Supporting Information Enhancement of Magnetic Surface-Enhanced Raman Scattering Detection by Tailoring Fe₃O₄@Au Nanorod Shell Thickness and its Application in the On-site Detection of Antibiotics in Water Leixuri B. Berganza, ¹ Lucio Litti, ²* Moreno Meneghetti, ² Senentxu Lanceros-Méndez, ^{1,3} Javier Reguera, ¹* ¹BCMaterials, Basque Center for Materials, Applications, and Nanostructures, UPV/EHU Science Park, Leioa 48940, Spain. ²Nanostructures and Optics Laboratory, Department of Chemical Sciences, University of Padova, Via Marzolo, 1, 35131 Padova, Italy. ³Ikerbasque Basque Foundation for Science Bilbao 48009, Spain. J. Reguera: javier.reguera@bcmaterials.net; L. Litti: lucio.litti@unipd.it KEYWORDS: Nanorod, plasmonic, magnetic, SERS, antibiotics, portable Raman, Ciprofloxacin Figure S1. Low magnification TEM image of Fe₃O₄-NR:Au core-satellite nanoparticles used as seed for further Au growth. Figure S2. Low magnification TEM image of Au coated nanorods corresponding to sample NR@Au1. Figure S3. Low magnification TEM image of Au coated nanorods corresponding to sample NR@Au2. Figure S4. Low magnification TEM image of Au coated nanorods corresponding to sample NR@Au3. Figure S5. Low magnification TEM image of Au coated nanorods corresponding to sample NR@Au4. **Figure S6**. Low magnification TEM image of Au coated nanorods corresponding to sample NR@Au5. Figure S7. Low magnification TEM image of Au coated nanorods corresponding to sample NR@Au6