Supplementary Figure 1
Maximum likelihood phylogeny of Cld lineage 2.
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Supplementary Figure 2
Maximum likelihood tree of Cld lineage 1.
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Supplementary Figure 3

A. Role of CId in preventing RCS stress

Reactive chlorine species
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Description of Supplementary Figure 3
This figure shows the association of Cld with genes for reactive chlorine species response.

Panel A is a schematic diagram illustrating why Cld, having chlorite as a substrate, would be
associated with HOCI and genes for repairing HOCl-mediated oxidative damage: HOCl is
produced from the reduction of chlorite and may be a major source of oxidative damage in
chlorite reduction. Panel B shows the frequency of reactive chlorine species response genes
found with Cld, in number of genes detected. Panel C shows the Cld genomic neighborhoods
including reactive chlorine species response genes. Together these data show how widespread
known genes for reactive chlorine species response are within Cld genomic neighborhoods.

An important component of reactive chlorine species response in need of further definition is
the methionine sulfoxide reductase system. Hypochlorous acid most rapidly and specifically
oxidizes sulfur atoms in amino acids, converting methionine to methionine sulfoxide and
progressively oxidizing cysteine to sulfenic acid (1, 2). Methionine is regenerated by methionine
sulfoxide reductases: MsrA, MsrB, and MsrP (formerly YedY) (3-5). The importance of MsrP
reductases is evident from their being the most common beneficial genes in chlorite stress
conditions (6), but MsrP and Mrp — a methionine rich peptides that scavenges hypochlorous
acid and chlorite is sometimes co-expressed with MsrP (5) — are poorly defined.

New putative Mrp were defined by fitting a normal distribution to the mean Met content of all
protein subfamilies in Cld genomic neighborhoods and selecting small proteins with exceptional
Met content (p< 0.00001, >8.7% Met) found with MsrA, MsrB, or MsrP. Panel D shows the
distribution of the mean methionine content in protein subfamilies (% methionine) used to
define methionine rich peptides (Mrp). The phylogenetic relationships between proteins in the
methionine sulfoxide reductase system were investigated using a network analysis, shown in
panel E. Unlike Msr enzymes, Mrp formed multiple distinct groups that had no significant
sequence similarity to one another, indicating these short HOCl-scavenging peptides might have
evolved independently multiple times. These peptides may be like other short peptides that
evolved de novo, from noncoding sequences (7).

MsrP methionine sulfoxide reductases belong to a larger family of proteins, the sulfite oxidase
family of molybdopterin enzymes (Pfam 00174), which has several conserved domains of
unknown function. To define which proteins in the sulfite oxidase family act as methionine
sulfoxide reductases, proteins found with Cld were placed into a maximum likelihood
phylogenetic tree of Pfam 00174 including proteins from representative proteomes. Extending
a previous analysis using Mrp (5), nodes in the tree were further annotated if Mrp, a substrate
of MsrP, was found within 5 genes of the molybdopterin domain gene. Panel F shows a version
of the tree with each annotation: proteins found with Cld (left tree) or Mrp (right tree) are
highlighted blue, and clades are highly by their conserved domain annotation. These genomic
signatures of activity span the breadth of both conserved domains that contain characterized
methionine sulfoxide reductases: MsrP from Azospira suillum PS (cd_02108) and MsrP from
Escherichia coli and Rhodobacter sphaeroides (cd_02107) (4, 5, 8). The occurrence of Cld and



Mrp were found in other clades that could be methionine sulfoxide reductase or are traditional
sulfite oxidases. This could be spurious, but a potential functional link between sulfite oxidases
and Cld may be related to the involvement of sulfite oxidases in recycling sulfur oxidized by
reactive oxidants (9).

Supplemental Methods
Identification of chlorite dismutase (Cld)

BLASTP was used to identify Cld in genomes. with RefSeq preferred. BLASTP was used to identify
metagenomic Cld in JGI IMG/M among the largest metagenomes consisting of 90% of proteins in
each “Ecosystem Category.” Metagenome-assembled genomes in the Uncultivated Bacteria and
Archaea (UBA) dataset were searched directly with profile-HMMs (10). The query proteins
(accession, bitscore threshold) used in the BLASTP search were Cld from Dechloromonas agitata
(AAM92878.1, 125), Nitrospina gracilis (WP_005007586.1, 150), Sandarakinorhabdus
cyanobacteriorum (WP_094475098.1, 60), and Pseudomonas stutzeri (WP_026084028.1, 100).
All Cld identified with BLASTP were confirmed with profile-HMMs using HMMER version 3.2.1
and bitscore thresholds of 90 (all Cld), 100 (lineage 1 Cld), and 90 (lineage 2 Cld).

Genomic data and metadata were downloaded and processed using custom scripts. No criteria
were used to exclude genomes, but metagenome-assembled genomes discussed in the results
were manually evaluated for whether the contig containing Cld was correctly assigned to that
genome.

The fraction of a taxonomic group encoding Cld was determined by comparing the number of
RefSeq genomes with the cl/d gene to the total number of RefSeq genomes available within each
taxonomic group (https://github.com/kblin/ncbi-genome-download). The detection of Cld in
different environments was compared using the number of c/d copies per million total coding
domain sequences (CDS) obtained from IMG/M metagenome metadata. Due to inconsistent
definitions of environments in IMG/M, metadata were used to assign each metagenome to a
custom environmental category.

Phylogenetics

Proteins in the DMSO reductase family of molybdopterin enzymes, which might function as
perchlorate and chlorate reductases, were identified using a profile-HMM built from the seed
alignment of Pfam 00384 and a bitscore threshold of 200 (11, 12). A maximum likelihood
phylogenetic tree was constructed from those proteins encoded near c/d and a curated set of
proteins from Pfam 00384 proteins in representative proteomes at the 15% comembership
threshold. The curated set of proteins were constructed as follows: incomplete proteins were
excluded using a size threshold of 300 amino acids, the size of dataset was reduced while
maintaining diversity by clustering proteins at 50% amino acid identity using CD-HIT. Only
positions in the alignment where a majority of proteins had residues were kept. The tree was
constructed, plotted, and grouped into clades as above.



Phylogenetics of the chlorite dismutase protein family are described in the main text.
Comparative genomics

In select instances, genes were compared to fitness experiments using chlorite and chlorate on
the Fitness Browser (fit.genomics.lbl.gov) described in Price et. al 2018. That paper describes
genetics experiments comparing the fitness of individuals within pooled transposon insertion
libraries (i.e. populations where different cells have different genes disrupted by transposons)
between different conditions. Chlorite and chlorate would be considered stress conditions, and
individuals in the population do relatively worse if a transposon disrupts a gene important for
mitigating that stress.

The main text describes the clustering coefficient, a property of a node in networks. The
clustering coefficients is defined as the fraction of possible edges between a node’s neighbors
that have been realized. For example, a node is connected to 3 neighbor nodes has only 3
possible total edges between the neighbors; if there is only 1 edge between its neighbor nodes,
the node’s clustering coefficient equals 1 divided by 3. For a gene in a Cld genomic
neighborhood, the clustering coefficient quantifies how many different sets of genes the gene
is found with. With enough observations, this statistic easily differentiates a gene always found
with the same genes (e.g. a large biosynthetic operon) from a gene found repeatedly with
various genes (e.g. a transposase).

Additional information about subfamily notation: The two major lineages of Cld were manually
split into separate subfamilies. All other subfamilies were numbered in order of their size in this
dataset.

Description of Supplementary Data

Supplementary Data 1 contains information on genes found within Cld genomic neighborhoods,
defined as genes within +/- 10 genes of Cld. This data, with protein sequences, should enable
the reproduction of results reported in this paper. Key information includes the accessions and
coordinates of genes, annotation of the gene, the taxonomic assignment of genomes or
scaffolds, clustering of proteins into groups, and clustering of neighborhoods into groups.
Additional data on groups of proteins is found in Supplementary Data 2

Supplementary Data 2 contains descriptions of protein subfamilies found in Cld genomic
neighborhoods. Protein subfamilies are the result of clustering proteins together based on
homology and were used to compare the composition of Cld genomic neighborhoods from
different organisms. The clustering coefficient can be used to identify sequences with the
strongest association to Cld and therefore the likeliest involved in the biology of oxidized
chlorine: lower clustering coefficients indicate a stronger association.



cld-genomic-neighborhood-proteins.faa.gz is a gzipped FASTA file containing all protein
sequences identified within Cld genomic neighborhoods. This data and Supplementary Data 1
would enable reproduction of this analysis.

cld-tree.tar.gz contains the Cld phylogenetic tree for this dataset and the sequences and
alignments used to build the tree.

profile-hmmes.tar.gz contains the profile hidden Markov models used in this work.
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