Supplement information

Predict *in vitro* and *in vivo* anti-SARS-CoV-2 activity of antivirals by intracellular bioavailability and biochemical activity

Jinwen Zhang^{1,#}, Mingfeng He^{2,#}, Qian Xie^{1,3,#}, Ailing Su¹, Kuangyang Yang², Lichu Liu², Jianhui Liang^{1,3}, Ziqi Li¹, Xiuxin Huang⁴, Jianshu Hu⁵, Qian Liu¹, Bing Song¹, Chun Hu³, Lei Chen⁶, Yan Wang¹*

¹Center for Translation Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China ²Institute of Orthopedics and Traumatology, Foshan Hospital of Traditional Chinese Medicine, Foshan 528000, China

³Key Laboratory of Structure-based Drug Design & Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China

⁴The First Clinical College of Changsha Medical College, Changsha 410219, China ⁵Department of Pharmacology, University of Oxford, OX1 3QT, UK

⁶ School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China

[#]These authors contributed equally to this work.

*Correspondences: Dr. Yan Wang, Center for Translation Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Tel.: +86-755-2641-7985; E-mail: yan.wang@siat.ac.cn

Jinwen Zhang current affiliation: Department of Surgery & Cancer, Faculty of Medicine, Imperial College London, South Kensington Campus, London SW7 2AZ, UK; Ailing Su current affiliation: Shanghai Institute of Materia Medica Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, CN 201203

- Figure S1. Antiviral drugs did not change expression levels of IFN-activated genes
- Figure S2. High expression of TMPRSS2 in the AT2 cells of lung
- Figure S3. Overexpression of ACE2 in A549 cells
- Figure S4. RDV quality control by analytical HPLC
- Figure S5. GS-441524 quality control by analytical HPLC
- Figure S6. FAV quality control by analytical HPLC
- Figure S7. CQ quality control by analytical HPLC
- Figure S8. HCQ quality control by analytical HPLC
- Table S1. Comparison of the predicted EC₅₀ and the lung concentration of RDV
- **Table S2.** Lung concentration of GS-441524
- Table S3. Comparison of the predicted EC50 and the lung concentration of FAV
- Table S4. Comparison of the predicted EC50 and the lung concentration of HCQ/CQ
- Table S5. Primers used in this study
- Table S6. Final concentrations of different drugs in the accumulation assay
- Table S7. Chromatographic and Mass condition of RDV and GS-441524
- Table S8. Specific concentration to make D=100

Figure S1. (A) SARS-CoV-2 activate IFN related genes in Vero E6 cells (n = 3 biological replicates). Data source: GSE161881. (B) Antiviral drugs did not change expression levels of IFN-activated genes compared to the vehicle controls (n = 3 biological replicates, FDR < 0.001). Cells were treated with or without antivirals at their corresponding EC₅₀ values for 48 h and then collected for bulk RNA sequencing. Statistical tests were embedded in DESeq2. NC: Negative control (DMSO vehicle group); CQ: chloroquine; HCQ: hydroxychloroquine; RDV: remdesivir; GS: GS-441524; FAV: favipiravir. Heatmap was generated by online service http://heatmapper.ca/.

Figure S2. High expression of *TMPRSS2* in the AT2 cells of lung might partially explain why HCQ lost its antiviral activity *in vivo*. SARS-CoV-2 infects cells through TMPRSS2-mediated membrane fusion or cysteine protease cathepsin L (CTSL)-mediated endocytosis. The spike protein of SARS-CoV-2 is activated by the endosomal-pH-dependent CTSL. HCQ has the capability of increasing endosomal pH, therefore inhibiting CTSL-mediated endocytosis. Unlike CTSL, TMPRSS2-mediated cell entry is pH-independent, which cannot be blocked by HCQ. Therefore, high expression of TMPRSS2 can abolish antiviral activity of HCQ *in vitro*. The scRNA-seq data of hamster lung (GSE162208) were re-analyzed and visualized by Scanpy. The scRNA-seq data of rhesus macaque lung were visualized by Single Cell Portal - Broad Institute, available from https://singlecell.broadinstitute.org.

Figure S3. Overexpression of ACE2 in the A549 cells was confirmed by western blot. Confluent A549 cells were transfected with pcDNA3.1-ACE2-Flag plasmid (Beyotime, China) for 24 hours, and then collected for western blot.

S6

Figure S5. GS-441524 quality control by analytical HPLC

S9

Verapamil-treated Vero E6 Pr	edicted EC50 [µM]		
K _p		20.15	
$F_{u,cell}$		0.0014	
Fic		0.03	
Biochemical pIC ₅₀		7.49	
Predicted EC ₅₀ [µM]		1.07	
Mice Lung concentration of	RDV [nmol/kg]		
RDV 20 mg/kg	1h	308	
	2h	527	
Table S2. Lung concentration	on of GS-441524		
Treatment	GS-441524 [nmol/	kg]	
Mice, RDV 20 mg/kg, iv	14237		
Rhesus macaque, RDV 10 mg/kg, iv	2674		
Mice, GS-441524 20 mg/kg, po	1807		
Table S3. Comparison of the predicted EC50 a	and the lung concent	ration of FAV	
Verapamil-treated Vero E6 Prec	licted EC50 [µg/g]		
K _p		4.01	
F _{u,cell}		0.013	
F _{ic}		0.05	
Biochemical pIC ₅₀		5.00	
Predicted EC ₅₀ [µg/ml]		32.00	
Mice Lung concentration o	f FAV [µg/g]		
FAV 6.25 mg, ip		50.2	
FAV 12.5 mg, ip		90.7	
FAV 25 mg, in		216	

Table S1. Comparison of the predicted EC₅₀ and the lung concentration of RDV

Table S4. Comparison of the predicted EC50 and the lung concentration of HCQ/CQ

Verapamil-treated Vero E6 Predicted EC50 [µM]		
	HCQ	CQ
K _p	1956	2616
$F_{u,cell}$	0.00024	0.00023
F _{ic}	0.46944	0.60168
Biochemical pIC ₅₀	3.47	3.35
Predicted EC ₅₀ [µM]	724.27	747.91
Lung concentration of HCQ [µ	umol/kg]	
HCQ 50 mg/kg, ip, hamster	9	3
HCQ 50 mg/kg, ip, rhesus macaque	3	0

Primer		Species	Sequence(5'>3')
name			
GAPDH	Forward	Human	CAGTGCCAACGTGTCAGTGGTG
	Reverse	Human	GTAGCCCAGGATGCCCTTGAG
ABCB1	Forward	Human	AATGGCTACATGAGAGCGGAG
	Reverse	Human	AATGTTCTGGCTTCCGTTGC
CTSA	Forward	Human	AAACTAGTGCCGGACAGACG
	Reverse	Human	GTGGTGGACGTGTTTGCTTC
HINT1	Forward	Human	TGTTCTTGGAGGTCGGCAAA
	Reverse	Human	AACGCAACACTCAGAGAGACT
ABCC4	Forward	Human	GGCCAAACCTCTAACCGACA
	Reverse	Human	TCATCCCGTTAGCAAGAGCC
HPRT1	Forward	Human	AAAGGACCCCACGAAGTGTT
	Reverse	Human	TACAAGAAAGTTGGGTAGGCTTTGT
GAPDH	Forward	Monkey	TCCAAAATCAAGTGGGGGCGA
	Reverse	Monkey	AACATAGGGGCGTCAGCAG
ABCB1	Forward	Monkey	GCGAGAACATTCCTCCTCGAA
	Reverse	Monkey	GGCCCGGATTGACTGAATGT
CTSA	Forward	Monkey	GATCGGTGCGCGGTAGAG
	Reverse	Monkey	GGCTGTTCTCGGGGATCCTTC
HINT1	Forward	Monkey	GGAGCTCAAGACCAGGAACTT
	Reverse	Monkey	CCAGGGTAGAGGCTCGAAAG
ABCC4	Forward	Monkey	GACAACTGGTATGCCTTGCC
	Reverse	Monkey	CCACATTTGCCGTTGCTTCA
HPRT1	Forward	Monkey	CCTGCTTCTCCTCAGCTT
	Reverse	Monkey	TCACTAATCACGACGCCAGG

Table S5. Primers used in this study

Table S6. Final concentrations of different drugs in the accumulation assay

Drug name	Concentration (µM)
chloroquine	20
hydroxychloroquine	20
favipiravir	65
remdesivir	10
GS-441524	10

Chromatographic condition			
	Time (min)	Mobile phase A (%)	Mobile phase B (%)
remdesivir	0	95	5
	1	10	90
	2.8	10	90
	3	95	5
	6	95	5
GS-441524	0	97	3
	1.5	20	80
	2.8	20	80
	3	97	3
	6.5	97	3
MS condition			
	Precursor ion (m/z)	Product ion (m/z)	Collision energy (eV)
remdesivir	603	402	22
GS-441524	292	202	22

 Table S7. Chromatographic and Mass condition of RDV and GS-441524

Table S8. Specific concentration to make D=100

Cell line	D	Cell volume (µL)	Concentration (cells/ml)
A549	100	9.05E-07	1105275
Vero E6	100	2.57E-06	388747
Calu-3	100	4.19E-06	238739