
Open Access This file is licensed under a Creative Commons Attribution 4.0 

International License, which permits use, sharing, adaptation, distribution and 

reproduction in any medium or format, as long as you give appropriate credit to 

the original author(s) and the source, provide a link to the Creative Commons license, and indicate if 

changes were made. In the cases where the authors are anonymous, such as is the case for the reports of 

anonymous peer reviewers, author attribution should be to 'Anonymous Referee' followed by a clear 

attribution to the source work.  The images or other third party material in this file are included in the 

article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is 

not included in the article’s Creative Commons license and your intended use is not permitted by statutory 

regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright 

holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. 

Peer Review File

Discovery of synthetic lethal interactions from large-scale pan-
cancer perturbation screens



Reviewer #1 (Remarks to the Author): Expertise in SL screens 

General comments to the Authors 

The authors have developed a method, SLIdR (Synthetic Lethal Identification in R), to identify 

synthetic lethal (SL) pairs from shRNA genetic screens in cancer cell lines using a novel method 

and provided an in vitro experimental validation of one predicted SL pair. 

The general problem of identifying SL pairs using in both pan-cancer and in a cancer-specific 

pattern is an important problem. However, in our opinion, this work misses systematic testing of 

model performance and comparison with available tools, making it very hard to conclude the 

efficacy of the method and whether it is useful for the community. It also lacks a proper 

systematic validation of many of the predicted SL pairs. One useful contribution of this work is the 

specific SL pair (between AXIN1 & URI1) which has been validated in vitro, but for a journal of the 

level of Nat. Comm. One would expect to see further confirmation in vivo. 

Major Comments 

1. In the last few years, multiple tools have been published to identify SLs [PMID: ISLE- 

29959327, DAISY- 25171417, MiSL- 28561042], including a few in Nature Communication. Tools 

like MiSL (published in Nature Comm.) identifies mutation-based SLs from genetic screenings uses 

a very similar framework to the proposed method SLIdR. Similarly, DAISY and one of the steps in 

ISLE also uses a somewhat similar framework to SLIdR. Hence a comprehensive comparison of the 

new method with some of the previously published approaches is missing and should be carried 

out. Surprisingly, the authors have not even cited some of the previous important methods (like 

MiSL and ISLE) even though these methods address the same problem and have some similarity 

to the proposed technique. (One such comparison is suggested in the next point). 

2. Objective measurement of sensitivity and specificity is missing from this work, where most of 

the biological support is hand-picked from the literature and is not done in a systematic and 

convincing manner. We strongly recommend using publicly available double-knockout screening 

datasets which could be considered as a gold standard and compute a prediction performance of 

SLIdR. Further using this framework, a comparison of performance with some of the previous 

techniques (like MiSL, ISLE, DAISY) should also be performed. 

Some examples of gold standard datasets include: 

SynLethDB: http://histone.sce.ntu.edu.sg/SynLethDB/about.php 

Clinically available SLs: 

https://www.sciencedirect.com/science/article/pii/S2405803318302425?via=ihub#tbl0005 

In the work below, 220K SL pairs have been knocked-out in two cell lines for which expression, 

CNV etc. are characterized. https://www.cell.com/cell/fulltext/S0092-8674(18)30735-9 

Similarly, in six cell lines known 125 putative SL pairs are knocked out - hence this could possibly 

a test set. https://www.nature.com/articles/nbt.4048 

Similarly, there are furthermore experimentally derived SLs in three cell lines each (2600 and 

3300 SLs): 

Shen et al - https://www.nature.com/articles/nmeth.4225 

Zhao et al - https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5449203/ 

3. Another straightforward comparison that is missing and could be integrated is CRISPR genetic 

screenings performed in the exact same cell lines on the exact same genes. Using the same 

framework, the authors could replace the siRNA essentiality matrix with CRISPR-essentiality matrix 

to show whether their results are robust across technologies of use. Hits which are robust across 

both the siRNA and CRISPR screens could be of high-confidence and more robust. 

4. Based on the identification of targeting drugs of SL partners identified in Supp Table 1, 

systematic validation of these hits could also be performed using large-scale drug response profiles 

as a part of the Project DRIVE used in this work (DepMap). 

5. Notably, among pairs identified in this work many genes are SL partners with their own 

mutation status. This phenomenon is well known and called oncogene addiction and is quite 



interesting and the authors may want to give more attention to it and study it deeper. Secondly, 

some SL pair genes, like NFE2L2 and KEAP1, show a mutually exclusive mutation pattern. This 

prompts us and suggests that a gene pair, both with an oncogene addiction (SL with their own 

mutation) and a mutually exclusive mutation profile could be identified as an SL pair by the 

method, in principle and could confound the results. Adding a step to make sure this is not the 

case could be one method to resolve this. 

6. One of the key hub gene in the overall SL network identified in the work is TP53, where multiple 

type of mutation occurs including both gain-of-function and loss-of-function. Stratifying the 

mutation type using prior literature could help improve the signal-to-noise ratio. 

Minor comments 

1. Description of the framework in the Methods sections needs to be more comprehensive and 

clearer. For example, the causal inference portion could be better explained. 

2. Figure 4d and 4e need to be reordered as per mentioned first in the text. 

3. Synthetic lethal interactions computationally identified via this tool seems to be in only one 

direction and if so, this needs to be clearly stated. That is, SL partners are identified while driver 

genes are mutated, so the viability comparison is between driver + perturbation knockout vs 

perturbation gene knockout. There seems to be no comparison of combination viability with the 

viability of the cell line when the driver gene alone is knocked down. 

Reviewer #3 (Remarks to the Author): Expertise in SL and computational biology 

In their manuscript entitled “Discovery of synthetic lethal interactions from large-scale pan-cancer 

perturbation screens” Srivatsa, Montazeri et al. describe a statistical framework (SLIdR) for the 

identification of synthetic lethal (SL) interactions from public data sets. Specifically, SLIdR is 

meant to predict SL pairs from small data sets with few false positive predictions. They apply the 

approach to published RNAi data targeting 7837 genes in 398 cancer cell lines (project DRIVE) and 

show that their approach can re-identify certain putative SL pairs and predict new pairs. Srivatsa, 

Montazeri et al. then perform experiments to validate a SL relationship between AXIN1 and URI1 

in SNU449 and Huh-7 cells using growth assays and apoptosis measurements. The concept of 

synthetic lethality has regained traction in recent times now that new technologies enable the 

study of SL relationships using genetic mutants. Previously, the field has suffered to some extent 

from RNAi-based studies that identified SL pairs which did not stand the test of time. A method for 

the robust identification of SL interactions that is broadly applicable to different types of data sets 

(CRISPR, drugs, RNAi etc.) would therefore represent a valuable resource and important advance 

in the functional characterization of the cancer genome. This would potentially be of interest to a 

broad audience which may want to utilize the presented method. 

This being said, there are some principal concerns I have with the study that the authors may 

want to address to convince potential users of the robust nature and superior performance of their 

approach compared to existing methods/resources. 

Major comments: 

1. As stated above, there is no shortage in the number of proposed SL relationships form the 

analysis of large-scale data and several algorithms for the identification of SL gene have been 

reported. In the current version of the manuscript, I was missing data demonstrating the 

superiority of the presented approach compared to other SL prediction methods, particularly with 

regard to the claimed mitigation of false positive reports. It did not become clear to me, what the 

principle advance of the method described by Srivatsa, Montazeri et al. boils down to. One 

differentiating factor seems to be that the authors pre-stratify the pan-cancer data based on 

tissue/cancer type, which seems to yield a much higher number of SL pairs (839) than when the 

project DRIVE data are analyzed without prior stratification (151). What is the quality of these 



additionally identified SL pairs? While I am unable to evaluate the bioinformatics aspects of this 

work, it would be in the interest of the authors to more clearly present the unique advantages of 

their method to a broad audience that includes non-bioinformaticians. 

2. Out of the substantial number of newly identified SL pairs, the authors select AXIN1/URI1 for 

experimental validation, despite the fact that their approach also identified SL interactions 

involving highly relevant cancer genes and druggable factors (examples would be BRAF, PI3K, p53 

etc.). The identification of such SL interactions, if proven true, would constitute a major break-

through in cancer research. The fact that none of these more ‘high profile interactions’ were 

chosen for experimental validation somewhat limits the reader’s confidence in the data. 

3. Related to the previous point, the particular choice of AXIN1/URI1 represents a major problem 

of the current manuscript in my view. URI1 is a common essential gene (across different cell 

systems and identified with different approaches, see e.g. depmap portal: Tsherniak et al., Cell, 

2017). In line with this, the authors themselves verify the highly essential nature of URI1 with 

their siRNA experiments: as can be observed in Fig. 4d, siURI1 treated cells are completely 

blocked in their ability to grow. It is well-known that essential genes are enriched for genetic 

interactions (e.g. Constanzo et al., Science 2010, 2016) and this represents a major source of 

undesirable genetic interactions identified in the search of cancer vulnerabilities. The question of 

essential genes contributing to the identified SL pairs is addressed in similar computational 

approaches (e.g. SLant, Benstead-Hume et al., PLoS Comput Biol, 2019). To make a convincing 

case, to my mind, the authors should select new SL pairs that do not contain such ‘drop-dead 

essential genes’ for experimental validation. The authors sould also equip their method with means 

to filter against SL pairs involving essential genes. 

4. A challenge in the study of genetic interactions is the distinction between synthetic fitness 

effects from merely additive effects (fitness defect of the SL pair should be greater than the 

combined fitness defect of the individual mutants). In Figure 4d, the authors show that individual 

knockdown of AXIN1 or URI1 installs a growth defect in Huh-7 cells. The data do not convince that 

the combined knockdown in fact creates a synthetic lethal effect. The authors have the respective 

expertise and this issue should be addressed in the experimental validation of SL gene pairs. 

5. Given the well-known complications of RNAi, it is critical that the authors select orthogonal 

approaches (such as CRISPR or small molecule inhibitors) for the validation of their SL pair 

predictions based on RNAi data. 

6. To support the robustness of their SL prediction approach, ideally the authors should validate a 

collection of SL interactions experimentally using the aforementioned orthogonal methods. 

Alternatively, the authors would need to provide some level of mechanistic insight into an 

identified SL interaction to make a convincing argument. 

7. As the scientific community is moving on from RNAi to SL experiments based on genetic 

mutations, in order for the authors’ method to gain traction and be broadly utilized by the scientific 

community, it would be very valuable if the authors applied their approach also to similar data 

obtained using CRISPR, such as project Achilles. 

Minor comments: 

1. The authors cite the genetic interaction of BRCA1/2 and PARP1 in their introduction. Should this 

relationship be identified by their method? 

2. Some of the reported SL pairs include curious combinations, an example would be PI3K and 

beta-actin (Fig. 2d). How do the authors interpret these findings? 

3. The purpose of certain figure panels is unclear, examples include Fig. 1b, Fig. 2a etc. Figure 1 

would in general benefit from the inclusion of more data. 

4. In my view, the use of siTP53 (Fig. S2) is not suitable to assess the off-target activity of URI1 

siRNAs. Additionally, the knockdown efficiency of the employed TP53 siRNA is very modest (Fig. 



S2). Again, an orthogonal strategy (e.g. CRISPR-KO or CRISPRi of URI1) or expression of siRNA-

resistant URI1 cDNA would be more convincing. 

5. There are some additional issues with Fig. S2. Why does siTP53 rescue the growth defect 

installed by siAXIN1 treatment? Are AXIN1 and TP53 a ‘synthetic viable’ pair? What is the reason 

for the observed differences in growth among identically treated cells between Fig. 4d (cell index 

of siCTRL increases ca. 5-fold over 120h) and Fig. S2 (cell index of siCTRL increases ca. 2-fold over 

120h and absolute values are substantially different)? 

6. Was FDR-correction applied when multiple t-tests were performed on qPCR/FACS experiments 

(Fig. 4)? 



RESPONSE TO REVIEWERS' COMMENTS

Reviewer #1 (Remarks to the Author): Expertise in SL screens

General comments to the Authors

The authors have developed a method, SLIdR (Synthetic Lethal Identification in R), to identify

synthetic lethal (SL) pairs from shRNA genetic screens in cancer cell lines using a novel method

and provided an in vitro experimental validation of one predicted SL pair.

The general problem of identifying SL pairs using in both pan-cancer and in a cancer-specific

pattern is an important problem. However, in our opinion, this work misses systematic testing of

model performance and comparison with available tools, making it very hard to conclude the

efficacy of the method and whether it is useful for the community. It also lacks a proper

systematic validation of many of the predicted SL pairs. One useful contribution of this work is

the specific SL pair (between AXIN1 & URI1) which has been validated in vitro, but for a journal

of the level of Nat. Comm. One would expect to see further confirmation in vivo.

Major Comments

1. In the last few years, multiple tools have been published to identify SLs [PMID: ISLE-

29959327, DAISY- 25171417, MiSL- 28561042], including a few in Nature Communication. Tools

like MiSL (published in Nature Comm.) identifies mutation-based SLs from genetic screenings

uses a very similar framework to the proposed method SLIdR. Similarly, DAISY and one of the

steps in ISLE also uses a somewhat similar framework to SLIdR. Hence a comprehensive

comparison of the new method with some of the previously published approaches is missing

and should be carried out. Surprisingly, the authors have not even cited some of the previous

important methods (like MiSL and ISLE) even though these methods address the same problem

and have some similarity to the proposed technique. (One such comparison is suggested in the

next point).

We thank the reviewer for pointing this out. We originally submitted our manuscript as a letter

and therefore, had to abridge our introduction and findings to meet the word count

requirements. We have since changed the format to the article format in our resubmission and

substantially modified the introduction to incorporate the reviewers’ suggestions. In particular,

we now reference multiple computational tools for identification of the SL pairs in the third



paragraph of Introduction. The corresponding text reads as “Significant efforts have also been

made in developing integrative computational methods…”.

Additionally, we performed a comprehensive comparison as per the reviewers’ suggestions,

which is discussed in more detail in the next point.

2. Objective measurement of sensitivity and specificity is missing from this work, where most of

the biological support is hand-picked from the literature and is not done in a systematic and

convincing manner. We strongly recommend using publicly available double-knockout screening

datasets which could be considered as a gold standard and compute a prediction performance

of SLIdR. Further using this framework, a comparison of performance with some of the previous

techniques (like MiSL, ISLE, DAISY) should also be performed.

Some examples of gold standard datasets include:

SynLethDB: http://histone.sce.ntu.edu.sg/SynLethDB/about.php

Clinically available SLs:

https://www.sciencedirect.com/science/article/pii/S2405803318302425?via=ihub#tbl0005

In the work below, 220K SL pairs have been knocked-out in two cell lines for which expression,

CNV etc. are characterized. https://www.cell.com/cell/fulltext/S0092-8674(18)30735-9

Similarly, in six cell lines known 125 putative SL pairs are knocked out - hence this could possibly

a test set. https://www.nature.com/articles/nbt.4048

Similarly, there are furthermore experimentally derived SLs in three cell lines each (2600 and

3300 SLs):

Shen et al - https://www.nature.com/articles/nmeth.4225

Zhao et al - https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5449203/

Thank you for both comments. We compared SLIdR with the standard Wilcoxon rank sum test,

which is adopted by ISLE and DAISY, through a simulation study. The results are explained in the

Results section under “SLIdR outperforms conventional tests for SL prediction”. We demonstrate

the advantage and superiority of SLIdR by comparing it to the standard Wilcoxon rank sum test

for three cancer types (Supplementary Fig. S2). The performance plots (as a function of sample

size) show that SLIdR consistently reduces the number of false positives even in rare

osteosarcomas with only seven cell lines.

In the same section, we also assess and report the performance of SLIdR in identifying

gold-standard SL pairs. In particular, we show that with two orders of magnitude fewer

predictions than ISLE, SLIdR recovers a comparable fraction of the experimentally identified

gold-standard SL interactions reported by (Lee et al., 2018) (Supplementary Table S4). This

gold-standard list, which was derived from 17 in vitro perturbation screens (including a few of



the reviewers’ recommendations) by Lee et al., 2018 proved to be a comprehensive list for

benchmarking.

3. Another straightforward comparison that is missing and could be integrated is CRISPR genetic

screenings performed in the exact same cell lines on the exact same genes. Using the same

framework, the authors could replace the siRNA essentiality matrix with CRISPR-essentiality

matrix to show whether their results are robust across technologies of use. Hits which are

robust across both the siRNA and CRISPR screens could be of high-confidence and more robust.

We thank the reviewer for this suggestion. We applied SLIdR to CRISPR data from Project

Achilles in both pan-cancer and cancer type-specific settings. The results are summarized in

Supplementary Table S5 and described in detail in subsections titled “SLIdR on CRISPR dataset”

in Methods and “Integration with CRISPR data” in Results. In the pan-cancer analysis of the

CRISPR data, we found 104 SL pairs including several pairs from the pan-cancer analysis on

DRIVE data. While the overlap between the two screens was significant (hypergeometric

p-value < ), we observed that several established and strong candidate pairs of the DRIVE10
−16

analysis were missed in the CRISPR analysis by small margins. One of the primary reasons for

this was that of the 373 cell lines from Project DRIVE, ~100 cell lines were missing in the CRISPR

dataset. This reduced overlap resulted in a smaller space of possible pairwise interactions and

reduced statistical power, particularly in the cancer type-specific analyses. Therefore, to identify

the robust hits, we further used Fisher’s method to combine the p-values reported by SLIdR for

each pair across the two screens and reported the significant ones. In the pan-cancer setting,

we identified 162 robust SL pairs across both the screens, out of which we recovered ~62% (91

SL pairs) of the original DRIVE candidate SL pairs, including strong pairs such as, ACVR2A-WRN,

RB1-E2F3, and RB1-SKP2, backed by literature evidence.

In addition to identifying robust hits, this analysis enabled us to truly exploit the complementary

information across the two screens and proved beneficial in recovering pairs which showed

reduced signal in one of the two screens (paragraph 3 of “Integration with CRISPR data”

subsection). These results reinforce that RNAi and CRISPR are complementary technologies and

together can improve screening and validation of interactions (Mohr et al., 2014; Morgens et

al., 2016).

4. Based on the identification of targeting drugs of SL partners identified in Supp Table 1,

systematic validation of these hits could also be performed using large-scale drug response

profiles as a part of the Project DRIVE used in this work (DepMap).

We thank the reviewer for this suggestion. We systematically validated the predicted

pan-cancer and cancer-type specific SL pairs from the Project DRIVE screen on the primary



PRISM drug-response profile (from the DepMap consortium) and elaborated these additional

findings in the third paragraph of sub-section “Enrichment of Pan-cancer SL interactions by

SLIdR” and third paragraph of “Enrichment of cancer type-specific SL interactions by SLIdR”

under Results. The pan-cancer and cancer-type specific hits with support from PRISM

drug-response screen have been tabulated in Supplementary Table S3 and some of them are

highlighted in Figure 2d and Figure 3b.

5. Notably, among pairs identified in this work many genes are SL partners with their own

mutation status. This phenomenon is well known and called oncogene addiction and is quite

interesting and the authors may want to give more attention to it and study it deeper. Secondly,

some SL pair genes, like NFE2L2 and KEAP1, show a mutually exclusive mutation pattern. This

prompts us and suggests that a gene pair, both with an oncogene addiction (SL with their own

mutation) and a mutually exclusive mutation profile could be identified as an SL pair by the

method, in principle and could confound the results. Adding a step to make sure this is not the

case could be one method to resolve this.

We thank the reviewer for the constructive criticism. While oncogene addiction is an interesting

concept, the primary goal of our method is to identify genetic interactions consisting of

druggable targets in cancers driven by undruggable oncogenes. In a parallel study (Montazeri et

al., no date) focus on identifying such drivers from perturbation screens.

Regarding the mutually exclusive mutation pattern shown by some SL pairs, we would like to

point out that such a pattern has been suggested to be a strong indicator of synthetic lethal

interactions. Indeed, loss of one gene in a synthetic lethal gene pair creates a dependency on

the other gene, thus synthetic lethal gene pairs are not expected to show simultaneous

loss-of-function, and, on the contrary, usually show a mutual exclusive mutation pattern (Muller

et al., 2015). This principle is the foundation of large-scale functional genomic screenings

(Wappett et al., 2016) and is used in several methods for identifying SL pairs. We therefore

decided to include such pairs of genes since we believe this makes the method more

informative. Especially with regard to the NFE2L2 and KEAP1 gene pair, it is well-known that

KEAP1 is a negative regulator of Nrf2 (NFE2L2) transcription factor. Loss-of-function mutations

in the KEAP1 gene lead to Nrf2 stress pathway activation and addiction towards this pathway.

From a biological point of view, it therefore makes sense that NFE2L2 and KEAP1 appear to be a

synthetic lethal pair. This can also be connected to the first point addressed by the reviewer

regarding oncogene addiction. While classical oncogene addiction refers to a situation where

cancer cells are addicted to a specific activating mutation in a given oncogene, synthetic

lethality can derive from a similar situation where inactivation of a given tumor suppressor gene

can activate an oncogenic pathway. We therefore believe that adding a further step might not

be beneficial to the SLIdR method.



6. One of the key hub gene in the overall SL network identified in the work is TP53, where

multiple type of mutations occur including both gain-of-function and loss-of-function.

Stratifying the mutation type using prior literature could help improve the signal-to-noise ratio.

We thank the reviewer for raising this point. As suggested, we stratified cell lines based on the

TP53 mutation type using established literature in the pan-cancer analysis. However, the results

remained unchanged post-stratification since the majority of the original 373 cell lines harbored

loss-of-function mutations and only a very small fraction (3.7%) exhibited gain-of-function

mutations. Consequently, the post-stratification results recovered all the 151 SL pairs as prior to

stratification. Since the results did not change, we did not include it in the updated manuscript.

Minor comments

1. Description of the framework in the Methods sections needs to be more comprehensive and

clearer. For example, the causal inference portion could be better explained.

To improve the comprehensibility of the framework, we elaborated on the SLIdR algorithm in

the subsection titled “The SLIdR workflow” under Results. We also updated the second and

third paragraph in the “Causal inference” subsection under Methods for clarity.

2. Figure 4d and 4e need to be reordered as per mentioned first in the text.

Thank you for pointing this out! The figures and their labels have since changed in the revised

manuscript.

3. Synthetic lethal interactions computationally identified via this tool seems to be in only one

direction and if so, this needs to be clearly stated. That is, SL partners are identified while driver

genes are mutated, so the viability comparison is between driver + perturbation knockout vs

perturbation gene knockout. There seems to be no comparison of combination viability with the

viability of the cell line when the driver gene alone is knocked down.

We agree with the reviewer that it would be appropriate to check the synthetic lethality in both

directions. However, since many driver gene knockdowns are missing in the perturbation

screening data, this is not feasible for all pairs and was therefore not included in our framework.

We have explicitly stated this at the end of the subsection titled “SLIdR algorithm” under

Methods, in the revised manuscript. We write “It is important to note that since knockdown

data of several driver genes is unavailable in the Project DRIVE screen, we tested for SL



interactions only in one direction and were unable to test the effect of viability of the cell lines

when the driver genes alone are knocked down.”

Reviewer #3 (Remarks to the Author): Expertise in SL and computational

biology

In their manuscript entitled “Discovery of synthetic lethal interactions from large-scale

pan-cancer perturbation screens” Srivatsa, Montazeri et al. describe a statistical framework

(SLIdR) for the identification of synthetic lethal (SL) interactions from public data sets.

Specifically, SLIdR is meant to predict SL pairs from small data sets with few false positive

predictions. They apply the approach to published RNAi data targeting 7837 genes in 398 cancer

cell lines (project DRIVE) and show that their approach can re-identify certain putative SL pairs

and predict new pairs. Srivatsa, Montazeri et al. then perform experiments to validate a SL

relationship between AXIN1 and URI1 in SNU449 and Huh-7 cells using growth assays and

apoptosis measurements. The concept of synthetic lethality has regained traction in recent

times now that new technologies enable the study of SL relationships using genetic mutants.

Previously, the field has suffered to some extent from RNAi-based studies that identified SL

pairs which did not stand the test of time. A method for the robust identification of SL

interactions that is broadly applicable to different types of data sets (CRISPR, drugs, RNAi etc.)

would therefore represent a valuable resource and important advance in the functional

characterization of the cancer genome. This would potentially be of interest to a broad

audience which may want to utilize the presented method.

This being said, there are some principal concerns I have with the study that the authors may

want to address to convince potential users of the robust nature and superior performance of

their approach compared to existing methods/resources.

Major comments:

1. As stated above, there is no shortage in the number of proposed SL relationships form the

analysis of large-scale data and several algorithms for the identification of SL gene have been

reported. In the current version of the manuscript, I was missing data demonstrating the

superiority of the presented approach compared to other SL prediction methods, particularly

with regard to the claimed mitigation of false positive reports. It did not become clear to me,

what the principle advance of the method described by Srivatsa, Montazeri et al. boils down to.

One differentiating factor seems to be that the authors pre-stratify the pan-cancer data based

on tissue/cancer type, which seems to yield a much higher number of SL pairs (839) than when

the project DRIVE data are analyzed without prior stratification (151). What is the quality of



these additionally identified SL pairs? While I am unable to evaluate the bioinformatics aspects

of this work, it would be in the interest of the authors to more clearly present the unique

advantages of their method to a broad audience that includes non-bioinformaticians.

We thank the reviewer for this constructive criticism and apologize for the lack of clarity. As

mentioned earlier, we originally submitted our manuscript as a letter and therefore, had to

make it concise to meet the word count requirements. We have revised the manuscript with an

emphasis on the advantages of our method over others.

Methods for identifying SL interactions primarily rely on large sample sizes and multi-omics data

and thus are not suitable for rare cancer types. Furthermore, they regard the shRNA screening

data to have low statistical power and therefore, use genetic perturbation screens merely to

refine the candidate list of SL pairs derived from analyzing multi-omics data (Jerby-Arnon et al.,

2014). However, we show that such screens can be highly informative in identifying SL pairs

directly. Through a simulation study, we demonstrate in the revised manuscript the advantage

and superiority of SLIdR for three cancer types (Supplementary Fig. S2). The performance plots

(as a function of sample size) show that SLIdR is consistently reducing the number of false

positives even in rare osteosarcomas with only seven cell lines. Further, we show that with two

orders of magnitude fewer predictions than the competing SL prediction method ISLE, SLIdR

recovers a comparable fraction of the experimentally identified gold-standard SL interactions

reported by (Lee et al., 2018) (Supplementary Table S4). These results are explained in detail in

sub-section “SLIdR outperforms conventional tests for SL prediction”.

Regarding the differences between pan-cancer and cancer type-specific analyses, both are

important as they provide complementary information, and SLIdR can successfully identify

well-established and novel targets in both these settings, as demonstrated. Pan-cancer analysis

is desirable for identifying SL partners for mutated driver genes shared across multiple cancer

types, while cancer-type specific analysis identifies SL partners for specific or rare mutated

driver genes. We have modified the manuscript and elaborated further on these results in the

revised manuscript in sub-sections “Enrichment of Pan-cancer SL interactions by SLIdR” and

“Enrichment of cancer type-specific SL interactions by SLIdR”.

2. Out of the substantial number of newly identified SL pairs, the authors select AXIN1/URI1 for

experimental validation, despite the fact that their approach also identified SL interactions

involving highly relevant cancer genes and druggable factors (examples would be BRAF, PI3K,

p53 etc.). The identification of such SL interactions, if proven true, would constitute a major

break-through in cancer research. The fact that none of these more ‘high profile interactions’

were chosen for experimental validation somewhat limits the reader’s confidence in the data.



We thank the reviewer for this insightful comment. We have performed additional experimental

validation of novel SL pairs in HCC, a cancer type with few targeted therapies available (Llovet et

al., 2018). In particular, we validated AXIN1-URI1, SLIdR's top SL hit in HCC, in the original

manuscript. In addition, to address the reviewer's comment, we successfully validated

ARID1A-TEAD1, in the revised manuscript. The results are explained in Figures 4 and 5, and

Supplementary Figure S3. In detail, we proved that inhibition of TEAD1, using siRNA or the

small molecule inhibitor verteporfin, induces cell death in ARID1A-mutant HCC cells in a dose-

and time-dependent manner (Figure 4). Silencing of ARID1A makes ARID1A-wild-type HCC cells

susceptible to TEAD1 inhibition via siRNA or verteporfin, both in vitro and in vivo (Figure 5,

Supplementary Figure S3). As written in the revised manuscript in the Discussion: “Taken

together our results show that ARID1A and TEAD1 are synthetic lethal interactors in HCC and

strongly indicate that this relationship is dependent on the regulatory function of TEAD1 in the

Hippo signalling pathway. Indeed, our results are in accordance with the recent work of Chang

et al.53. Given the widespread role of the SWI/SNF complex54, the frequency of ARID1A

inactivation in several malignancies other than HCC54 and availability of TEAD-YAP inhibitors 46,

the identification of the ARID1A-TEAD1 synthetic lethal pair provides an example of how SLIdR

can help improve cancer therapy.”

In addition, based on the predictions by SLIdR, Bianco et al. validated GATA3-MDM2 as an SL

pair in ER-positive breast cancer in a separate extensive in vitro and in vivo study (Bianco et al.,

no date). With MDM2 inhibitors widely available (Konopleva et al., 2020), this discovery further

emphasizes the ability of SLIdR to predict new cancer-specific druggable targets. While

validating other synthetic lethal interactions might have broader applications in cancer research,

further experimental validation is beyond the scope of the present study.

3. Related to the previous point, the particular choice of AXIN1/URI1 represents a major

problem of the current manuscript in my view. URI1 is a common essential gene (across

different cell systems and identified with different approaches, see e.g. depmap portal:

Tsherniak et al., Cell, 2017). In line with this, the authors themselves verify the highly essential

nature of URI1 with their siRNA experiments: as can be observed in Fig. 4d, siURI1 treated cells

are completely blocked in their ability to grow. It is well-known that essential genes are

enriched for genetic interactions (e.g. Constanzo et al., Science 2010, 2016) and this represents

a major source of undesirable genetic interactions identified in the search of cancer

vulnerabilities. The question of essential genes contributing to the identified SL pairs is

addressed in similar computational approaches (e.g. SLant, Benstead-Hume et al., PLoS Comput

Biol, 2019). To make a convincing case, to my mind, the authors should

select new SL pairs that do not contain such ‘drop-dead essential genes’ for experimental

validation. The authors should also equip their method with means to filter against SL pairs

involving essential genes.



We thank the reviewer for the constructive criticism. The literature on URI1 has mixed

comments on its function. While, as mentioned by the reviewer, many independent lines of

evidence point at URI1 as an essential gene, several others clearly demonstrated that it acts as

an oncogene in different tumor types (Theurillat et al., 2011), and specifically HCC (Tummala et

al., 2014; Zhang et al., 2015).

As the reviewer noted, we indeed showed that silencing of URI1 alone significantly affected cell

proliferation in Huh-7 cells (Supplementary Fig.S4e), which is also expected given the oncogenic

role of URI1 in HCC. However, we additionally showed that while URI1 silencing alone does not

impact cell death, dual silencing of URI1 and AXIN1 significantly induced apoptosis

(Supplementary Fig.S4f). Therefore, our data suggests that URI1-silencing affects cell

proliferation, but URI1 is not an essential gene in HCC, given that cells are still fully alive upon

gene knock-down. On the contrary, the apoptotic phenotype induced by dual silencing of URI1

and AXIN1 suggests a synthetic lethal interaction.

Considering the controversy on URI1 function, we accepted the suggestion of the reviewer and

decided to validate a second SL pair. Specifically, we validated the synthetic lethal interaction

between ARID1A and TEAD1 in HCC, using both a siRNA approach and the use of TEAD1-YAP

inhibitor (verteporfin). We validated our results both in vitro and in vivo (Figure 4, Figure 5,

Supplementary Fig. S3).

Finally, the method indeed filters essential genes in the pre-processing step (under Viability

data from perturbation screens in Methods). As recommended by (McDonald et al., 2017),

genes with RSA value in more than 50% of cancer cell lines were considered as essential≤− 3

genes and filtered from the viability data.

4. A challenge in the study of genetic interactions is the distinction between synthetic fitness

effects from merely additive effects (fitness defect of the SL pair should be greater than the

combined fitness defect of the individual mutants). In Figure 4d, the authors show that

individual knockdown of AXIN1 or URI1 installs a growth defect in Huh-7 cells. The data do not

convince that the combined knockdown in fact creates a synthetic lethal effect. The authors

have the respective expertise and this issue should be addressed in the experimental validation

of SL gene pairs.

We agree with the reviewer that the proliferation assay may not be convincing of the synthetic

lethal interaction. Therefore, we performed an apoptotic assay and showed that cells die only

upon dual silencing of URI1 and AXIN1, while no difference in the fraction of live or apoptotic



cells is detected upon single gene knock-down (Supplementary Fig.S4f). These data support the

prediction of URI1-AXIN1 as a synthetic lethal pair in HCC.

5. Given the well-known complications of RNAi, it is critical that the authors select orthogonal

approaches (such as CRISPR or small molecule inhibitors) for the validation of their SL pair

predictions based on RNAi data.

We thank the reviewer for the observation. In the revised manuscript, we used an orthogonal

method to validate the ARID1A-TEAD1 SL pair. Specifically we have used verteporfin, a small

molecule inhibitor which blocks the interaction between the co-activator YAP and TEAD1, thus

inhibiting TEAD1 transcription activity (Liu-Chittenden et al., 2012; Feng et al., 2016). Using this

method we showed that inhibition of TEAD transcription activity, specifically the one related to

the Hippo signalling pathway, is lethal in the context of ARID1A-mutant or ARID1A-silenced cells

(Figure 4 and 5, Supplementary Figure S3). In particular, we showed that treatment with

verteporfin affects tumor growth of ARID1A-silenced cells in vitro and in vivo, while having little

to no effect on control cells. A recent discovery indicated that ARID1A plays a role in regulating

the interaction between YAP and TEAD factors (Chang et al., 2018), thus supporting our

conclusion.

Beyond the experimental validation, in the revised manuscript, we broadly validated the

predicted pan-cancer and cancer-type specific SL pairs from the Project DRIVE screen on the

primary PRISM drug-response profile (from the DepMap consortium). The pan-cancer and

cancer-type specific hits with support from PRISM drug-response screen have been tabulated in

Supplementary Table S3 and some of them are highlighted in Figure 2d and Figure 3b.

Furthermore, we also applied SLIdR to CRISPR data from the Project Achilles in both pan-cancer

and cancer type-specific settings. The results are summarized in Supplementary Table S5 and

described in detail in subsections titled “SLIdR on CRISPR dataset” in Methods and “Integration

with CRISPR data” in Results. These comparisons and validations have been addressed in detail

under reviewer 1’s comments 3 and 4.

6. To support the robustness of their SL prediction approach, ideally the authors should validate

a collection of SL interactions experimentally using the aforementioned orthogonal methods.

Alternatively, the authors would need to provide some level of mechanistic insight into an

identified SL interaction to make a convincing argument.

To support the robustness of SLIdR predictions, we validated two independent synthetic lethal

pairs in HCC. For the validation of ARID1A-TEAD1, we specifically used an orthogonal method

(the small molecule inhibitor verteporfin). Our data also suggest that this synthetic lethality

relies on the Hippo signalling pathway, specifically on the binding of TEAD and YAP. Additionally,



Bianco et al. (Bianco et al., no date) recently validated the GATA3-MDM2 predicted pair in

ER-positive breast cancer using siRNA and the small molecule inhibitor Idasanutlin, in a

comprehensive work including in vitro, in vivo, and ex-vivo (patient-derived organoids)

approaches. They have additionally provided some mechanistic insight into the SL pair and

showed that it is at least partially due to activation of the mTOR signalling pathway. Further, we

found the same pair when using the CRISPR screening data. Such extensive validation requires

time and resources and we believe that it constitutes an independent research line, such as the

one performed by Bianco et al. With in total three independent synthetic lethal pairs validated,

we believe to have provided strong proof of principle of the predictive power of SLIdR. The

validation of a collection of SL would be beyond the scope of the presented manuscript.

7. As the scientific community is moving on from RNAi to SL experiments based on genetic

mutations, in order for the authors’ method to gain traction and be broadly utilized by the

scientific community, it would be very valuable if the authors applied their approach also to

similar data obtained using CRISPR, such as project Achilles.

We thank the reviewer for this suggestion. This point has been addressed in detail under

reviewer 1’s comment 3. In summary, we applied SLIdR to CRISPR data from the Project Achilles

in both pan-cancer and cancer type-specific settings. The results are summarized in

Supplementary Table S5 and described in detail in subsections titled “SLIdR on CRISPR dataset”

in Methods and “Integration with CRISPR data” in Results.

Minor comments:

1. The authors cite the genetic interaction of BRCA1/2 and PARP1 in their introduction. Should

this relationship be identified by their method?

Thank you for raising this question. This pair is not in the space of possible pairwise interactions

in our dataset and therefore could not be identified. Specifically, we did not have BRCA1/2 in

our mutation profiles and therefore could not assess this pair.

2. Some of the reported SL pairs include curious combinations, an example would be PI3K and

beta-actin (Fig. 2d). How do the authors interpret these findings?

Regarding the PI3K and beta-actin interaction, we agree with the reviewer that the interaction

might appear unexpected at first glance. However, we speculate that the interaction might arise

from the interconnection between the PI3K-Akt-mTOR pathway and signalling mediated by the

actin cytoskeleton. Synthetic lethal pairs typically involve genes controlling the same

downstream pathway. In this specific case, the PI3K-mTOR signalling pathway is a well-studied



regulator of the organization of the actin cytoskeleton (Ho et al., 2011; Marshansky, 2016; Jing

et al., 2020). Supporting these data and the SL interaction between PI3K and beta-actin,

inhibition of PI3K has been shown to induce apoptosis in colorectal cancer cells, even in the

presence of activating mutant PIK3CA, by inducing a Rac-independent actin rearrangement

(Mallucci et al., 2012). However, we can only speculate on our finding, and as for every other

pair, systematic experimental validation will be required.

Like with any prediction based on statistical models, of course, some of the hits reported by

SLIdR are expected to be false positives due to the procedure itself and various (known and

unknown) confounders. We have explicitly discussed this issue in the Discussion section under

limitations.

3. The purpose of certain figure panels is unclear, examples include Fig. 1b, Fig. 2a etc. Figure 1

would in general benefit from the inclusion of more data.

A key advantage of the SLIdR is its ability to predict SL pairs with small sample size. Figure 1b

was added to show the distribution of sample sizes in the DRIVE data across various cancer

types. Since many cancers have small sample sizes, the figure shows the necessity of

developing a computational tool with sufficient statistical power on small sample size data.

Figure 2a indicates the frequencies of 84 mutated driver genes across different cancer types.

We have included this figure as it shows frequency distribution as well as diversity of mutation

data. In addition, the obtained SL p-values from the SLIdR, to some extent, depend on the

number of mutated cell lines for the corresponding driver gene; hence this figure gives some

useful information for better interpretation of the SLIdR SL hits. The corresponding captions

were slightly modified for further clarification.

4. In my view, the use of siTP53 (Fig. S2) is not suitable to assess the off-target activity of URI1

siRNAs. Additionally, the knockdown efficiency of the employed TP53 siRNA is very modest (Fig.

S2). Again, an orthogonal strategy (e.g. CRISPR-KO or CRISPRi of URI1) or expression of

siRNA-resistant URI1 cDNA would be more convincing.

We apologize for the lack of clarity. We employed the AXIN1-TP53 as a non-SL pair (negative

control), in order to prove the specificity of the SLIdR prediction, rather than assessing the

off-target activity of URI1 siRNAs. To avoid off-target activity of URI1 siRNAs, we used the

ON-TARGET plus SMARTpool siRNAs against human URI1 and ON-TARGET plus SMARTpool

non-targeting control from Dharmacon. ON-TARGET plus SMARTpools comprise 4 individual

siRNAs and are known to reduce off-targets by up to 90% compared to other siRNAs. The

specificity of the SMARTpools is achieved by two strategies: “pooling” and specific pattern



modifications. The Dharmacon research group was the first to experimentally demonstrate the

key role of the seed region in mediating off-targets (Birmingham et al., 2006; Anderson et al.,

2008). These principles were subsequently applied by Dharmacon researchers to design the

ON-TARGET SMARTpools and to improve specificity (Jackson et al., 2006). Additionally,

ON-TARGETplus can be used at a very low concentration (from 5 to 25 nM) which also helps

reduce off-targets effects.

We agree with the reviewer’s suggestion and have used a small molecule inhibitor, in addition

to siRNAs, for experimental validation of ARID1A-TEAD1 in the revised manuscript (Fig.4 and

Fig.5 in the revised manuscript). Moreover, using different concentrations of TEAD1 siRNAs, we

showed that the phenotype induced by the knock-down of TEAD1 in ARID1A-mutant cells was

dose and time-dependent, thus indicating a specific on-target effect (Fig. 4).

5. There are some additional issues with Fig. S2. Why does siTP53 rescue the growth defect

installed by siAXIN1 treatment? Are AXIN1 and TP53 a ‘synthetic viable’ pair? What is the reason

for the observed differences in growth among identically treated cells between Fig. 4d (cell

index of siCTRL increases ca. 5-fold over 120h) and Fig. S2 (cell index of siCTRL increases ca.

2-fold over 120h and absolute values are substantially different)?

While the differences in cell proliferation between TP53-silencing alone and dual silencing are

only minimal and significant only 120 hours post seeding, we cannot exclude the hypothesis of

AXIN1-TP53 being a “synthetic viable pair”. However, SLIdR has not been designed to predict

such pairs. We would like to clarify that this pair was selected as a non-SL pair (negative

control), to demonstrate the specificity of the method.

Regarding the observed differences in growth among identically treated cells, these are due to

the fact that treated cells are seeded at different times and conditions (batch effects; e.g.

different cell passages, different cell clones).

6. Was FDR-correction applied when multiple t-tests were performed on qPCR/FACS

experiments (Fig. 4)?

Thank you for this comment! Yes, we have used the two-stage step-up method of Benjamini,

Krieger and Yekutieli (Benjamini, Krieger and Yekutieli, 2006) for FDR correction (FDR

significance level: 1%). To clarify this, we added a new paragraph in the method section

“Quantification and statistical analysis of experimental validation”.
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Reviewer #1

General comments 

We carefully read the author’s response to our initial review regarding their paper titled 

“Discovery of synthetic lethal interactions from large-scale pan-cancer perturbation screens”. 

While we appreciate their efforts to address our comments, we still have some major concerns.  

In general, the “response to reviewer document” needs to be significantly improved. 

Specifically, the details regarding methods and results in a subset of responses are missing or 

wrongly referenced hindering our ability to judge the quality of the response. A comprehensive 

and well-structured response may help to overcome this. Based on this response, a major part 

of what was done was not clear to us. The manuscript is also not well-written.  

 

A few main concerns regarding validations are either not satisfactorily addressed or our ability 

to judge is hindered due to the unclear presentation of the results. Though we acknowledge 

and commend the authors on their thorough effort addressing these comments partly and 

improve the overall manuscript. We recommend the authors to provide a revised version of the 

manuscript addressing our comments below before further consideration. 

 

Specific comments 

 

1) The simulated studies in point 2 (response to reviewer document which is in response to 

our ‘major comments 1 and 2’), complement and supports the methodology quite well. 

Though we find the description of this section quite poor in both the response 

document as well as in the manuscript. It was hard to follow and understand what the 

authors did. Specifically: 

a. We would suggest the authors provide a high-level description of the method 

(please follow this in general for other analysis as well) in the results section to 

guide and help the reader understand.  

b. The motivation behind this analysis was not clear. 

c. How the control test was decided and What do the authors mean by saying they 

used the standard Wilcoxon test initially? 

 

The second portion of this response is unsatisfactorily and lacks the needed depth. This 

step is critical to comprehensively demonstrate a validation of the methodology. 

Specifically, we provided a comprehensive list of gold-standard sets for the authors 

consideration, but they ignored mostly it. We would like to note that Horlbeck et al., 

2018, a screen among the listed ones we provided  ( 

https://www.cell.com/cell/fulltext/S0092-8674(18)30735-9) contains a total of 220K  

pairs experimentally tested and could provide quite a large and significant set to test 

their method. They could have been used to generate positive and negative SL sets 

(gold-standard) and then used for validation, using prediction measures like ROC-AUC or 

Area under precision recall or some other performance measure. We must note that 

they are not specifically focused on driver genes and thus need to be carefully done. 

 

REVIEWER COMMENTS



While we appreciate the analysis done on the gold-standard SL interactions identified by 

Lee et al., 2018; there are some major caveats in choosing this set.  

 

(i) Supp. Table S4 suggests that ISLE provides superior hypergeometric test results 

compared to SLIdR (P = 1.44E-28 for ISLE vs 2.76E-10 for SLIdR). Is this an error? 

Also, it is surprising that ISLE identifies over 16 million SL pairs, when the original 

publication identifies only a few thousand? Please provide more details on how 

the ISLE was run? 

(ii) The initial set chosen comprises siRNA screens performed in the early decade. 

The quality of these screens were shown to be very poor due to the off-target 

effect of siRNA and thus not appropriate for gold-standard set (PMCID: 

10.1186/s11658-019-0196-3 , https://doi.org/10.1038/s41598-017-18551-z , 

https://doi.org/10.1371/journal.pbio.2003213). Considering this, we think Lee et 

al.’s step to consider this SL set as an initial pool is okay, though choosing this set 

as gold-standard is not justified.  

 

We suggest the authors to please run a validation step considering some of the 

following screens. Please find below a list of recent combinatorial CRISPR 

screening studies: 

 

• Gonatopoulos-Pournatzis, T., Aregger, M., Brown, K.R. et al. Genetic 

interaction mapping and exon-resolution functional genomics with a hybrid 

Cas9–Cas12a platform. Nat Biotechnol 38, 638–648 (2020) 

• Aregger, M., Lawson, K.A., Billmann, M. et al. Systematic mapping of genetic 

interactions for de novo fatty acid synthesis identifies C12orf49 as a regulator 

of lipid metabolism. Nat Metab 2, 499–513 (2020). 

• Thompson, N.A., Ranzani, M., van der Weyden, L. et al. Combinatorial CRISPR 

screen identifies fitness effects of gene paralogues. Nat Commun 12, 1302 

(2021). 

• DeWeirdt, P.C., Sanson, K.R., Sangree, A.K. et al. Optimization of AsCas12a 

for combinatorial genetic screens in human cells. Nat Biotechnol 39, 94–104 

(2021). 

• Dede, M., McLaughlin, M., Kim, E. et al. Multiplex enCas12a screens detect 

functional buffering among paralogs otherwise masked in monogenic Cas9 

knockout screens. Genome Biol 21, 262 (2020). 

• Gier, R.A., Budinich, K.A., Evitt, N.H. et al. High-performance CRISPR-Cas12a 

genome editing for combinatorial genetic screening. Nat Commun 11, 3455 

(2020). 

• Replogle, J.M., Norman, T.M., Xu, A. et al. Combinatorial single-cell CRISPR 

screens by direct guide RNA capture and targeted sequencing. Nat 

Biotechnol 38, 954–961 (2020). 

• DeWeirdt, P.C., Sangree, A.K., Hanna, R.E. et al. Genetic screens in isogenic 

mammalian cell lines without single cell cloning. Nat Commun 11, 752 (2020). 



• Liu, J. et al. Pooled library screening with multiplexed Cpf1 library.  Nat 

Commun 10, 3144 (2019). 

• Zhao, Y., Tyrishkin, K., Sjaarda, C. et al. A one-step tRNA-CRISPR system for 

genome-wide genetic interaction mapping in mammalian cells. Sci Rep 9, 

14499 (2019). 

• Norman,  Horlbeck,  Replodge, Ge,  Xu,  Jost,  Gilbert,  Weissman, Exploring 

genetic interaction manifolds constructed from rich single-cell phenotypes, 

Science 786-793 (2019). 

• Boettcher, M. et al. Dual gene activation and knockout screen reveals 

directional dependencies in genetic networks. Nat.  Biotechnol.36, 170–178 

(2018). 

• Zhao, Badur, Luebeck, Magaña, Birmingham, Sasik, Ahn, Ideker, Metallo, 

Mali, Combinatorial CRISPR-Cas9 Metabolic Screens Reveal Critical Redox 

Control Points Dependent on the KEAP1-NRF2 Regulatory Axis, Molecular 

Cell, Volume 69, Issue 4, 699-708.e7 (2018). 

• Horlbeck, M. A. et al. Mapping the genetic landscape of human cells. Cell174, 

953–967.e22 (2018). 

• Han, K. et al. Synergistic drug combinations for cancer identified in a CRISPR 

screen for pairwise genetic interactions. Nat.  Biotechnol.35, 463–474 (2017). 

• Najm, F. J. et al. Orthologous CRISPR–Cas9 enzymes for combinatorial genetic 

screens. Nat.  Biotechnol.36, 179–189 (2017). 

• Shen, J. P. et al. Combinatorial CRISPR–Cas9 screens for de novo mapping of 

genetic interactions. Nat.  Methods14, 573–576 (2017). 

• Wong, A. S. L. et al. Multiplexed barcoded CRISPR-Cas9 screening enabled by 

CombiGEM. Proc.  Natl  Acad.  Sci.  USA113, 2544–2549 (2016). 

 

2) Regarding the authors’ response to our original “major comment 4”: The drug response 

prediction results are poorly presented hindering our ability to judge the results and are 

not convincing. Specifically  

a. Multiple hypothesis correction (FDR) needs to be done, otherwise these p-values 

could be false positives. 

b. Appropriate control experiments using random SL pairs could also be carried out. 

c. Fig. 2d is referenced in the results of pan-cancer testing. We did not find any 

pan-cancer results in figure 2d. Please provide this separately. 

d. In addition, Fig. 2d needs improvement. Specifically, most of the p-values are 

blue colored and based on the current legend it is not clear whether they are 

significant or not. Fig. 3b does not indicate drug response validation. We did not 

find Fig. 3b to be informative, a simpler figure showing the number of drugs 

which pass the FDR threshold can be shown for various drugs or volcano plots 

showing controls and SLs together providing significance and effect size 

together. Drug response prediction can be shown either in terms of p-values 

(after FDR correction), or ROC-AUCs; based on whatever the authors deem fit.  

 



In general, we understand that drug response is a hard question and therefore this is 

not critical. Thus, it is okay even if SLIdR does not work well in predicting drug response, 

given the heterogeneity and noise of screens or provides a very low coverage after FDR 

is correct, it needs to be explicitly mentioned. 

 

 

3) We are fine with the rest of the responses. 

 

We thank and commend the authors for their effort in addressing these comments and 

improving their manuscript. 



Reviewer #3 (Remarks to the Author): 

In their revised manuscript, Srivatsa et al. have addressed several of my earlier concerns, which in 

my eyes has strengthened their work. Most importantly, they have elaborated on what 

distinguishes their method from other methods of SL pair prediction and have included additional 

validation. They have addressed my concern about AXIN1/URI1 by moving these data to the 

supplement and introduced a new SL pair ARID1A/TEAD1 for the validation experiments and in 

their rebuttal state that investigation of the ‘high profile’ SL pairs identified by their approach 

would be beyond the scope of the study. Overall, the authors are to be complemented for their 

additional efforts and the new data help to make a stronger case for their method. However, the 

introduction of these new data also comes with some new concerns that should be addressed prior 

to publication. 

Major points: 

1. The new figure 4 is entirely dedicated to studying the effect of TEAD1 inhibition in an ARID1A 

mutant cell line (SNU449). I find this to be a weak figure, as it essentially only shows that it is 

possible to kill SNU449 cells with siRNAs against TEAD1 or the TEAD1 inhibitor verteporfin. It is 

not clear that this represents a hyper-vulnerability due to the ARID1A mutant status of these cells. 

For example, Wei et al. show that verteporfin reduces cell viability of SW1990 cells to a similar if 

not greater extent (doi: 10.1111/cas.13138) despite the fact that SW1990 are not mutant for 

ARID1A based on the CCLE data (https://portals.broadinstitute.org/ccle/). Similarly, Giraud et al. 

report a ~50% reduction in cell growth with 1uM verteporfin 24h (DOI: 10.1002/ijc.32667). While 

I was unable to obtain information on the ARID1A status in these cells, it is biased towards 

essentiality in the DepMap (https://depmap.org/) data (CERES -0.244; for comparison CERES -

0.142 in SNU445 cells), suggesting that ARID1A is also functional in these cells. In their rebuttal 

the authors state that the time- and dose-dependence indicates specificity, which I do not find a 

valid argument and which to my mind does not substantiate the claim that TEAD1 inhibition is 

selectively toxic in the context of mutant ARID1A. This figure would greatly benefit from a very 

simple experiment, in which the authors reconstitute SNU449 cells with a wild-type ARID1A cDNA 

and show that the vulnerability to siTEAD and verteporfin is reduced. 

2. New figure 5 and fig. S3 address the interactions between ARID1A and TEAD1 in Huh-7 and HLE 

cells. While the data seem to be clear (albeit with modest in vitro effects) for Huh-7 cells, the HLE 

data do not convince. In these cells, siTEAD1 and siARID1A both seem to be inhibitory for cell 

proliferation on their own and the effect of combined silencing of TEAD1 and ARID1A appears to 

additive at best (in fact, less than additive at 24h), which is not what is to be expected from a true 

SL interaction (defined as more than the added effect of the individual fitness defects). I had 

raised this additive vs. SL effect as a general concern in my previous comments and had hoped 

that the authors would carefully evaluate this, given that it is central to the main message of the 

manuscript and well within their expertise. In their rebuttal, Srivatsa et al. argue that SL requires 

cell death rather than inhibition of proliferation and refer to the apoptosis assay (fig. 4g; fig. 5e). 

Why has this assay not been performed for HLE cells? 

3. In figure S3c siARID1A reduces cell proliferation (no statistical test has been performed but 

based on the other comparisons, it is expected to be highly significant at 24h and 48h). Using the 

same reagents and cell line, in figure S3d siARID1A suddenly increases cell proliferations at these 

time points. What does this mean? I had raised similar concerns about inconsistencies in the data 

in my previous review. In their rebuttal, the authors referred to batch effects, e.g. cell passages or 

clones). I do not find this appropriate. If the fitness effects are so variable between experiments, 

the general validity of these validation experiments has to be called into question. 

4. I had asked about statistics and satisfyingly the authors have added a new section on this topic 

to their revised manuscript. In this section, it is stated that unless specified otherwise, 

experiments were performed in duplicates. To my knowledge, it is not appropriate to derive 

statistics from duplicate measurements. 



Minor points: 

1. Legend in figure S4i should read siTP53 instead of siURI1.
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REVIEWERS' COMMENTS

Reviewer #1 (Remarks to the Author): 

The authors have provided a well-structured and clear response. Most importantly, they have now 

thoroughly validated their method on more than ten screens. We would recommend the authors, 

please make sure that both data and code are accessible to the reader so that they can utilize this 

information. We believe this could be, in addition to the method, very useful to community. 

Reviewer #3 (Remarks to the Author): 

In their revised manuscript, Srivatsa et al. have performed some additional experiments to 

address the concerns I had raised in previous review rounds. The authors are to be commended 

for their additional efforts which have improved the manuscript. However, a few issues remain. 

The requested ARID1A ‘addback’ experiment has been performed, which I appreciate, and the 

results are shown in Fig. 4h. All in all, there seems to be a trend but the effects are modest and 

errors are unfortunately large. In an ordinary 2-way ANOVA (which I would consider a more 

appropriate test here) a significant result is only gained for the 1uM condition (P = 0.047). 

I had previously pointed out inconsistencies in the results obtained in different experiments. 

Srivatsa et al. have added more replicates in the revised manuscript, presumably also to address 

my previous point that it is not appropriate to derive statistics from only duplicate measurements. 

In contrast to earlier versions of the manuscript, siTEAD1 now no longer reduces cell proliferation 

in S3c (now S4c) and is now consistent with panel d. While this reduces the previous 

inconsistency, no explanation was offered as to why the results changed between submissions. 

Given that the differential fitness effects are the core of the paper, an explanation would go a long 

way to inspire confidence in the presented data. 

Along similar lines, I applaud the authors for now including source data of the experiments. 

However, in the source data file, it appears as if in all experiments individual data points seem to 

have been omitted (gaps). Surely the experiments were not designed this way? Generally, data 

exclusion is very problematic unless there is a clear justification for it. In case individual replicates 

were omitted, I could not find corresponding explanations in the ‘data exclusion’ section of the 

Reporting Summary.
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