network target which could potentially guide refinement of DBS surgery and 
programming.” – Abstract, p. 3 
 
“Model definition (Figure 1A): Whole brain structural connectivity profiles seeding from 
bilateral E-fields were calculated using a state-of-the-art multi-shell diffusion-weighted 
imaging dataset acquired across 18 scanning hours of a single individual at 760 µm 
isotropic resolution41 using the generalized q-sampling approach (default parameters) 
and whole-brain tracking (default parameters) as implemented in DSI studio84. The 
patients were distributed into two cohorts: Training (N = 28) and Test (N = 18). For each 
subject of the training cohort, fibers traversing each voxel of the E-field were selected 
from the 5 million tracts in the normative connectome and projected to a voxelized 
volume in MNI space. Each of these fibers were weighted according to the E-field 
magnitude at each voxel, considering only fibers that traversed > 20% of stimulation 
volumes with an E-field magnitude > 0.36 V/mm. Each fiber was then appointed an R-
value dependent on the Spearman correlation between its weighting and the respective 
clinical outcome scores across the group, i.e., a high R-value indicates that the 
modulation of that tract is associated with clinical improvement. Given the mass-
univariate nature of this approach (and subsequent alpha-error accumulations), the 
resulting correlation coefficients were not considered significant, but were rather used to 
discriminate and visualize a specific set of bundles that was later validated by estimating 
clinical outcome in out of sample data (Figure 1, table S5).” – Methods, p. 25-26 
 
We have further emphasized this concept in our limitations section: 
 
“Moreover, we must emphasize that conclusions about connectivity profiles associated 
with optimal outcomes were based on normative connectivity data acquired in healthy 
participants. While this concept has led to meaningful and robust models in other 
cohorts12–14,38,71, conclusions about networks prevalent in the individual DBS patients 
may not be drawn. However, models describing optimal connectivity based on normative 
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vs. disease-matched vs. patient-specific data were comparable in other diseases, such 
as Parkinson’s Disease and OCD38,70.” – Discussion, p. 21-22 
 
“We used a normative whole-brain connectome calculated from an unprecedentedly 
high-resolution in-vivo dMRI dataset that was acquired across a total scan time of 18 
hours at 760 µm isotropic resolution on specialized MR hardware70, as for network 
mapping, a connectome obtained from rs-fMRI data from 1000 healthy subjects was 
used to inform regions co-activated with the stimulation volumes of each patient, allowing 
an identification of circuits that could be involved in clinical changes when modulating 
the fornix. We must emphasize that conclusions about connectivity profiles associated 
with optimal outcomes were based on normative connectivity data acquired in healthy 
participants. While this concept has led to meaningful and robust models in other 
cohorts12–14,38,71, conclusions about networks prevalent in the individual DBS patients 
may not be drawn.” – Discussion, p. 22 

 
We have further added a larger supplementary section detailing the normative 
connectomes (scan parameters, references, and data sources): 
 
“Normative Connectomes: Underlying Data” – Supplementary Material 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table S4. Specification of normative connectome data. Abbreviations: TR = Repetition time, TE = Echo time, FOV = Field of 
view, BOLD = Blood oxygenation level-dependent, EPI = Gradient-echo echo-planar imaging , FA = Flip angle  
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Connectome Scan parameters References Data sources 

Structural: In vivo 
human whole-brain 
Connectom diffusion 

MRI dataset at 760 m 
istotropic resolution 

Scanner: MGH-USC 3T 
Connectom. 
Maximum gradient strength of 
300mT/m and maximum slew 
rate of 200 T/m/s, custom-built 
64-channel phased-array coil. 
gSlider-SMS sequence. 
gSlider encoding: 5 
MB factor: 2 
Rinplane factor: 3 
Acquisition: Axial (PE along 
AP/PA) 
TR/TE: 3500/75 ms 
FOV: 220.0 × 218.5 mm 
Acquisition matrix: 290 × 288 
Acquired slices: 190 
Slice thickness: 0.76 mm 
Effective echo spacing: 0.34 ms 
Readout bandwidth: 1150 
Hz/Pixel 
Phase partial Fourier: 6/8 
b-values: 1000, 2500 s/mm2  
144 (b0), 420 (b1000), 840 
(b2500) w/AP/PA (total 2808 
volumes) 

Total acquisition time: 14.5 
hours 

Wang et al. (2021) Sci. 
Data1 

9 two-hour scan 
sessions 
1 healthy subject 

Functional: The 
organization of the 
human cerebral cortex 
estimated by intrinsic 
functional connectivity 

Scanner: 3T Tim Trio scanners 
(Siemens, Erlangen, Germany)  
12-channel receive coil array,  
Gradient -echo echo-planar 
imaging (EPI) sequence 
sensitive to BOLD contrast. 
Acquisition: Slices aligned to 
anterior commissure-posterior 
commissure plane 
EPI parameters  
TR/TE: 3000 ms/30 ms  
FA: 85°, 3 × 3 × 3-mm voxels  
FOV: 216  
47 axial slices collected with 
intervaled acquisition, no gap 
between slices 
6.2 minute-functional run (124 
timepoints) 

Yeo et al. (2011) J. 
Neurophysiol2 
Holmes & Buckner 

Resting-state fMRI 
data from 1,000 health 
subjects (average 1.7 
runs per subject) 
 

 
 
The authors make claims regarding generalizability and robustness, however these claims 
are not supported by the statistical framework presented to the reader. Given the strong 
clinical claims (“Potentially, our results can be useful to guide DBS programming in existing 
patients with fx-DBS and potentially inform surgical targeting in AD within future 
investigational trials”), this lack of detail is very concerning and needs to be addressed before 
consideration of publication in any journal.  

 
We have deleted the clinical claim and have now adjusted the analysis concept based 
on the community standards developed by Poldrack et al. (Poldrack et al. 2017 JAMA 
Psychiatry) 
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Moreover, as mentioned, code & data is now made openly available: 
 
“Data Availability 
Data used for the described analyses is openly available on OSF (https://osf.io/bckuf). 
The resulting tract atlas, sweet spot and fMRI network pattern are openly available 
within Lead-DBS software (www.lead-dbs.org).  
Code availability 
All code used to analyze the dataset is openly available within Lead-DBS/-Connectome 
software (https://github.com/leaddbs/leaddbs). Code to reproduce figures is openly 
available on OSF (https://osf.io/bckuf).” – Methods, p. 28-29 
 

 
Without much to go off of in terms of evaluating the machine learning framework, my main 
concerns are regarding the lack of model comparison across all of the test sets and different 
cross validation strategies and the lack of clarity about what data each subject contributed to 
the predictive model.  
 

The following supplementary section was added to narratively clarify the three concepts 
further (also see figure 1 and methods sections DBS fiber filtering, Optimal Stimulation 
Sites (Sweetspot Analysis) and DBS Network Mapping): 

 
“In all three models, each patient contributed their relative improvement of ADAS-cog-11 

scores (before surgery, one year after surgery). 

Beyond that, each model (i) tracts, ii) sweetspots and iii) functional networks) was run 

independently from one another. 

 

- i) For tracts, each patient contributed the peak E-field amplitude that each tract of 

the normative connectome was modulated by. 

- ii) For sweetspots, each patient contributed the modeled electric field in MNI space 

(represented as a NIfTI volume). 

- iii) For functional networks, each patient contributed a (normative) rs-fMRI map 

seeding from the individual patient (“connectivity fingerprints”). 

 

Then, the three models created a i) combination of tracts ii) optimal target (sweetspot), 

and iii) functional network profile associated with optimal clinical improvements. 

 

- i) For tracts, this was achieved by rank correlating the modulation amplitude 

imposed on each tract with clinical improvements across the set of patients. This 

led to an R-value for each tract, denoting how well its modulation correlated with 

clinical improvements (the concept was introduced in Irmen et al. 2019 Annals of 

Neurology). 

- ii) For sweetspots, this was achieved by rank correlating each voxel with clinical 

outcomes across the set of patients. This led to an R-map denoting how well 

modulations of specific voxels correlated with clinical outcomes (the concept was 

introduced in Horn et al. 2022 PNAS). 

- iii) For functional networks, this was achieved by correlating the voxel values of 

connectivity fingerprints with clinical improvements across the set of patients. This 

led to an R-map denoting how well connectivity estimates between stimulation sites 

and each voxel in the brain correlated with clinical outcomes (the concept was 

introduced in Horn et al. 2017 Annals of Neurology). 
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Finally, data was cross-validated within the three models: 

 

- i) For tracts, this was achieved by rank correlating the impacts of the E-Fields of a 

left-out patient on all tracts and their R-values This led to a fiberscore denoting how 

specifically the E-Field in a left-out patient modulated tracts associated with optimal 

outcomes (the concept was introduced in Horn et al. 2022 PNAS). 

- ii) For sweetspots, this was achieved by spatially correlating the E-Fields of an 

unseen patient with the R-map model. This led to a sweetspot score denoting 

correlation coefficients of agreement between the actual stimulation field and an 

“optimal” stimulation field (represented by the R-map; the concept was introduced 

in Horn et al. 2022 PNAS). 

- iii) For functional networks, this was achieved by spatially correlating the functional 

connectivity fingerprints with the R-map model. This led to a network score denoting 

correlation coefficients of agreement between the actual network profile and an 

optimal network profile (represented by the R-map; the concept was introduced in 

Horn et al. 2017 Annals of Neurology).” – supplementary material, p. 18-19 

 
Several statements made throughout the paper are concerning to me and are suggestive 
that proper statistical inference has not been performed and therefore the analysis/results do 
not support the conclusions of the paper.  
“Purely visual test-retest comparison of results” 
 

 
We agree and changed the wording:  
 
“As further evaluation, we calculated the predictive tract model based on the training-, 
test- and combined cohorts, separately. This allowed a direct comparison of results 
calculated in each cohort by visual inspection, and overlayed the identified bundle with 
structures of interest from atlases in MNI space39,47 (Figure S4).” – Results, p. 9 

 
No permutation testing or any null hypothesis testing. Only reporting cross validated Pearson 
correlation and p-values that are averaged across folds. There are no error bars/confidence 
intervals, or accuracy evaluation metrics (i.e., mean squared error, median absolute error) 
reported. This is a huge red flag 
(https://www.sciencedirect.com/science/article/pii/S1053811917305311 & https://jamanetwor
k.com/journals/jamapsychiatry/article-abstract/2756204) 

 
We now report numerous additional metrics, such as median absolute deviation (MAD) 
and root-mean square deviation (RMS), as well as coefficient of determination R2, results 
from permutation testing and include code & data to the submission for maximal 
transparency. All code and data to reproduce figures is now included with the submission 
and will be openly made available on OSF. The following paragraphs were added: 
 
“For each of the models, the stimulation volume  of each patient was considered the core 
of the analysis; for fiber filtering, streamlines from a normative structural connectome 
that traversed the volumes were considered for further steps; for sweetspot analysis, 
areas of interest were determined based on voxels occupied by stimulation volumes of 
the patients; finally, for network mapping, functionally connected areas to the stimulation 
volume of each patient were obtained from a functional normative connectome. Details 
for each method are specified in the following sections.  
 
DBS fiber filtering 
Model definition (Figure 1A): Whole brain structural connectivity profiles seeding from 
bilateral E-fields were calculated using a state-of-the-art multi-shell diffusion-weighted 

https://www.sciencedirect.com/science/article/pii/S1053811917305311
https://jamanetwork.com/journals/jamapsychiatry/article-abstract/2756204
https://jamanetwork.com/journals/jamapsychiatry/article-abstract/2756204
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imaging dataset acquired across 18 scanning hours of a single individual at 760 µm 
isotropic resolution41 using the generalized q-sampling approach (default parameters) 
and whole-brain tracking (default parameters) as implemented in DSI studio84. The 
patients were distributed into two cohorts: Training (N = 28) and Test (N = 18). For each 
subject of the training cohort, fibers traversing each voxel of the E-field were selected 
from the 5 million tracts in the normative connectome and projected to a voxelized 
volume in MNI space. Each of these fibers were weighted according to the E-field 
magnitude at each voxel, considering only fibers that traversed > 20% of stimulation 
volumes with an E-field magnitude > 0.36 V/mm. Each fiber was then appointed an R-
value dependent on the Spearman correlation between its weighting and the respective 
clinical outcome scores across the group, i.e., a high R-value indicates that the 
modulation of that tract is associated with clinical improvement. Given the mass-
univariate nature of this approach (and subsequent alpha-error accumulations), the 
resulting correlation coefficients were not considered significant, but were rather used to 
discriminate and visualize a specific set of bundles that was later validated by estimating 
clinical outcome in out of sample data (Figure 1, table S5).” – Methods, p. 25-26 
 
“Next, we used the fiber model calculated on the complete training cohort (N = 28) to 
estimate clinical outcomes in patients from the test cohort (N = 18), which had been left 
as a completely naïve hold-out set (Figure S4B). This cross-cohort-prediction revealed 
a significant relationship (R = 0.45 at p = 0.031, R2 = 0.102, RMS = 41.621, MAD = 
25.452; Figure 2C) indicating robustness of the generated model. It should be noted that 
for out-of-sample testing, the coefficient of determination R2 is computed based on the 
sum of squared errors, and not by squaring the correlation coefficient46”. -Results, p.8 
 
“As a final validation step, we carried out a leave-one-out cross validation across the 
whole cohort which led to an R = 0.66 at p < 10-16, RMS = 50.32, MAD = 33.23 between 
estimated fiber scores and empirical improvements. Further cross-validation k-fold 
designs led to similar results (3-fold: R = 0.44 at p =  0.002; 5-fold: 0.50 at p < 1016; 7-
fold: R = 0.48 at p = 0.001; and 10-fold: R = 0.52 at p < 1016, see Figures 5 and S7 for 
additional metrics).” -Results, p. 9 
 
“Instead, spatial maps consisting of sweet- and sour-spots were cross-validated across 
the entire cohort in a leave-one-patient-out design, which led to significant results (R = 
0.33 at p = 0.016, RMS = 50.60, MAD = 27.94). Further cross-validation designs led to 
similar results (3-fold: R = 0.27 at p = 0.037; 5-fold: R = 0.30 at p = 0.016; 7-fold: R = 
0.39 at p = 0.005; 10-fold: R = 0.33 at p = 0.011, Figures 5 and S7). -Results, p.11 
 
“To validate these results, we again carried out leave-one-out (R = 0.38 at p = 0.006, 
RMS = 48.69, MAD = 30.99) and several k-fold cross-validation designs (3-fold: R = 0.32 
at p = 0.015; 5-fold: R = 0.14 at p = 0.147; 7-fold: R = 0.44 at p < 1016; 10-fold: R = 0.29 
at p = 0.020, Figures 5 and S7)”.-Results, p. 13 
 
R2, RMS and MAD were added to figure 2, and an additional figure showing an in-fold 
analysis of cross-validation results of fiber filtering (figure S3). 
 
 



 22 

 
Figure 2. Validation of tract models predictive of clinical improvements as evaluated using ADAS-Cog 11. A) Left: Optimal set 

of tracts to be modulated as calculated from the entire training cohort (N = 28 subjects). Right: permutation analysis calculated 

on the entire training cohort. B) Top left: stimulation volume of a patient with top clinical improvement overlapping the tracts 

associated with optimal clinical improvements (calculated leaving out the subject, N = 28-1 = 27 subjects). Fibers displayed in 

white correspond to the portion of optimal fibers intersecting with the patient’s stimulation volume. Bottom left: Same 

analysis carried out with a poor-responding example patient. Right: Cross-validation within the training cohort using a leave-

one-out design (top, R = 0.69 at p < 10-16) and within-fold analysis (bottom). The two example patients are marked in the 

correlation plot with circles. C) Optimal tracts calculated from the entire training cohort (as shown in panel A, N = 28) were 

used to cross-predict outcomes in N = 18 left out patients of the test cohort (R = 0.45, p = 0.031). Left: two example cases from 

the test cohort are shown, a top responding patient’s stimulation volume with corresponding connected (white) optimal fibers 

(defined by the training cohort); and a poor-responding patient’s stimulation volume with corresponding connected (white) 

fibers. The two example patients are marked in the correlation plot with circles. Fiber tracts and example stimulation volumes 

were superimposed on slices of a 100-µm, 7T brain scan in MNI 152space48. Gray shaded areas represent 95% confidence 

intervals. 
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Figure S3. In-fold analysis from fiber filtering analysis on Training cohort showing absolute predicted error, root mean 
square deviation (RMS) and median absolute deviation (MAD) for each of the validation approaches. 

 
 

RMS and MAD are now reported throughout Leave-one-out and k-fold analyses (Figures 
5 and S7).  
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Figure 5. Results summary including the models from DBS fiber filtering, sweetspot mapping and network-mapping. The three 

levels of analysis were able to explain a similar amount of variance of clinical outcomes when analyzed in a circular nature 

(see scatterplots; ∼16-19%) and led to significant cross-predictions of clinical outcomes across leave-one-patient-out and 

multiple k-fold designs. Three level analysis results were superimposed on slices of a brain cytoarchitecture atlas  in MNI 152 

space50. Gray shaded areas represent 95% confidence intervals. 
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Figure S7. In-fold analysis from summary showing absolute predicted error, root mean square (RMS) and median absolute 
deviation (MAD) for each of the validation approaches followed on fiber filtering (A), sweetspot (B) and network mapping (C) 
methods.  
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