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Abstract

The cerebral cortex contains billions of neurons, and their disorga-
nization or misspecification leads to neurodevelopmental disor-
ders. Understanding how the plethora of projection neuron
subtypes are generated by cortical neural stem cells (NSCs) is a
major challenge. Here, we focused on elucidating the transcrip-
tional landscape of murine embryonic NSCs, basal progenitors
(BPs), and newborn neurons (NBNs) throughout cortical develop-
ment. We uncover dynamic shifts in transcriptional space over
time and heterogeneity within each progenitor population. We
identified signature hallmarks of NSC, BP, and NBN clusters and
predict active transcriptional nodes and networks that contribute
to neural fate specification. We find that the expression of recep-
tors, ligands, and downstream pathway components is highly
dynamic over time and throughout the lineage implying differen-
tial responsiveness to signals. Thus, we provide an expansive com-
pendium of gene expression during cortical development that will
be an invaluable resource for studying neural developmental pro-
cesses and neurodevelopmental disorders.
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Introduction

The cerebral cortex of vertebrates is an isocortex, composed of six

layers of morphologically and functionally distinct neurons. During

development, cortical NSCs pass through consecutive stages of

mitotic expansion, deep- to upper-layer neurogenesis and then glio-

genesis. Most neurons are generated from NSCs through a transient

progenitor population, the BPs. Maintenance of progenitor potential

and control of cortical fate commitment are regulated through the

integration of dynamic signaling pathways organized in space and

time, which induces an elaborate interplay between downstream

transcriptional networks. Although the molecular nature of mature

neurons within the six cortical layers has been described, their cor-

responding progenitors have not been clearly characterized.

Different hypotheses have been proposed to explain the hetero-

geneity in the cortical precursor cells in terms of temporal expansion

and differentiation potential (Hevner et al, 2003; Molyneaux

et al, 2007; Woodworth et al, 2012; Lodato & Arlotta, 2015). One

hypothesis states that NSCs switch their fate temporally in
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coherence with the time points of neurogenesis and thus generate

neurons of successive layers of the cortex followed by glial cells

(Guo et al, 2013). An alternate hypothesis proposes that NSCs are a

multipotent cell pool, wherein each cell would be guided by intrinsic

and extrinsic signals to generate a specific selection of neuronal sub-

types or glial cells, and these different progenitors are recruited in a

sequential manner (Franco et al, 2012). Whether one or both

hypotheses are correct remains a major debate.

As RNA sequencing (RNA-Seq) technology increased over recent

years, so has our acceptance of an increasing repertoire of cell types

present during cortical development. Particularly single cell

sequencing techniques have allowed an ever more detailed tran-

scriptomic analysis of cortical precursor cells (Desai & McConnell,

2000; Fode et al, 2000; Hevner et al, 2003; Haubensak et al, 2004;

Arlotta et al, 2005; Gotz & Huttner, 2005; Molyneaux et al, 2007;

Stancik et al, 2010; Lui et al, 2011; Greig et al, 2013; Han & Ses-

tan, 2013; Paridaen & Huttner, 2014; Arber et al, 2015; Chuang et al,

2015; Lodato & Arlotta, 2015; Pollen et al, 2015; Liu et al, 2016; Tel-

ley et al, 2016, 2019; Ecker et al, 2017; Johnson & Walsh, 2017;

Nowakowski et al, 2017; Mukhtar & Taylor, 2018; Rosenberg et al,

2018; Zeisel et al, 2018; Di Bella et al, 2021; La Manno et al, 2021).

Frequently, cells are isolated based on positional information or

temporal labeling, and this is used to delineate cell type and predict

potential (Telley et al, 2019; Di Bella et al, 2021). Although these

approaches have been very successful in providing a framework,

our understanding of transcriptional programs during brain develop-

ment and cortical patterning is not complete and some critical points

remain. One major challenge is the extreme complexity of the sys-

tem and the differences in technical approaches undertaken. As

RNA-Seq takes a snapshot in time of gene expression in a popula-

tion or of single cells, it is challenging to predict the past and future

gene expression profile of a cell population. Elegant labeling proce-

dures have provided some insight into cell diversity in the NSC pool

and allowed analysis of specific gene function (Telley et al, 2016,

2019). However, it remains unclear how gene expression within the

defined populations of NSCs and progenitors in the developing

mammalian cortex in vivo change over time and through the lineage

as the fate decisions are being made.

In order to compare like-with-like and circumvent some of the

challenges of random cell selection, we took advantage of the knowl-

edge about murine cortical development and transgenic mice that

allow isolation of defined progenitor populations at each day

between embryonic day 10.5 (E10.5) and birth (Hebert & Fishell,

2008). We performed bulk and single cell RNA-Seq to generate gene

expression profiles of NSCs, BPs, and NBNs from the dorsal cortex,

spanning the critical periods of NSC expansion (E10.5-11.5), neuro-

genesis (E12.5-16.5), and gliogenesis (E17.5-PN1). From these data

catalogs, we elucidated the transcriptional landscapes of NSCs, BPs,

and neuronal subtypes and systematically followed robust temporal

dynamics in their gene expression through cortical development. We

determined an amazing dynamic heterogeneity within these progeni-

tor populations at the single-cell level, identifying individual clusters

of NSC, BP, and NBN subtypes and providing gene signatures for

each of these clusters. We evaluated the changes in signaling path-

way component expression during cortical development and identi-

fied receptors, ligands, and downstream signaling pathways that

potentially play critical roles in cortical development. Finally, we

found that the transcriptional programs that define specific cortical

neuron types are active in NSCs prior to the birth of the neurons.

Our work provides a versatile and comprehensive resource that will

be useful to address gene expression but also novel aspects of NSCs

fate choice and neuronal cell subtype generation.

Results

Transcriptional analyses validate the selection and
sorting procedure

Canonical Notch signaling in the developing cortex suppresses NSC

differentiation by repressing expression of proneurogenic transcrip-

tion factors while promoting proliferation and survival (Gaiano &

Fishell, 2002; Dang et al, 2006; Mason et al, 2006; Kageyama

et al, 2009; Imayoshi et al, 2010). Hes5 is a transcriptional target of

Notch signaling and labels NSCs at all stages of development and

in the adult (Lugert et al, 2010, 2012; Basak et al, 2012; Bansod

et al, 2017). Conversely, Eomes (Tbr2) is expressed by BPs and com-

mitted neural progenitors (Arnold et al, 2008; Sessa et al, 2017).

Hes5::GFP labels NSCs in the ventricular zone and Tbr2::GFP BPs

and NBNs in the subventricular zone and developing cortical plate

(Fig EV1A and B) (Basak & Taylor, 2007; Arnold et al, 2009).

To address changes in gene expression within the NSC, BPs, and

early neurons of the cortical neural lineages, cells were sorted from

individual Hes5::GFP and Tbr2::GFP embryos at each day of develop-

ment between embryonic day 10.5 (E10.5) and birth (PN), and RNA-

Seq performed on the samples from each embryo separately (Figs 1A

and EV1A and B). E10.5-PN1 covered the embryonic stages of cortical

development fromNSC expansion (E10.5-E11.5), through neurogene-

sis (E12.5-E16.5) to gliogenesis (E17.5-PN). We showed previously

that Hes5::GFP+ cells in the VZ of the developing dorsal telencephalon

express Pax6 and radial glial proteins including GLAST and Nestin

(Fig EV1B; Basak & Taylor, 2007). A few newly generated Tbr2+ BPs

in the apical VZ express residual Hes5::GFP, which is lost before the

cells reach the SVZ (Basak & Taylor, 2007). All Pax6 cells in VZ

express Hes5::GFP but those in the SVZ do not (Fig EV1B; Basak &

Taylor, 2007; Lugert et al, 2012). Conversely, Tbr2::GFP is not

expressed by radial glia in the VZ but localizes with Tbr2 in the SVZ.

We gated on Hes5::GFPhigh cells at all time points excluding low

and negative cells (Fig EV1C). Immunostaining of acutely sorted

Hes5::GFP+ cells showed expression of the NSC-associated proteins

Sox2 and Pax6 but not Tbr2 (Fig EV1D). Tbr2::GFP+ cells were first

detectable by FACS at E12.5 corresponding to the prominent appear-

ance of BPs in the developing dorsal cortex (Arnold et al, 2009).

From E15.5 on, the Tbr2::GFP+ population was divided into GFPhigh,

GFPlow, and GFP− populations (Fig EV1C). We separated Tbr2::

GFPlow and Tbr2::GFPhigh cells and analyzed these populations sepa-

rately. Sorted Tbr2::GFPhigh cells expressed low levels of Sox2 and

Pax6 and high levels of Tbr2 denoting them as BPs (Fig EV1E).

Sorted Tbr2::GFPlow cells did not express Sox2 and Pax6 and had

lower levels of Tbr2 than the BPs (Fig EV1F). We reasoned that the

Tbr2::GFPlow cells were immature NBNs labeled by low levels of

Tbr2 and perduring GFP.

As proof of concept, Hes5 RNA levels were high in the NSCs pop-

ulations at all developmental time points and low in the Tbr2::GFP+

samples (Fig 1B). As expected, the transcripts of the BP markers

Tbr2 and Btg2 were highly expressed by Tbr2::GFPhigh cells at all
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stages from E12.5-PN1 consistent with being dorsal cortical BPs and

at lower levels by Tbr2::GFPlow NBNs (Fig 1B). Tbr2 and Btg2 tran-

scripts were detected in the NSC samples without detectable protein,

confirming previous observations (Figs 1B and EV1B and D–F; Pol-
len et al, 2015; Mukhtar et al, 2020). These points demonstrate the

challenges of allocation of cell type based on transcriptional activity

of a few “marker” genes.

Interrogation of the RNA-Seq data revealed that NSCs, BPs, and

NBN transcriptomes were remarkably similar, and few genes were

differentially expressed between NSCs and BPs (Fig 1C). We ana-

lyzed the dynamics in expression of known NSC, BP, and NBN

markers between E10.5 and PN1 (Figs 1C and EV1G and H). NSC

markers were highly expressed throughout cortical development

with characteristic temporal dynamics in the NSC populations (Gotz

& Huttner, 2005; Molyneaux et al, 2007; Ohtsuka et al, 2011; Pollen

et al, 2015; Mukhtar & Taylor, 2018).

Known BP markers, including Nfib, Ngn2, Tcf4, and Neurod1,

were highly expressed throughout cortical development by BPs.

Astrocytic markers including S100b, ApoE, Gfap, and Aldoc were

expressed highly by NSCs isolated late in development correspond-

ing to the onset of gliogenesis indicating that the glial transcriptional

program had already been initiated (Zhang & Barres, 2010; Molofsky

et al, 2012; Liddelow & Barres, 2015). Similarly, key markers for

oligodendrocytes including Pdgfd, Sox10, Cspg4, and Sox9 were

expressed higher by late-stage NSCs corresponding to the last wave

of oligodendrogenesis originating in the ventricular zone of the dor-

sal cortex (Ono et al, 2008; Zhang & Barres, 2010; Takebayashi &

Ikenaka, 2015). The mature neuronal markers Grin2a, Chat, Bdnf,

and Igf1 were expressed at very low levels by the Hes5::GFP and

Tbr2::GFP sorted cells indicating that the selection process isolated

progenitors and excluded mature neurons (Figs 1C and EV1G;

Sarnat, 2013).

Unbiased computational analyses revealed extensive transcrip-

tional dynamics within the different cell types. Principal component

analysis (PCA) showed that the first two principal components (PC)

capture 60% of the total variance in gene expression (Fig EV1I).

Remarkably, the first PC largely separated the samples based on cell

type (NSC, BP and NBN), whereas the second PC orders samples by

differentiation state for all three cell types (Fig 1D). This latter

observation indicates that NSCs, BPs, and NBNs change their tran-

scription in a similar direction with developmental stage. The pro-

jection onto the first two PCs indicated that BPs and NBNs are

transcriptionally closer to NSCs in the neurogenic phase of cortical

development than those in the expansion and gliogenic phases.

While the NBNs cleanly separate from the other cell types along the

first PC, the BPs were positioned between NBNs and the NSCs in

the neurogenic phase, which they partially overlapped, consistent

with the BPs being a transient neuronal precursor population

(Fig 1D). Compared with BPs and NBNS, the NSCs displayed much

larger variation in gene expression across time on the first two PCs,

with a fluid separation from the expansion to neurogenesis and glio-

genesis phases. Subsequently, we performed pairwise differentially

expressed gene analyses (DEG) between the different cell types

(Figs 1E and EV1J–O). To exclude substantial contamination of the

Hes5::GFPhigh sorted cells with BPs and NBNs, we identified tran-

scripts that were highly expressed by BPs and NBNs but not by

NSCs (Fig EV1J–O). Thus, although the transcriptomes of NSCs and

BPs are remarkably similar, the sorting procedures were effective in

enriching stem from progenitor populations throughout cortical

development. We identified novel markers for NSCs, BPs, and NBNs

using two independent methods—DEGs and Z-score log2 (TPM)

expression values (Dataset EV1). Genes including Sp9, Cyr61, Yap1,

Hes1, Lfng, and Notch3 are highly expressed by NSCs. Identification

of these signature genes using an unbiased approach is an indepen-

dent validation of the approach as the functions of some have been

studied in NSCs. The Hippo co-activator Yap1, Notch signaling com-

ponents Hes1, Lfng are involved in NSC proliferation and mainte-

nance (Pourquie, 2003; Bray, 2006; Takebayashi & Ikenaka, 2015).

Gucy1b3, Nhlh1, and Serping1 were highly expressed by BPs and

novel markers of the cell type in the lineage but not much is known

about their function (Lipkowitz et al, 1992). Ntm, Nrip1 are

expressed higher in NBNs than in BPs or NSCs also providing novel

markers (Gil et al, 1998). Interestingly, DEG analyses revealed that

the majority of the highly expressed genes in NSCs are downregu-

lated by BPs and reduced further by NBNs.

Temporal dynamics in transcriptional landscapes of NSCs, BPs,
and NBNs based on gene expression

Our analyses showed that NSCs displayed maximum variance over

time and therefore contribute heavily to the first two PCs. To under-

stand the transcriptional dynamics in the NSCs, we performed PCA

focusing only on the NSCs. The first two PCs covered almost 70%

of the total variance and exposed a dynamic transcriptional path

among the phases of expansion, neurogenesis, and gliogenesis

(Figs 2A and EV2A). Although the NSCs were isolated using the

same characteristic, Hes5::GFPhigh expression, we observed striking,

stage-related dynamic movement through transcriptional space.

PCA indicated that NSCs could follow a continuous path from

expansion through neurogenesis to gliogenesis, consistent with the

common origin model of sequential cell specification over time. Sur-

prisingly, Hbb-bh1, Hba-x, and Hbb-y expression distinguished NSCs

◀ Figure 1. Overview and validation of the transcriptional analyses.

A Overview of the biological system with experimental paradigm, illustrating NSCs, BPs, and NBNs were isolated at each day during development from E10.5 to PN.
B Notch signaling effector Hes5 is expressed high in NSCs while Eomes (Tbr2) and Btg2 are expressed high in both NSCs and BPs at the mRNA level. Each dot defines

the mean and lines define the Standard Deviation (SD). Three to four biological replicates were collected for each time point.
C Heatmap validating the known cell-type specific marker gene expression from RNA sequencing data.
D Principal Component Analysis (PCA) projection of all samples of NSCs, BPs, and NBNs throughout development onto the first two principal components (PCs) covering

maximum variance reveals that PC1 sorts samples by cell type and PC2 sorts samples by developmental stage.
E Heatmap illustrating the novel marker genes identified from the RNA sequencing data, as signature genes for NSCs, BPs, and NBNs. BPs, basal progenitors; E,

embryonic day; IZ, intermediate zone; NBNs, newborn neurons; NSCs, neural stem cells; PN, post natal; SVZ, subventricular zone; VZ, ventricular zone. Expression
values on the heatmaps are log2 (transcripts per million).
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in the expansion phase (PC1 negative axis) from those in the neuro-

genic and gliogenic phases (Fig 2B). Although hemoglobin subunits

are predominantly associated with erythrocytes and oxygen trans-

port from the lungs, hemoglobin subunits are also expressed in the

brain and by neurons (Brown et al, 2016). Hemoglobin subunits are

found in the mitochondria in neurons and may assist oxygen

transport across mitochondria membranes. As NSCs are mitotically

highly active and require extensive energy for cell division, it is pos-

sible that hemoglobin supports the energy requirements during the

expansion phase.

By contrast, Neurod6, Cntn2, Slc17a7, and Nfix separated NSCs

in the neurogenic phase along the PC2 negative axis from those in

A B C D

E F G H

I J K L

M N O P

Figure 2.
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the expansion and gliogenic phases. Neurod6 is a Helix-Loop-Helix

(HLH) transcription factor (TF) that plays a prominent role in neu-

ronal differentiation (Sommer et al, 1996). Neurod6 is transcription-

ally activated by Neurog1 and Neurog2, two proneural HLH TFs

that are downstream of Notch signaling (Ross et al, 2003). Neurod6

is associated with familial temporal lobe epilepsy and attention defi-

cit hyperactivity disorder in humans (Tutukova et al, 2021). Cntn2

is a member of the Contactin family of immunoglobulin cell adhe-

sion molecules and functions in neuronal differentiation, determina-

tion, and migration as well as axon guidance (Mohebiany

et al, 2014). Cntn2 is located at 1q32.1, a region associated with

microcephaly, and mutations in Cntn2 cause familial adult myo-

clonic epilepsy 5 (FAME5) (Rickman et al, 2001; Stogmann

et al, 2013; Mohebiany et al, 2014). Slc17a7 is a transmembrane

channel and urea transporter. It is selectively expressed in NSCs

compared with BPs and NBNs, and its expression increases with

developmental stages. The function of Slc17a7 in NSCs remains to

be shown. Nfix is a member of the nuclear I family of TFs. Nfix reg-

ulates NSC proliferation and differentiation both during embryonic

development and in the adult and has been proposed to be a tumor

suppressor in gliomas (Heng et al, 2015; Stringer et al, 2016). Loss

of Nfix is associated with increased proliferation in the SVZ of the

embryonic brain and delayed gliogenesis (Heng et al, 2015; Stringer

et al, 2016). In summary, the unbiased analysis of gene expression

revealed novel markers of stage specific NSCs and potential regula-

tors of differentiation in the dramatic switch from the expansion to

neurogenic phases of cortical development.

The unbiased computational approach identified genes important

in NSC maintenance and differentiation as well as a plethora of

novel and dynamically expressed NSC genes (Pollen et al, 2015; Tel-

ley et al, 2016, 2019). We validated the expression of the novel sig-

nature genes predicted by the PC separations by RT-qPCR on

independent biological replicates (Figs 2B and EV2B and C;

Dataset EV2). We randomly selected genes differentially expressed

by NSCs during the expansion, neurogenic and gliogenic phases.

Ccnd1, Crabp2, Hbb-bh1 are highly expressed during the expansion

phase; Bcl11b, Cntn2, Id2, Satb2 during neurogenic phase; and

ApoE, Aqp4, Sparcl1, Tril during the gliogenic phase (Fig EV2C;

Dataset EV2). By clustering the gene expression profiles, we identi-

fied pools of genes that follow the same transcriptional trajectory in

NSCs over time. This implied either co-regulation at the transcrip-

tional level or gene expression associated with distinct cell states

(Fig EV2D–G). Some genes within these profiles are typical markers

of the different phases of NSC development. For example, Neurog2

and Cspg4 mark the neurogenic and gliogenic phases of NSCs,

respectively. Others, including Shh, mark specifically the early

expansion phase and their expression is: low upon the onset of fate

determination (Fig EV2D–G).
To address the transcriptional changes among the BPs and NBNs,

we excluded the predominant variance resulting from the NSCs

shifts in gene expression by computing PCs of all the samples

orthogonal to the first two PCs of the NSCs. PCA of the remaining

variables clustered all NSCs together indicating their underlying

identity. BPs and NBNs separated in transcriptional space. Thus, the

data orthogonal to the first PCs of NSCs enhanced the differences

between NSCs, BPs, and NBNs (Fig 2E) and increased the separation

of BPs and NBNs, revealing a clear separation of BPs at early

(E12.5-E14.5) and late (E15.5-PN) time points of cortical develop-

ment (Figs 2E and F and EV2H). In these analyses, NBNs showed

less transcriptional dynamics over time. We performed pairwise

comparisons to reveal DEGs genes contributing to PCs in the orthog-

onal analyses. Genes including Dlx1, Dlx5, and Dlx2 separate NSCs

while Tbr2, Nhlh1 represent the highest loading along the orthogo-

nal PC1 negative axis. Crym, Pf4, and Crlf4 separated BPs and NBNs

along the orthogonal PC1 positive axis (Fig 2F–H; Dataset EV2).
To investigate the stage-correlated changes in gene expression by

BPs and NBNs, we performed PCAs on BPs and NBNs separately.

Despite being selected based on differences in level of Tbr2::GFP

expression, PCA displayed continuous dynamics in these popula-

tions over time. However, the first PC was sufficient to separate BPs

based on developmental stage (Figs 2I–L and EV3A). From these

analyses, we identified Fezf1, Samd3, Robo3 to be highest in early

◀ Figure 2. Dynamics of transcriptional profile changes in different populations over time.

A PCA of NSCs from E10.5 to PN showing their transcriptional dynamics.
B Heatmap of genes that have the highest contribution to the PC1 and PC2 for NSCs, sorted by their projection on the PC axis (250 most positive and 250 most

negative, Dataset EV2).
C Projections of the expression profiles of example genes onto the first two PCs, showing the developmental stage at which, they are most highly expressed.
D Expression profiles of PC1 and PC2 along developmental time (top) and expression profiles of the top three genes with highest negative and positive projection on

PC1 (first and second column) and highest negative and positive projection on PC2 (third and fourth column) for NSCs.
E PCA of all samples after removal of the first two principal components of the expression profiles of NSCs separates samples by cell type.
F Heatmap of genes that have the highest contribution to the PC1 and PC2, sorted by their projection on the PC axis (250 most positive and 250 most negative).
G Projections of the expression profiles of example genes onto the first two PCs, showing their differential expression across cell types.
H Expression profiles of PC1 and PC2 across all samples with time from left to right and NSCs in green, BPs in red, and NBNs in purple (top), and the gene expression

profiles of top three genes with highest negative and positive projection on PC1 (first and second column) and highest negative and positive projection on PC2 (third
and fourth column).

I PCA of BPs from E12.5 to PN showing their transcriptional dynamics.
J As in panel (B) but now for BPs.
K As in panel (C) but now for BPs.
L As in panel (D) but now for BPs.
M PCA of NBNs from E15.5 to PN showing their transcriptional dynamics.
N As in panels (B) and (J) but now for NBNs.
O As in panels (C) and (K) but now for NBNs.
P As in panels (D) and (L) but now for NBNs.

Data Information: In (D), (H), (L), and (P) (bottom), the x-axis is embryonic days, and the y-axis is log2(TPM).
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BPs while Tac2, Dhrs3, Sh3rf3 were expressed higher by late BPs.

Therefore, we could define distinct gene profiles for BPs that

reflected their developmental stage implying that BPs are also a

heterogeneous population of intermediate cells. Similarly, the first

PC was also sufficient to separate NBNs over the course of develop-

ment (Figs 2M–P and EV3B). In order to validate the novel signature

genes separating BPs and NBNs, we performed RT-qPCR on inde-

pendent biological replicates (Fig EV3C and D; Dataset EV2), which

confirmed the differential expression of the signature genes between

early BPs, late BPs, and their corresponding NBNs. Cckar, Kif2c,

Uncx, Robo3 were highly expressed by early BPs while Loxl1,

Unc5d, Ezr were highly expressed by late BPs. On the contrary,

NBNs displayed high expression of Mef2c, Usp43, Lrfn5, Ntsr1, and

Gucy1a3 (Fig EV2D). A more comprehensive list of these DEGs is

available in Dataset EV2. Thus, by our preliminary analyses of gene

expression, we demonstrate dynamics in NSCs, BPs, and NBNs and

have identified novel signature genes, which are binary and unique

for these populations.

Temporal dynamics in transcriptional landscapes of NSCs, BPs,
and NBNs is based on TF nodes and networks

To characterize the transcriptional states of NSCs, BPs, and NBNs

and map the activities of TFs throughout cortical development, we

used the Integrated System for Motif Activity Response Analysis

(ISMARA) (Balwierz et al, 2014; Artimo et al, 2016). ISMARA infers

the regulatory states of samples by computationally predicting tran-

scription factor binding sites (TFBSs) genome-wide and modeling

the observed gene expression state of each sample in terms of the

predicted TFBS and “activities” of the TF binding motifs (Fig 3A,

https://ismara.unibas.ch/NeuroStemX/). PCA of the motif activities

revealed that, in agreement with the observations made based on

mRNA expression (Fig 2A), the majority of the variance across sam-

ples was dominated by differences within the NSC samples. There-

fore, we first analyzed the NSCs from all time points in isolation

and then analyzed NSCs from the neurogenic phase of development

together with the BPs and NBNs.

PCA of the motif activities in NSCs showed that 80% of the vari-

ance was captured by the first two PCs, with the plane spanned by

these PCs clearly separating the NSC samples into segments corre-

sponding to the expansion, neurogenic and gliogenic phases

(Fig 3B; Dataset EV3). We identified the top 20 TF binding motifs

that contributed most to the variance in these PCs and projected

their motif activity vectors onto the same plane in order to show

which TFs contribute most to gene expression at each of the stages

(Fig 3C; Appendix Fig S1A). For example, Scrt1 and Hdx contribute

strongly to the expansion phase, REST to the neurogenesis phase,

and Nfib/c contribute to the gliogenesis phase. Using the gene

expression profiles and inferred motif activities, ISMARA also infers

which genes are targeted by each TF motif (Fig 3A, Balwierz

et al, 2014). For example, ISMARA predicts that Neurod1 targets the

Neurod6 gene. This implies that the upregulation of the Neurod6

gene during cortical development is due, at least partially, to

increasing Neurod1 TF activity over time (Fig 3D). In-depth analyses

of the top TF motifs and their predicted target genes show a strong

coherence with those genes identified by PCA of the RNA-Seq date

(Fig 2B–D).
Of particular interest are so called motif–motif interactions in

which ISMARA predicts a TF motif to target a gene, which encodes

a TF, since these interactions correspond to edges of the ISMARA

predicted regulatory network. To extract a core regulatory network

for NSCs in the three phases of cortical development, we selected

the motif–motif interactions with the strongest statistical strength

(Fig 3E, see Materials and Methods). A large proportion of TF motifs

cross-regulate each other and include TFs that are known to be

involved in cortical development. For example, Scrt1 and Scrt2 are

predicted to be active in NSCs during the expansion, while Hoxb7

and Sox5 are active during the neurogenic phase, and Nfi family

members are involved in glial cell specification (Bel-Vialar et al,

2002; Lai et al, 2008; Paul et al, 2014; Zhou et al, 2015). Intrigu-

ingly, the TF motifs that are most active in the neurogenesis phase

(depicted in the center of Fig 3E) are predicted to repress many of

the TF motifs involved in NSC expansion (left side of Fig 3E) and

activate many of the TFs motifs that induce gliogenesis (right side of

▸Figure 3. Dynamics of transcriptional network changes with ISMARA in different populations over time.

A Conceptual illustration of ISMARA, which models gene expression profiles in terms of the activities of TF binding motifs. ISMARA models the matrix of gene expression
E as a linear function of computationally predicted TF binding sites in the promoters of each gene (site count matrix N) and activities of TF binding motifs across
samples (matrix A).

B PCA projection of the motif activity profiles of the NSCs for all time points onto the first two PC components, which capture 80% of the total variance in motif
activities. The background color represents segments of the plane spanned by the first two PCs corresponding to the expansion (red, E10.5-E11.5), neurogenesis (green,
E12.5-E15.5), and gliogenesis (purple, E16.5-PN) phases.

C Top 20 motifs contributing the most to the first two PCs, projected on the first two PCs, illustrating which TFs are active in each developmental stage.
D Example of a predicted regulatory interaction between two TFs. ISMARA predicts that the Neurod1 motif upregulates expression of the Neurod6 gene through a

binding site in its promoter. Note that the Neurod1 motif activity (bottom) is upregulated in parallel with its gene expression (top right), indicating it acts as an
activator, and that Neurod6 gene expression is: similarly upregulated across developmental time (bottom right).

E Core regulatory network of most significant motif-motif interactions in the NSC dynamics, together with overrepresented gene ontology categories among the target
genes of different core regulatory motifs. The motif activity profile of each core regulatory motif is shown framed with a color representing the developmental stage
at which its most active (red for expansion, green for neurogenesis, and blue for gliogenesis). Edges from motifs A to B correspond to predicted regulatory interactions
with motif A either activating or repressing activity of motif B. Ellipses indicate top Gene Ontology categories overrepresented among the target genes of different
motifs.

F PCA projection of the motif activity profiles of NSCs from the neurogenesis phase (day 12.5–16.5), BPs and NBNs, which capture 69% of the total variance.
G Top 20 motifs contributing the most to the first two principal components, projected on the first two PCs of panel, illustrating which TFs distinguish cell types and

developmental stages.
H Core regulatory network and overrepresented gene ontology categories as in panel E but now for analysis of the samples of the BPs, NBNs and NSCs from the

neurogenesis stage. Motif activity profiles are shown as a function of time for NSCs (green), BPs (red), and NBNs (purple) and are framed with a color indicating
whether the motif activity varies mainly across time (blue) or cell type (pink).
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Fig 3E). These analyses predict complex interconnected gene regula-

tory networks in the dynamics of the NSC lineage with TFs that can

act independently but show a large degree of synergy. Perhaps most

striking, virtually all of the top regulatory interactions involve

motifs that are most active during neurogenesis, either repressing or

activating motifs associated with the expansion and gliogenesis

phases. This suggests a key role for the TFs associated with neuro-

genesis in orchestration of the developmental dynamics of NSC in

the dorsal cortex (Fig 3E).

Next, we analyzed the TF motif activities in NSCs, BPs, and

NBNs together. Since the variance in the first two PCs is dominated

by the time dynamics of the NSCs, we removed the contribution of

these two components from the motif activities for subsequent anal-

yses, in order to reveal activities that may be masked. We then iden-

tified the top TF motifs determining the separation of NSCs, BPs,

and NBNs by PCA (Appendix Fig S1B and C). Similar to our gene

expression analyses, we also analyzed TF motif activities along the

developmental trajectory separately for BPs and NBNs and identi-

fied which TFs and motif activities contribute most to these develop-

mental dynamics (Appendix Fig S1D–I). To better understand the

relationship between the different progenitor cell types in the dorsal

cortex, we jointly analyzed the motif activity dynamics of neuro-

genic NSCs, BPs, and NBNs. Remarkably, and similar to what we

observed based on the gene expression, the PC1 of the motif activi-

ties separated the three cell types (NSCs on the left, BPs in the mid-

dle, and NBNs on the right: Fig 3F). The PC2 ordered the samples of

each cell type by developmental stage (Fig 3F). It is particularly

noteworthy that the temporal dynamics of the motif activities along

PC2 is shared by NSCs, BPs, and NBNs (earliest stages at the bot-

tom, oldest stages at the top: Fig 3F). We defined the key TFs and

motifs that separate the cell types and define the developmental lin-

eage of NSCs, BPs, and NBNs over time (Fig 3G).

We identified the motif–motif interactions with strongest statisti-

cal power within the neurogenic NSCs, BPs, and NBNs and repre-

sented these as a predicted core regulatory network (Fig 3H). A

subnetwork of E2f family motifs (E2f1, E2f2, E2f4, E2f5, and E2f8),

which all target genes involved in DNA replication, methylation,

and cell cycle, positively regulate Mybl2 (a cell cycle regulator) and

the paired-like homeodomain Vsx1-like TF activity but repress

Sox3/Sox10 activity. Note that the activities of these motifs remain

relatively constant over time and mainly characterize differences

between the cell types, with highest activity in NSCs and lowest

activity in NBNs. We also observed TF motifs that show similar

activities across the progenitor cell types but change their activity

over time, such as Foxd1 and Stat2 whose motifs regulate neural

and glial development through Nfix (Fig 3H). Conversely, some TF

motifs show cell-type specificity, for example, those for Hes1, Hes5,

Meis3, Tcf7, and Foxo1. Interestingly, Hes1, Hes5, and Tcf7 are all

primary regulators of Notch signaling in NSCs (Fig 3H).

Single-cell RNA sequencing reveals underlying heterogeneity in
NSCs, BPs, and NBNs

PCA at the population level revealed extensive changes in the tran-

scriptome of NSCs, BPs, and NBNs over time. We addressed hetero-

geneity within each cell population by analyzing the transcriptional

landscapes at the single-cell level by single-cell RNA-Seq (scRNA-

Seq) (Appendix Fig S2A). The single-cell transcriptomes of highly

variable genes (HVGs) revealed a low heterogeneity within the NSCs

during expansion and gliogenesis (Fig 4A). By contrast, NSCs during

the neurogenesis phase (E13.5 and E15.5) were heterogeneous

(Fig 4A). To validate that the scRNA-Seq data were representative of

the population data, we averaged the single-cell transcriptomes of a

specific time point and projected them on the PC matrices of the

population samples. The averaged single-cell data superimposed on

the population samples and followed the same transcriptional trajec-

tory over time and confirmed that the single-cell transcriptomes

reflected the heterogeneity of the population at the respective time

point (Fig 4B). Therefore, the single-cell heterogeneity in NSCs dur-

ing cortical development is representative of the biological changes

in single NSC gene expression over time.

k-Means clustering divided the NSCs into five cell clusters and

revealed DEGs across these clusters (Fig 4C; Appendix Fig S2C–F
and Dataset EV4). The five NSC types were unequally represented

over time. NSC type 1 (cluster 1) was present almost exclusively at

E10.5 and E11.5 and represents the major NSC transcriptional status

in the expansion phase. NSC cluster 5 was the predominant NSC

type during the later, gliogenic phases of corticogenesis. NSC clus-

ters 2–4 were found during multiple phases of development from

E11.5 and expansion through neurogenesis to gliogenesis (Fig 4C).

Visualization of the single cell data by t-SNE also showed separa-

tion of the five NSC cell types (clusters 1–5: Fig 4D). Projection of

gene expression onto the t-SNE identified cluster-specific expres-

sion. Crabp2 and Tnc marked clusters 1 and 5, respectively, while

▸Figure 4. Heterogeneity of NSCs, BPs and NBNs at single cell level.

A PCA of NSC single cells, using the top 2,000 highly variable genes (HVGs) obtained from bulk NSCs.
B Projection of average single cells of NSCs at each time point on the first two PCs of bulk NSCs using the top 2,000 HVGs obtained from bulk NSCs.
C Clustering of assignment matrix of NSC single cells using k-means and hierarchical clustering.
D Marker genes that are up/downregulated in each cluster of NSCs.
E PCA of BP single cells, using the top 2,000 highly variable genes obtained from bulk BPs.
F Projection of average BP single cells on the first two PCs of bulk BPs using the top 2,000 HVGs obtained from bulk BPs.
G Clustering of assignment matrix of NBN single cells using k-means and hierarchical clustering.
H Marker genes that are up/down regulated in each cluster of NBNs.
I PCA of NBN single cells, using the top 2,000 HVGs obtained from bulk NBNs.
J Projection of average single cells of NBNs on the first two PCs of bulk NBNs using the top 2,000 HVGs obtained from bulk NBNs.
K Clustering of assignment matrix of NBN single cells using k-means and hierarchical clustering.

Data Information: In (C), (G), and (K), heatmaps represent the hierarchal clustering of assignment matrix of single cells after 500 times applying k-means clustering. The
optimal number of clusters is selected based on the Silhouette coefficient. It is “1” (red) when two cells are always clustered together, “0” (blue) when two cells never fall
in the same cluster. Pie charts represent the percentage of single cells at each time point in each cluster.
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Tubb3 and Dcx were expressed in a more expanded domain across

multiple NSC clusters (Fig 4D). The heatmap shows a more compre-

hensive list of distinct signature genes for the five clusters

(Appendix Fig S2F; Dataset EV4). The GO analyses and process net-

works for gene expression by the NSC clusters are shown in

Dataset EV5.

We analyzed heterogeneity within the BPs from E12.5-PN1 by

scRNA-Seq. BPs showed that an age-related difference is gene

expression with heterogeneity distributed along the PC2 (Fig 4E).

We pooled the single-cell sequences at each time point and plotted

these averaged values on a PCA defined by the HVGs identified from

the BP analysis at the population level (Fig 4F). Strikingly, the aver-

aged single-cell data superimposed on the biological replicates at

population level supporting that the individual BP scRNA-Seq data

are representative of the populations (Fig 4F). The analysis indi-

cated a distinct, time-dependent dynamic in gene expression from

E12.5-PN1. Clustering the single BPs based on k-means revealed

three distinct clusters (Fig 4G; Appendix Fig S2G–I and

Dataset EV4). Cluster cell-type 3 cells are present mostly at later

developmental stages (E16.5-PN1). Conversely, cluster 1 and 2 cells

were more prominent at earlier times (Fig 4G). We visualized the

BP clusters by t-SNE and plotted some signature genes for each clus-

ter (Fig 4H; Appendix Fig S2J and Dataset EV4). We performed simi-

lar analyses for NBNs expecting a large heterogeneity over time due

to the plethora of neuron types generated in the dorsal cortex.

scRNA-Seq confirmed a broad spread in the NBNs with a compo-

nent of time over the PC1 (Fig 4I).

We pooled the single-cell NBN data at each time point and plot-

ted these averaged values on a PCA defined by the HVGs from the

NBN analysis at the population level (Fig 4J). Both the population

and averaged single-cell samples followed a time-dependent trajec-

tory in gene expression consistent with the sequential generation of

neurons forming the deep and superficial layers of the isocortex

(Fig 4J). k-Means clustering revealed the reduced heterogeneity in

the NBNs compared with NSCs and BPs and identified two major

clusters (Fig 4K). Cells belonging to cluster type 1 NBNs were pre-

sent at earlier time points (E15.5 and E18.5), while cells belonging

to cluster type 2 were underrepresented at E15.5 and were mostly

present at PN1 (Fig 4K; Dataset EV4).

t-SNE representation of the NBNs belonging to the two cell clus-

ters showed the sparse distribution of type 1 cells reflecting the

single-cell heterogeneity within this cluster. Type 2 NBNs clustered

more tightly than cluster 1 cells. Due to this heterogeneity, it was

difficult to pinpoint single-gene signatures for the two NBN clusters

(Fig 4L; Appendix Fig S2N and Dataset EV4). These findings demon-

strate an unprecedented heterogeneity in NSCs and BPs over time

and a dynamic shift in gene expression of these cells at the

population and single-cell levels. The scRNA-Seq data enabled a

high-resolution definition of gene signatures for each cluster (cell

subtype) of NSCs, BPs, and NBNs.

We repeated the analyses of the scRNA-Seq data using KNN

graph-based clustering and UMAP visualizations. UMAP visualiza-

tion of NSCs showed their temporal distribution within five distinct

clusters (Appendix Fig S3A). Feature plots of Hbb-bh1, Hba-x, and

Hbb-y replicate the bulk expression patterns in NSCs, where expres-

sion is: higher during the early developmental stages (E10.5 and

E11.5: Appendix Fig S3B). Additional feature plots of known mark-

ers of expansion (Sox2, Pax6, Crabp2), excitatory (Dcx, Tubb3,

Bcl11b, Pou3f2), inhibitory (Gad1, Dlx1, Dlx5), astrocytic (Aldoc,

Aqp4, Sox10), and oligodendrocytic (Olig1, Olig2, Cspg4) lineages

show unique and consistent patterns of expression

(Appendix Fig S3C–G). We performed similar analyses for the BPs

and NBNs and visualized the cells on UMAPs. We identified three

BP and two NBN clusters over developmental time and present

example feature plots for BP genes such as Tbr2, Ascl1, Nes, Lrfn5

(Appendix Fig S4A–C). Reanalysis of the NBNs using KNN-graph-

based methods confirmed only two discernable NBN clusters with

the expression of single neuronal subtype genes such as Bcl11b,

Cux1, Cux2, Foxp2, Pfn2, and Pou3f2 poorly defining the hetero-

geneity (Appendix Fig S4D–F).

Pseudo-time analysis reveals potential trajectories among NSCs,
BPs and NBNs

KNN-graph-based clustering and UMAP visualizations of pooled sin-

gle NSCs, BPs, and NBNs segregated eight cell clusters (Fig 5A and

B; Appendix Fig S3A). NSCs segregated in a temporal pattern as was

seen with the PCA analysis. NSCs segregate into four major clusters

correlated with their prospective fate – NSC1 (expansion), NSC2

(late, astrocytic), NSC3 (late, oligodendrocytic), and NSC4 (interme-

diate, neurogenic). BPs segregated into two clusters, BP1 enriched

in Bcl11b+ cells (Ctip2+, deep layer neuron marker), and BP2

enriched in Pou3f2+ cells (Brn2+, upper layer neuron marker). NBNs

divided into two clusters (NBN1 and NBN2), and similar to the indi-

vidual NBN analyses, the clustering was not driven by differential

expression of cortical layering markers (Fig 5C and D). The markers

for each cluster are listed in Dataset EV6. We also performed Sling-

shot for pseudotime analysis of the scRNA-Seq data to elucidate the

neurogenic trajectories from NSCs to BPs to NBNs (Fig 5E–G). We

identified three neurogenic lineage pathways starting from our early

expansion NSCs to NBNs through BPs (Fig 5G).

We compared our single-cell C1 data with the extensive 10X

genomics Linnarsson developing mouse brain dataset (La Manno

et al, 2021; Fig EV4). First, we compared our NSCs, BPs, and NBNs

▸Figure 5. Pseudo-time analysis reveals potential trajectories among NSCs, BPs and NBNs.

A UMAP clustering of all NSCs, BPs, and NBNs, visualized based on cell type and time point.
B UMAP clustering showing all cell types, four clusters of NSCs, two of BPs, and two of NBNs.
C Violin plots of highly enriched genes in each cluster, labeled with gene and cluster names.
D Feature plots showing examples of highly enriched genes in the neuronal lineage, identifying excitatory neuron, inhibitory neuron, astrocytic and oligodendrocytic

clusters. Y axis is the log normalized expression.
E Visualization of inferred trajectory based on UMAP embeddings showing a neurogenic lineage from NSCs, to BPs to NBNs, with a time component. Colors represent

the cell types shown in (B).
F Visualization of inferred trajectory overlaid on cell type, capturing neurogenic lineage.
G Smooth representations of lineage trajectory using principal curves overlaid on cell types showing a neurogenic lineage from NSCs to BPs to NBNs.
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to their forebrain and dorsal forebrain cells (E9-E18); second, we

compared our NSCs with the cells defined as radial glia in the Lin-

narsson dataset from the same brain regions. We performed CCA

integration analyses with our C1 scRNA-Seq data and the Lin-

narsson cells. Our cells integrated as expected into the Linnarsson

dataset with the expression of distinct marker genes. Our cells main-

tained their distinct groupings in these analyses and segregated into

10 distinct clusters (Fig EV4B). Visualization revealed segregation of

our cells within the Linnarsson dataset post-CCA integration. These

analyses also revealed that the cells we defined as NSCs and NBNs

fall within the clusters defined as radial glia and neurons by Lin-

narsson, respectively (Fig EV4C–E). Hence, both C1 and 10X geno-

mics sequencing approaches correctly identify the same cell

populations. However, the increased sequence depth of our C1 data

allowed identification of cell subtypes that were not discernable by

10X genomics. These findings also indicate that the Hes5::GFP and

Tbr2::GFP selection procedure we used does not bias the analysis of

the progenitors.

Interestingly, the Linnarsson dataset does not identify BPs as a

separate population. Our BPs fall into the neuron clusters defined by

the Linnarsson analysis and overlap with Tbr2 expressing cells in

these clusters (Fig EV4F). These findings support the added value

and power of the deeper SmartSeq2 C1 sequencing approach. We

selected the cells classified as radial glial cells in the Linnarsson

dataset and integrated our NSCs (Fig EV4G–I). This revealed distinct

subpopulations of mainly dividing early and late progenitors defined

by the expression of marker genes. We also found that the Lin-

narsson 10X dataset had low expression of the “mature” genes of

radial glia cells compared with our C1 data, which we interpret as

being due to the increased depth and reproducibility of the C1

sequencing approach (Fig EV4J). However, Hbb subunits that

defined subtypes of NSCs in our analyses were also detectable in the

radial glia in the Linnarsson dataset (Fig EV4K).

Neuronal specification markers show sequential waves in gene
expression and massive heterogeneity at the single cell level

During cortical development, morphologically and physiologically

unique classes of neurons are formed sequentially in waves

throughout neurogenesis (Molyneaux et al, 2007; Greig et al, 2013;

Telley et al, 2016; Fig 6A). Several gene combinations have been

identified that classify the distinct subtypes of projection neurons in

the cortex (Molyneaux et al, 2007; Greig et al, 2013). We selected

and curated an extensive list of known patterning and neuronal

subtype marker genes from the literature and analyzed their expres-

sion dynamics in the NSCs, BPs, and NBNs at the population and

single cell levels.

Surprisingly, transcription of the neuronal subtype genes showed

sequential and developmental wave-like patterns of expression even

in NSCs, at the population level (Figs 6B and EV5A). At the single

cell level, these developmental waves were recapitulated in NSCs,

albeit with a pronounced heterogeneity at each time point (Fig 6C).

Particularly those genes commonly used to define neuronal sub-

types and cortical layers later in development (Tbr1 and Ctip2—Lay-

ers V and VI; Satb2 and Cux2—Layers IV and II/III) showed

characteristic and transient dynamics in expression 1–2 days prior

to the established birth date of the neurons (Molyneaux et al, 2007).

We plated the freshly FACsorted Hes5::GFP positive NSCs but could

not detect expression of these neuronal specification factors at the

protein level by immunocytochemistry (Fig 6D). This suggested that

the transcriptional program that defines cortical neuron subtypes is

initiated in NSCs long before their exit from cell cycle.

We performed similar computational analyses on the BPs and

NBNs and identified similar sequential waves of cortical neuron

gene expression correlating with the birth date of the respective neu-

ron subtype (Figs 6C, E, and F and EV5B). Similarly, we could not

detect protein expression in the BPs acutely isolated from the devel-

oping cortex (Figs 6C, E, and F and EV5B). However, and as

expected, NBNs expressed proteins associated with neuron subtypes

of definitive cortical layers (Figs 6C, G, and H and EV5C).

These striking findings indicate that neuronal specification pro-

grams start early in the lineage, in NSCs and BPs, and continue into

the NBNs. At the single-cell level, some E10.5 NSCs expressed high

levels of deep layer neuronal markers including Cux2 while later

NSCs expressed both deep and upper-layer neuronal markers

(Figs 6C and EV5D). This explains the seemingly controversial Cux2

lineage tracing experiments described previously (Franco et al,

2012). We observe similar expression in BPs, from a deep to both

deep and upper layer marker expression While the NBNs match

upper layers, corresponding to their later time points of collection

(Fig EV5E and F).

Signaling pathway effectors show dynamic expression in the
neurogenic lineage

Signaling pathways impinge on downstream effectors to regulate

NSC fate decisions during corticogenesis. The cross talk between

signaling pathways and the integration of their target effectors

▸Figure 6. Dynamic expression of neuronal specification factors in NSCs, BPs, and NBNs.

A Illustration of distinct projection neurons born sequentially during neurogenesis.
B Heatmap illustrating the dynamics of expression of cortical layering markers in NSCs at population level.
C Examples of expression dynamics of deep layer markers Tbr1, Ctip2 and upper layer markers Satb2, Cux2 in NSCs, BPs, and NBNs, profiles at population level (left)

and single cell level (right). Each dot defines the mean and lines define the SD. Three to four biological replicates were collected for each time point.
D Experimental validation of NSCs isolated at E13.5 using Hes5::GFP transgenic embryos, showing no detectable protein for Tbr1, Ctip2 and Satb2. NSCs do express Brn2

(Pou3f2) in vitro and in vivo at protein level. Scale bar = 20 μm.
E Heatmap illustrating the dynamics of expression of cortical layering markers in BPs at population level.
F Experimental validation of BPs isolated at E16.5 using Tbr2::GFP transgenic embryos, showing no detectable protein for Tbr1, Ctip2 and Satb2. Scale bar = 20 μm.
G Heatmap illustrating the dynamics of expression of cortical layering markers in NBNs at population level.
H Experimental validation of NBNs isolated at E16.5 using Tbr2::GFP transgenic embryos, showing protein expression for Tbr1, Ctip2, Satb2 and Brn2(Pou3f2). Scale

bar = 20 μm.

Data information: In (B), (E) and (F), heatmaps are based on z-score of log2(TPM) expression values.
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governs stem cell maintenance and fate. However, it remains

unclear to which signals NSC, BPs, and NBNs are competent to

respond in vivo. In order to evaluate susceptibility to paracrine sig-

naling molecules and the dynamics in this responsiveness, we

selected those genes designated to be receptors in the databases and

analyzed the expression of the 440 receptors that showed variable

gene expression throughout the neurogenic lineage. The resulting

extensive gene expression profiles could be divided into three

groups (Fig 7A and B):

1 Receptors that are highly expressed by NSCs through the most of

cortical development (Fig 7A and B). These receptors, including

those for Wnt (Fzd5, 7, 9), Notch (Notch1, 2, 3), Fgf (Fgfr2, Fgfr3),

and Shh signaling (Smo, Ptch1), are part of pathways involved in

stem cell maintenance (Blaschuk & ffrench-Constant, 1998;

Fukuchi-Shimogori & Grove, 2001; Gaiano & Fishell, 2002; Itoh &

Ornitz, 2004; Bray, 2006; Louvi & Artavanis-Tsakonas, 2006; Shi-

mojo et al, 2008, 2011; Iwata & Hevner, 2009; Sahara &

O’Leary, 2009; Imayoshi et al, 2010; Rash et al, 2011; Wang

et al, 2011).

2 Receptors that are highly expressed by NSCs during neurogenesis

and later stages and by BPs and NBNs, which we refer to as neu-

rogenic (Fig 7A).

3 Receptors that are highly expressed predominantly at later stages

of development in the NSCs during the gliogenic phase. These we

refer to as gliogenic pathways and include the receptors for

known ligands involved in gliogenesis, including Tgf-beta/BMP

signaling (Tgfbr2, Bmpr1a, Bmpr1b) and Il6/Lif signaling (Lifr,

Il6st) (Ebendal et al, 1998; Gomes et al, 2005; Rodriguez-Martinez

& Velasco, 2012; Pollen et al, 2015).

The neurogenic niche during corticogenesis provides local auto-

crine and paracrine signals but also responds to blood-born ligands

and factors in the fluid of the telencephalic vesicles. We assessed the

potential local signals in the NSCs, BPs, and NBNs by examining the

expression of ligands for the top, regulated receptors (Fig 7C). Simi-

lar to the expression profile of their cognate receptors, the expression

of some ligands could be divided into three clusters. Ligands

expressed predominantly by NSCs during the expansion phase of

corticogenesis, ligands expressed predominantly by NSCs in the glio-

genic phase, and ligands expressed mostly by neurons that act as

paracrine signals back to the progenitors. Many Wnt ligands and

their receptors are expressed by NSCs suggesting autocrine signaling.

One notable exception being Wnt7b, which is prominently expressed

by NBNs and its canonical receptor Fzd7 also by NSCs at the expan-

sion and gliogenesis phases. By contrast, although their cognate

receptors were mostly expressed by NSCs, the Fgf ligands were

divided into two major groups: those expressed mainly by NBNs and

those expressed mainly by NSCs (Fig 7A and C).

As a proof of concept, we also evaluated selected modulators

and effector targets of some of the key signaling pathways including

Bmp, Wnt, Notch, and Shh signaling (Fig 7D). The expression of

many target genes of these pathways reflected the expression of

their respective receptors suggesting that not only are the ligands

available and the receptors expressed but the pathways may be

active throughout the neurogenic lineage (Fig 7D).

bHLH TFs are dynamically and heterogeneously expressed
by NSCs

bHLH TFs are notably involved in the control of neurogenesis and

brain development downstream of many pathways including Notch,

BMP, TGFβ, and Wnts. We analyzed the expression profile of the

bHLH family genes. The bHLH TFs could be grouped into three clas-

ses based on their expression profiles:

1 bHLH factors related to NSCs maintenance, including Hes1, Hes5,

Hey1, and Id4, are highly expressed by NSCs (Fig 8A and B).

2 bHLH factors related to neuronal commitment and differentiation.

For example, the proneural differentiation bHLH genes including

Neurog2, Neurod2, and Neurod6, which are expressed by NSCs

during the neurogenic phase and by BPs, but their expression is:

lower in NBNs (Fig 8A and C).

3 bHLH genes with expression associated prominently with gliogen-

esis, which are expressed at low levels by BPs and NBNs including

Olig1, Olig2, and Id1 (Fig 8A and D).

We also identified a group of bHLH TFs expressed moderately by

NSCs during the neurogenic phase of corticogenesis, but which are

expressed by BPs and NBNs suggesting a role in neural commitment

and differentiation (Fig 8C and D). At the single cell level, expres-

sion of the bHLH factors by the NSCs was highly heterogeneous,

even at the same embryonic time point (Fig 8E). As expected at

E10.5, most NSCs expressed high levels stemness markers (Hes1,

Hey1, and Id4) and low or no neurogenic-associated (Neurog2, Neu-

rod2, and Neurod6) and gliogenic-associated bHLH TFs (Olig1,

Olig2, and Id1). As neurogenesis initiated at E13.5, more cells

started to express neurogenic markers and the number of cells

expressing Hes1, Hey1, and Id4 reduced, but very few cells were

expressing the gliogenic bHLHs. At E13.5 two major NSC popula-

tions were evident based on bHLH expression, one expressing high

stemness markers and low neurogenic markers, and another

expressing low stemness markers and high neurogenic markers.

However, there was also a subpopulation of cells that expressed

▸Figure 7. Dynamic expression profile of signaling receptors during corticogenesis.

A Heatmaps representing the expression profile of signaling receptors that can be divided into three main groups based on k-means clustering of z-scored log2(TPM)
expression values: stem cell maintenance (121 receptors), neurogenic (180 receptors), and gliogenic (139 receptors). Names of selected receptors are displayed. For the
complete list please see Dataset EV7. Expression profiles are represented by their z-score.

B Average expression profile of each cluster for NSCs (green), BP (orange), and NBN (purple). Solid line represents the average z-score, while the area represents the SD
estimated from different biological samples. Three to four biological replicates were collected for each time point.

C Heatmap representing the expression profile of ligands from selected signaling pathways, based on the z-scored log2(TPM) expression values.
D Expression profile of selected target or modulator of key signaling pathways: BMP, Wnt, Shh and Notch signaling. Each dot defines the mean and lines define the SD.

Three to four biological replicates were collected for each time point.
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both maintenance and neurogenesis-associated bHLH TFs. One

explanation for this populations is the oscillatory expression of

stemness factors Hes1 and Hes5 and their repression of the neuro-

genic targets including Neurog2. At later stages, when NSCs exit the

neurogenic phase and enter gliogenesis (E15.5-E17.5), the propor-

tion of NSCs expressing the neurogenic bHLHs rather than the stem

cell maintenance-associated TFs increased. As the NSCs transitioned

into gliogenesis and toward PN1, the proportion of NSCs expressing

Neurog2, Neurod2, and Neurod6 diminished with a concomitant

increase in gliogenic factor (Olig1, Olig2, and Id1) expressing cells

(Fig 8E). Strikingly, some NSCs in the gliogenic state coexpressed

the maintenance bHLH TFs. This confirms previous observations

A B

C

D

E

Figure 8. Dynamic and heterogenic expression profile of bHLH factors during forebrain development.

A Heatmaps representing the expression profile of bHLH factors. Three main groups are observed based on k-means clustering of z-scored log2(TPM) of expression
value: stem cell maintenance (high expression in the NSCs at early embryonic times and low in BPs and NBNs), neurogenic (high expression in the NSCs during neu-
rogenesis and high expression in BPs and NBNs), and gliogenic (high expression in the NSCs at late embryonic times and low in BPs and NBNs). Expression profiles
are represented by their z-score.

B Expression profile of selected stem cell maintenance markers Hes1, Hey1 and Id4. Each dot defines the mean and lines define the SD. Three to four biological
replicates were collected for each time point.

C Expression profile of selected neurogenic markers Neurog2, Neurod2, and Neurod6. Each dot defines the mean and lines define the SD. Three to four biological
replicates were collected for each time point.

D Expression profile of selected gliogenic markers Olig1, Olig2 and Id1. Each dot defines the mean and lines define the SD. Three to four biological replicates were
collected for each time point.

E Expression of stem cell markers (Hes1, Hey1 and Id4), neurogenic markers (Neurog2, Neurod2, and Neurod6) and gliogenic markers (Olig1,2 and Id1) in NSCs during
different embryonic time points in the single-cell levels. Each point represents the expression value of one single cell in log2(TPM).
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that Notch signaling and the expression of Hes-related TFs are

linked to glial commitment of NSCs.

Discussion

The temporal dynamics in gene expression during lineage commit-

ment throughout ontogeny of the cerebral cortex remains unclear.

Advances in scRNA-Seq and gene cluster analysis have given

unprecedented insights into cellular heterogeneity in the mam-

malian cortex, as well as in primary human samples. Particularly

when trying to understand the genetic regulation of cell diversifica-

tion from stem and progenitor cells, these snapshots of cellular tran-

scriptomics are used to define cellular state and therefore predict

fate potential. One challenge for transcriptome analysis is to predict

not only the future of a particular cell and its offspring but also its

history. This is particularly confounded by highly dynamic gene

expression over time windows ranging from days to minutes.

Here we posed the questions of how gene expression changes in

stem cells, progenitors, and newly formed neurons over time, and

whether we can reveal distinct gene expression patterns within

specific cell types that may allude to their differentiation potential.

We characterized gene expression of the dorsal cortical neural lin-

eages over time, focusing on the phases of expansion, neurogenesis,

and gliogenesis using NSC, BP, and NBN populations with definitive

characteristics. We have created an extensive resource of dorsal cor-

tical ontogeny, which can be mined through an interactive web-

based browser (Appendix Fig S5; http://neurostemx.ethz.ch/).

Development of the cerebral cortex is a dynamic process, how-

ever, and remarkably, our understanding of the lineage heterogene-

ity and changes in gene expression that accompany the formation of

the different neuron subtypes and subsequent cortical layers is lim-

ited. The most widely accepted model of cortical development uti-

lizes a common multipotent progenitor, which becomes

progressively restricted in its fate over time. Unbiased computa-

tional analysis of our data revealed distinctive, stage-specific

changes in gene expression not only in NSC, but also BPs and

NBNs. These shifts in transcriptional space at the population and

single cell levels reveal a heterogeneity in each of these cell popula-

tions and establish novel gene signatures defining five NSC, three

BP and two NBN types. Remarkably, we show the presence of dif-

ferent NSC, BP, and NBN types at the same developmental stage,

and that these constitute different proportions of the particular pop-

ulations at each stage. Although these findings do not disprove a

common progenitor mechanism, they imply that the populations of

NSC, BPs, and NBNs at any point in developmental time are com-

posed of different proportions of cells with distinct transcriptomes,

which can be predicted by a panel of signature genes.

We analyzed our dataset using two separate clustering methods

and identified similar distinct clusters of NSCs, BPs, and NBNs,

highlighting the robustness of our data. We also integrated our C1

data with 10X genomics data from the developing mouse forebrain

(La Manno et al, 2021). Our cells integrated into the 10X genomics

data as expected, while maintaining their distinct groupings, again

validating their broader utility. We consider the use of transgenic

Hes5::GFP and Tbr2::GFP lines as a major strength of the paper

because we were able to enrich clean populations of NSCs, BPs, and

NBNs using these lines. To understand the neurogenic trajectories,

we performed the pseudo-time analyses, which revealed three lin-

eages, from NSCs to BPs to NBNs following a strict time component.

These observations again emphasize the tight regulation of neural

fate dynamics.

Our analyses of cells types with definitive characteristics exem-

plify potential dangers in a priori allocation of cell type based on

comparative gene expression and limited gene sets. For example,

the transcriptomes of NSC in the neurogenic phase of cortical devel-

opment are closer to BPs at this stage than they are to NSCs at E10.5

(expansion phase) or PN (gliogenic phase). Only by separating the

NSCs, BPs, and NBNs and analyzing their transcriptomes in isola-

tion, was it possible to uncover specific signatures and determine

cellular heterogeneity. We also found that NSCs express many neu-

ronal RNAs but with no detectable protein expression. This suggests

that essential posttranscriptional regulation programs are active in

the neurogenic lineage during differentiation. Several mechanisms

of posttranscriptional regulation have previously been reported dur-

ing embryonic neurogenesis including by Drosha (Knuckles

et al, 2012) and m6 mRNA methylation (Yoon et al, 2017).

The conjunction of gene expression dynamics and predicted tran-

scriptional networks by ISMARA identified active TFs and nodes in

NSCs, BPs, and NBNs over time. These TF motifs and activities also

revealed the same directional trajectory and pathway of each cell

type through transcriptional space as predicted by the mRNA

expression. As ISMARA predicts the activity of more than 800 TFs

and their targets in all cell types, this dataset and resource will be

valuable to explore and extrapolate the known regulatory networks

to the missing novel nodes. Recently, we validated the Tead TFs in

cortical development and elucidated different functions of Tead fac-

tors in NSCs (Mukhtar et al, 2020). The dynamic changes in the TFs

in NSCs, for example, reflect the sequential changes these cells

undergo during corticogenesis. Our analyses determining the rela-

tionship among the neuronal lineage demonstrate a naturally occur-

ring directionality, indicating strong intrinsic control. Moreover,

among all the cell types, NSCs seem to be most dynamic, be it at

gene expression level or the level of transcriptional networks. The

NSCs follow a continuous path through the three phases of cortico-

genesis, supporting the neuronal origin from “common progeni-

tors,” sequentially changing in transcriptional space. To this end,

we identified signature genes of NSCs in expansion, neurogenic and

gliogenic phases. As all the known genes depicted the dynamics of

expression as expected, we believe that we provide more extensive

lists of novel signature genes, which could be used to identify NSCs

in different phases. These signatures are like a “scorecard” for the

NSC population undergoing corticogenesis, some of which we have

also validated experimentally (Figs EV2B and C, and EV3C and D).

Similar analyses for BPs and NBNs have yielded key signature mark-

ers, which hold promise for further biological exploration. The up-

and downregulations of genes could be presumed to be the result of

active or inactive downstream programs in these cells and their

progeny. It is crucial to differentiate between early and late BPs, or

different NBN populations across time in order to consolidate our

knowledge about their downstream fate and function.

The microenvironment of the cells plays critical roles in regulat-

ing cell fate choices. We used these resources and explored some of

the signaling pathways defining logic in NSC differentiation using a

high-throughput microfluidic approach (Zhang et al, 2019). This val-

idation was the tip of the iceberg and together with the recent
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developments in the field, we provide a consolidated resource, a

comprehensive and systematic characterization of major progenitor

pools in cortical development. Further biological validations of our

predicted signaling and transcriptional nodes will provide more

promise toward the deeper exploration of mechanisms controlling

corticogenesis.

Materials and Methods

Reagents and Tools table

Antibodies Source Identifier

Chick anti-GFP (1:300) Millipore Cat# 06-896, RRID:AB_11214044

Rat anti-Ctip2 (1:500) Abcam Cat# ab18465, RRID:AB_2064130

Goat anti-Brn2 (1:250) Santa Cruz Cat# sc-6029, RRID:AB_2167385

Sheep anti-GFP (1:250) AbD Serotec/Biorad Cat# 4745-1051, RRID:AB_619712

Rabbit anti-Tbr2 (1:500) Abcam Cat# ab23345, RRID:AB_778267

Rabbit anti-Pax6 (1:500) Covance Cat# PRB-278P, RRID:AB_291612

Mouse anti-Satb2 (1:200) Abcam Cat# ab51502, RRID:AB_882455

Rabbit anti-Tbr1 (1:500) Abcam Cat# ab31940, RRID:AB_2200219

Donkey anti-Sheep, Alexa 488 (1:500) Jackson ImmunoResearch Labs Cat# 713-545-147, RRID:AB_2340745

Donkey anti-Rabbit, Cy3 (1:500) Jackson ImmunoResearch Labs Cat# 711-165-152, RRID:AB_2307443

Donkey anti-Mouse, Cy3 (1:500) Jackson ImmunoResearch Labs Cat# 715-165-151, RRID:AB_2315777

Donkey anti-Rat, Cy3 (1:500) Jackson ImmunoResearch Labs Cat# 712-166-153, RRID:AB_2340669

Donkey anti-Goat, Cy3 (1:500) Jackson ImmunoResearch Labs Cat# 705-165-147, RRID:AB_2307351

Donkey anti-Chicken, Alex488 (1:500) Jackson ImmunoResearch Labs Cat# 703-545-155, RRID:AB_2340375

Chemicals Source Identifier

Formaldehyde Solution (w/v) Sigma 47608(47673/33220)

DNase I, RNase-free Sigma 04716728001

DNase I Grade II Roche 10104159001

L_Cysteine Sigma 168149

Papain Sigma P3125-100MG

Trypsin inhibitor from Glycine max (soybean) Sigma T6522-5x100MG

L15 Medium Invitrogen 31415029 (31415086)

PBS cell culture Dulbecco 14080089 (14080048)

Triton X-100 Fisher BPE151-500

TRIzol Invitrogen VX15596018

Glycoblue Co-precipitate Life Technologies D1417005

Poly L- Lysine hydrobromide Sigma P9155-5MG

B27 supplement+A26 Gibco 17504-044

DMEM/F12 Gibco 31966-047

Chloroform Sigma 288306

Normal Donkey Serum Jackson ImmunoResearch Labs 017-000-121

Agarose Fisher Scientific BPE1356-100

RNAse free water Ambion AM9906

TE buffer Invitrogen by Thermo Fisher Scientific AM9849

NaOH Roth 6785.1

Chamber slides Lab-Tek 177402

Critical Commercial Assays Source Identifier

2x Assay Loading Reagent Fluidigm 85000736
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Reagents and Tools table (continued)

Critical Commercial Assays Source Identifier

20x DNA Binding Dye Sample Loading Reagent Fluidigm 100-3738

20x GE Sample Loading Reagent Fluidigm 85000746

Sso Fast EvaGreen SuperMix with low Lox BioRad 172-5211

Dynamic Array 48.48 Fluidigm BMK-M-48.48

Dynamic Array 96.96 Fluidigm BMK-M-96.96

PreAmp and Reverse Transcription Master Mix Fluidigm 100-6300

Human Brain Reference RNA Life Technologies AM6050

Exonuclease I New England Biolabs M0293L

C1 Single Cell Auto Prep Array for mRNA Seq Multipack
—contains:

• Module 1 Single Cell Auto Prep Kit

• Module 2 mRNA Seq

• C1 Single Cell Auto Prep Array for mRNA Seq (5–10 μm)

Fluidigm 100-6041
100-5518
100-6209
100-5757

SMARTer Ultra Low RNA Kit for Illumina Sequencing Clontech/Takara 634936

Advantage 2 PCR Kit Clontech/Takara 639206

Nextera XT DNA Library Preparation Kit Illumina FC-131-1096

Nextera XT Index Kit v2 Set A Illumina FC-131-2001

Nextera XT Index Kit v2 Set B Illumina FC-131-2002

Nextera XT Index Kit v2 Set C Illumina FC-131-2003

Nextera XT Index Kit v2 Set D Illumina FC-131-2004

Agencourt AMPure XP Beckman Coulter A63882

DNA Suspension Buffer, pH 8.0 Teknova T0221

HS NGS Fragment 35-6000bp.mthds Labgene Scientific SA DNF-486-0500

HS NGS Fragment 1-6000bp.mthds Labgene Scientific SA DNF-474-0500

SS NGS Fragment 35-6000bp.mthds Labgene Scientific SA DNF-479-0500

SS NGS Fragment 1-6000bp.mth Labgene Scientific SA DNF-473-0500

RNA 6000 Pico Complete Kit Agilent Technologies 5067-1513

Agilent RNA 6000 Nano Kit Agilent Technologies 5067-1511

Quant-IT RiboGreen® RNA Assay Kit Life Technologies R11490

Quant-iT PicoGreen® dsDNA Assay Kit Life Technologies P11496

GREINER-384-Well plate, black Greiner 784076

TruSeq RNA Library Preparation Kit v2, Set A Illumina RS-122-2001

TruSeq RNA Library Preparation Kit v2, Set B Illumina RS-122-2002

Superscript II Reverse Transcriptase Life Technologies 18064-014

twin.tec PCR Plate 96, semi-skirted Vaudaux-Eppendorf AG 0030 128.575

Ethanol absolute Honeywell 1L Honeywell 02860-1L

10mM TRIS-HCl with 0.1% TWEEN-20, pH 8.5 TEKNOVA T7724

Experimental models Source Identifier

Mouse: Hes5::GFP Verdon Taylor (Basak & Taylor, 2007) N/A

Mouse: Tbr2::GFP Arnold et al (2009) N/A

Oligonucleotides Source Identifier

Ccnd1_Forward_50- TGCCGAGAAGTTGTGCATCTA-30 This paper N/A

Ccnd1_Reverse_50- TGTTCACCAGAAGCAGTTCCA-30 This paper N/A

Crabp2_Forward_50-ATGCCTAACTTTTCTGGCAACT-30 https://pga.mgh.harvard.edu/primerbank/ N/A

Crabp2_Reverse_50-GCACAGTGGTGGAGGTTTTGA-30 https://pga.mgh.harvard.edu/primerbank/ N/A

Hbb-bh1_Forward_50-GAAACCCCCGGATTAGAGCC-30 https://pga.mgh.harvard.edu/primerbank/ N/A
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Reagents and Tools table (continued)

Oligonucleotides Source Identifier

Hbb-bh1_Reverse_50-GAGCAAAGGTCTCCTTGAGGT-30 https://pga.mgh.harvard.edu/primerbank/ N/A

Bcl11b_Forward_50-CCCGACCCTGATCTACTCAC-30 https://pga.mgh.harvard.edu/primerbank/ N/A

Bcl11b_Reverse_50- CTCCTGCTTGGACAGATGCC-30 https://pga.mgh.harvard.edu/primerbank/ N/A

Bhlhe22_Forward _50- AAGCGCATCAAGGTGGAGAA-30 This paper N/A

Bhlhe22_Reverse_50- CTTGGTTGAGGTAGGCGACTAA-30 This paper N/A

Cabp1_Forward_50- GAGCTGTCTCAGCAGATCAAC-30 https://pga.mgh.harvard.edu/primerbank/ N/A

Cabp1_Reverse_50- TTTAGGGCCCATCAGTTCCA-30 https://pga.mgh.harvard.edu/primerbank/ N/A

Cntn2_Forward_50- GCTGATGCCATGACCATGAA-30 This paper N/A

Cntn2_Reverse_50- ACTTAAGGCTGAGGCTGGAA-30 This paper N/A

Id2_Forward_50- ACCCTGAACACGGACATCA-30 This paper N/A

Id2_Reverse_50- TCGACATAAGCTCAGAAGGGAA-30 This paper N/A

Satb2_Forward_50- GCCGTGGGAGGTTTGATGATT-30 https://pga.mgh.harvard.edu/primerbank/ N/A

Satb2_Reverse_50-ACCAAGACGAACTCAGCGTG-30 https://pga.mgh.harvard.edu/primerbank/ N/A

Tubb3_Forward_50- GCGCATCAGCGTATACTACA-30 This paper N/A

Tubb3_Reverse_50- AGGTTCCAAGTCCACCAGAA-30 This paper N/A

Fezf2_Forward_50- GTCACCGGCCACTTCTAAAAC-30 https://pga.mgh.harvard.edu/primerbank/ N/A

Fezf2_Reverse_50-GTCTGCCTCTAACGCAGCA-30 https://pga.mgh.harvard.edu/primerbank/ N/A

ApoE_Forward_50- CTGACAGGATGCCTAGCCG-30 https://pga.mgh.harvard.edu/primerbank/ N/A

ApoE_Reverse_50- CGCAGGTAATCCCAGAAGC-30 https://pga.mgh.harvard.edu/primerbank/ N/A

Aqp4_Forward_50- CTTTCTGGAAGGCAGTCTCAG-30 https://pga.mgh.harvard.edu/primerbank/ N/A

Aqp4_Reverse_50- CCACACCGAGCAAAACAAAGAT-30 https://pga.mgh.harvard.edu/primerbank/ N/A

Cspg4_Forward_50- GGGCTGTGCTGTCTGTTGA-30 https://pga.mgh.harvard.edu/primerbank/ N/A

Cspg_Reverse_50- TGATTCCCTTCAGGTAAGGCA-30 https://pga.mgh.harvard.edu/primerbank/ N/A

Hmgb2_Forward_50- GTGGCAGGTACATGCAATCC-30 This paper N/A

Hmgb2_Reverse_50- GTACTTTGGTGGTGGTGTCCTA-30 This paper N/A

Olig1_Forward_50- CTGTATGAGCTGGTGGGTTACA-30 This paper N/A

Olig1_Reverse_50- GAGAAGGGATGCGGTGGAA-30 This paper N/A

Pdgfra_Forward_50- AGAGTTACACGTTTGAGCTGTC-30 https://pga.mgh.harvard.edu/primerbank/ N/A

Pdgfra_Reverse_50- GTCCCTCCACGGTACTCCT-30 https://pga.mgh.harvard.edu/primerbank/ N/A

Sparcl1_Forward_50- GGCAATCCCGACAAGTACAAG-30 https://pga.mgh.harvard.edu/primerbank/ N/A

Sparcl1_Reverse_50-TGGTTTTCTATGTCTGCTGTAGC-30 https://pga.mgh.harvard.edu/primerbank/ N/A

Tril_Forward_50- CTATGTATGCCGTTGGGGTAGG-30 https://pga.mgh.harvard.edu/primerbank/ N/A

Tril_Reverse_50- AGCTTTTCACTTATTTCGCCCAT-30 https://pga.mgh.harvard.edu/primerbank/ N/A

Cckar_Forward_50- CTTTTCTGCCTGGATCAACCT-30 https://pga.mgh.harvard.edu/primerbank/ N/A

Cckar_Reverse_50- ACCGTGATAACCAGCGTGTTC-30 https://pga.mgh.harvard.edu/primerbank/ N/A

Ccnb1_Forward_50- AAGGTGCCTGTGTGTGAACC-30 https://pga.mgh.harvard.edu/primerbank/ N/A

Ccnb1_Reverse_50- GTCAGCCCCATCATCTGCG-30 https://pga.mgh.harvard.edu/primerbank/ N/A

Dhrs4_Forward_50-CCTGTCGCTCCTTCCATCCTA-30 https://pga.mgh.harvard.edu/primerbank/ N/A

Dhrs4_Reverse_50- GCAAGGTGTCTCTTTTGTGGGA-30 https://pga.mgh.harvard.edu/primerbank/ N/A

Tbr2_Forward_50- GCGCATGTTTCCTTTCTTGAG-30 https://pga.mgh.harvard.edu/primerbank/ N/A

Tbr2_Reverse_50- GGTCGGCCAGAACCACTTC-30 https://pga.mgh.harvard.edu/primerbank/ N/A

Kif2c_Forward_50- ATGGAGTCGCTTCACGCAC-30 https://pga.mgh.harvard.edu/primerbank/ N/A

Kif2c_Reverse_50- CCACCGAAACACAGGATTTCTC-30 https://pga.mgh.harvard.edu/primerbank/ N/A

Mcm2_Forward_50- ATCCACCACCGCTTCAAGAAC-30 https://pga.mgh.harvard.edu/primerbank/ N/A

Mcm2_Reverse_50- TACCACCAAACTCTCACGGTT-30 https://pga.mgh.harvard.edu/primerbank/ N/A

Uncx_Forward_50- ACCCGCACCAACTTTACCG-30 https://pga.mgh.harvard.edu/primerbank/ N/A
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Reagents and Tools table (continued)

Oligonucleotides Source Identifier

Uncx_Reverse_50- TGAACTCGGGACTCGACCA-30 https://pga.mgh.harvard.edu/primerbank/ N/A

Robo3_Forward_50- AGATGAACTTGTTCGCGGACT-30 https://pga.mgh.harvard.edu/primerbank/ N/A

Robo3_Reverse_50- GGAAGCAGACTAGGGTTGAGC-30 https://pga.mgh.harvard.edu/primerbank/ N/A

Nde1_Forward_50-ATGGAGGACTCGGGAAAGACC-30 https://pga.mgh.harvard.edu/primerbank/ N/A

Nde1_Reverse_50-TCAGCTTCGTATTCTCGGCTT-30 https://pga.mgh.harvard.edu/primerbank/ N/A

Tpx2_Forward_50- GATGCCCCCACCGACTTTATC-30 https://pga.mgh.harvard.edu/primerbank/ N/A

Tpx2_Reverse_50- CTTGTTCTCCAAGTTGGCCTT-30 https://pga.mgh.harvard.edu/primerbank/ N/A

Loxl1_Forward_50- GAGTGCTATTGCGCTTCCC-30 https://pga.mgh.harvard.edu/primerbank/ N/A

Loxl1_Reverse_50- GGTTGCCGAAGTCACAGGT-30 https://pga.mgh.harvard.edu/primerbank/ N/A

Unc5d_Forward_50- TGGCTAGGACTCTTTTTCTGGG-30 https://pga.mgh.harvard.edu/primerbank/ N/A

Unc5d_Reverse_50- GCTCCTCGATGAAATGAGGCA-30 https://pga.mgh.harvard.edu/primerbank/ N/A

Ezr_Forward_50- CAATCAACGTCCGGGTGAC-30 https://pga.mgh.harvard.edu/primerbank/ N/A

Ezr_Reverse_50-GCCAATCGTCTTTACCACCTGA-30 https://pga.mgh.harvard.edu/primerbank/ N/A

Mef2c_Forward_50- GTCAGTTGGGAGCTTGCACTA-30 https://pga.mgh.harvard.edu/primerbank/ N/A

Mef2c_Reverse_50- CGGTCTCTAGGAGGAGAAACA-30 https://pga.mgh.harvard.edu/primerbank/ N/A

Usp43_Forward_50- AGCTCACGGGCTGGTATCT-30 https://pga.mgh.harvard.edu/primerbank/ N/A

Usp43_Reverse_50- AAGACCTGTACTGTGCTTGAAAG-30 https://pga.mgh.harvard.edu/primerbank/ N/A

Lrfn5_Forward_50- TGTTTCTCATTGGCATAGCTGT-30 https://pga.mgh.harvard.edu/primerbank/ N/A

Lrfn5_Reverse_50- TGGTGGAACAAATAGAAGCCCT-30 https://pga.mgh.harvard.edu/primerbank/ N/A

Ntsr1_Forward_50-CAGTTCGGACTGGAGACGATG-30 https://pga.mgh.harvard.edu/primerbank/ N/A

Ntsr1_Reverse_50- ACCAGCACCTTGGAATAAATGTC-30 https://pga.mgh.harvard.edu/primerbank/ N/A

Gucy1a3_Forward_50- CCCCTGGTCAGGTTCCTAAG-30 https://pga.mgh.harvard.edu/primerbank/ N/A

Gucy1a3_Reverse_50- GGAGACTCCCTTCTGCATTCT-30 https://pga.mgh.harvard.edu/primerbank/ N/A

β-actin_Forward_50- AGGTGACAGCATTGCTTCTG-30 https://pga.mgh.harvard.edu/primerbank/ N/A

β-actin_Reverse_50- GGGAGACCAAAGCCTTCATA-30 https://pga.mgh.harvard.edu/primerbank/ N/A

Ubb_Forward_50- TCTGAGGGGTGGCTATTAA-30 https://pga.mgh.harvard.edu/primerbank/ N/A

Ubb_Reverse_50-TGCTTACCATGCAACAAAAC-30 https://pga.mgh.harvard.edu/primerbank/ N/A

Topp_Forward_50-GGCTGTACAGAGACTAGAAGAGCA-30 https://pga.mgh.harvard.edu/primerbank/ N/A

Topp_Reverse_50-CCTCTCGATCTGTGGCTTG-30 https://pga.mgh.harvard.edu/primerbank/ N/A

Gapdh_Forward_50- CTCCCACTCTTCCACCTTCG-30 https://pga.mgh.harvard.edu/primerbank/ N/A

Gapdh_Reverse_50- CCACCACCCTGTTGCTGTAG-30 https://pga.mgh.harvard.edu/primerbank/ N/A

Resource Source Identifier

Fiji Hosted by University of Wisconsin https://imagej.net/Fiji/Downloads

Photoshop Adobe N/A

Illustrator Adobe N/A

Prism 7 GraphPad Software, Inc https://www.graphpad.com/scientific-software/prism/

R R Core Team https://www.r-project.org

MATLAB R2016a 9.0.0.341360 MathWorks mathworks.com/products/matlab

Python 2.7.11 Python Software Foundation www.python.org

Python 3.6 Python Software Foundation www.python.org

goatools https://github.com/tanghaibao/goatools

InCHLib https://openscreen.cz/software/inchlib/home/

MGI_Gene_Model_Coord.rpt http://www.informatics.jax.org/downloads/reports/
index.html

fastcluster http://www.danifold.net/fastcluster.html

Inkscape The Inkscape Project inkscape.org

22 of 29 The EMBO Journal 41: e111132 | 2022 �2022 The Authors

The EMBO Journal Tanzila Mukhtar et al

https://pga.mgh.harvard.edu/primerbank/
https://pga.mgh.harvard.edu/primerbank/
https://pga.mgh.harvard.edu/primerbank/
https://pga.mgh.harvard.edu/primerbank/
https://pga.mgh.harvard.edu/primerbank/
https://pga.mgh.harvard.edu/primerbank/
https://pga.mgh.harvard.edu/primerbank/
https://pga.mgh.harvard.edu/primerbank/
https://pga.mgh.harvard.edu/primerbank/
https://pga.mgh.harvard.edu/primerbank/
https://pga.mgh.harvard.edu/primerbank/
https://pga.mgh.harvard.edu/primerbank/
https://pga.mgh.harvard.edu/primerbank/
https://pga.mgh.harvard.edu/primerbank/
https://pga.mgh.harvard.edu/primerbank/
https://pga.mgh.harvard.edu/primerbank/
https://pga.mgh.harvard.edu/primerbank/
https://pga.mgh.harvard.edu/primerbank/
https://pga.mgh.harvard.edu/primerbank/
https://pga.mgh.harvard.edu/primerbank/
https://pga.mgh.harvard.edu/primerbank/
https://pga.mgh.harvard.edu/primerbank/
https://pga.mgh.harvard.edu/primerbank/
https://pga.mgh.harvard.edu/primerbank/
https://pga.mgh.harvard.edu/primerbank/
https://pga.mgh.harvard.edu/primerbank/
https://pga.mgh.harvard.edu/primerbank/
https://pga.mgh.harvard.edu/primerbank/
https://pga.mgh.harvard.edu/primerbank/
https://pga.mgh.harvard.edu/primerbank/
https://pga.mgh.harvard.edu/primerbank/
https://imagej.net/Fiji/Downloads
https://www.graphpad.com/scientific-software/prism/
https://www.r-project.org/
https://www.google.ch/search?client=ubuntu&hs=m61&q=MathWorks&stick=H4sIAAAAAAAAAONgVuLUz9U3MCq0LEsCAAfAJNINAAAA&sa=X&ved=0ahUKEwi53cjdkOfbAhWBxRQKHTbpAEsQmxMIugIoATAj
http://mathworks.com/products/matlab
https://en.wikipedia.org/wiki/Python_Software_Foundation
http://www.python.org
https://en.wikipedia.org/wiki/Python_Software_Foundation
http://www.python.org
https://github.com/tanghaibao/goatools
https://openscreen.cz/software/inchlib/home/
http://www.informatics.jax.org/downloads/reports/index.html
http://www.informatics.jax.org/downloads/reports/index.html
http://www.danifold.net/fastcluster.html
http://inkscape.org


Methods and Protocols

Experiment model and subject details
Hes5::GFP (Basak & Taylor, 2007) and Tbr2::GFP (Arnold et al,

2009) transgenic lines have been described previously. Mice were

maintained on a 12-h day–night cycle with free access to food and

water under specific pathogen-free conditions and according to the

Swiss federal regulations. All procedures were approved by the

Basel Cantonal Veterinary Office (license number ZH_Tay).

Method details
Tissue preparation and fluorescence-assisted cell sorting (FACS)

Dorsal cortices from embryonic day (E10.5) to postnatal day 1 (PN)

were micro-dissected and dissociated into single-cell suspensions

using Papain and Ovo-mucoid mix (as described previously

Giachino et al, 2009). Cells were washed with L15 medium and

FAC-sorted for GFP-positive NSCs using FACSariaIII (BD Bio-

sciences) derived from Hes5::GFP transgenic embryos for NSCs and

Tbr2::GFP transgenic embryos for BPs and NBNs. For each time

point, 3–4 biological replicates were generated.

RNA isolation and RNA sequencing

Total RNA was isolated from FAC-sorted GFP-positive cells from

Hes5::GFP and Tbr2::GFP transgenic lines using TRIzol reagent. A

time course was performed with NSCs, BPs, and NBNs isolated at

each time point during development from E10.5 to postnatal day 1

(PN) or as specified in the Fig 1A. Samples were analyzed for their

integrity and concentration using Agilent 2100 Bioanalyzer and

Quant-IT RiboGreen RNA Assay Kit. Sequencing libraries were pre-

pared with the Illumina TruSeq RNA Library Prep Kit v2 according

to Illumina’s instructions. After quality control (Fragment Analyzer,

AATI), libraries were pooled and loaded on an Illumina flow cell for

cluster generation (HiSeq SR Cluster Kit v4 cBot). Libraries were

sequenced SR50 on the HiSeq 2500 system (HiSeq SBS Kit V4) fol-

lowing the manufacturer’s protocols.

Single-cell RNA sequencing

Single-cell capture, lysis, and cDNA preparation were performed

with the Fluidigm C1 system. Cells were loaded on a microfluidic C1

Single Cell Auto Prep Array for mRNA Seq (5–10 μm), and capture

efficiency evaluated using microscopy. Lysis, reverse transcription,

and cDNA amplification were performed with the SMARTer Ultra

Low RNA Kit for Illumina Sequencing (Clontech/Takara) according

to Fluidigm’s guidelines for single-cell RNA-seq on the C1 system.

cDNA was harvested, profiles checked on the Fragment Analyzer

(AATI), and their concentration determined using Quant-iT Pico-

Green dsDNA Assay Kit. For subsequent library preparation using

Nextera XT DNA library preparation kit (Illumina) following the Flu-

idigm manual, cDNAs were normalized to 0.3 ng/μl. Libraries were

pooled and sequenced SR75 on an Illumina NextSeq 500 system (75

cycles High Output v2 kit).

qPCR validation

Total RNA was isolated from FAC-sorted GFP positive cells from

Hes5::GFP (E11.5, E15.5 and E18.5) and Tbr2::GP (E13.5 BPs, E15.5

BPs and E15.5 NBNs) transgenic embryos using TRIzol reagent.

Independent biological replicates were generated for RT-qPCR vali-

dation. Samples were analyzed for their integrity and concentration

using Agilent 2100 Bioanalyzer and Quant-IT RiboGreen RNA Assay

Kit. DNase treatment was done using Roche DNase kit and cDNA

prepared using the PreAmp and Reverse Transcription Master Mix

from Fluidigm. Deltagene Assay primers (Fluidigm) and EvaGreen

(BioRad) were used for real-time qPCR. Gene expression was

assayed using Dynamic Array IFC chips and the BioMark system

(Fluidigm). Fluidigm real-time PCR analysis software was used to

calculate cycle threshold (Ct) values for each qPCR.

Tissue preparation and immunohistochemistry

Hes5::GFP and Tbr2::GFP-positive brains at E17.5 were isolated and

fixed with 4% PFA in 0.1 M phosphate buffer (PBS). Brains were

embedded in 3% agarose, sectioned 40 μm thick using a Vibrotome.

Sections were mounted in mounting media containing diazabicyclo-

octane (DABCO; Sigma) as an anti-fading agent on SuperFrost glass

slides and visualized using Zeiss Apotome 2 microscope. For

immunostainings, fixed brains were equilibrated serially with 15%

and then 30% sucrose solution in PBS overnight at 4°C. Brains were

embedded in 100% OCT and 20 μm sections collected on SuperFrost

glass slides.

Adherent NSC culture in vitro and immunocytochemistry

Primary NSCs were isolated from E13.5 dorsal cortices from Hes5::

GFP transgenic embryos and BPs, NBNs were isolated at E16.5 from

Tbr2::GFP transgenic embryos. Following FAC-sorting, the cells

were seeded in 100 μg/ml Poly L-Lysine pre-coated 8-well Lab-Tek

chamber slides and cultured in DMEM/F12 + Glutamax medium

(with 2% B27). The cells were incubated for 1 h at 37°C, 5% CO2.

The cells were fixed with 4% PFA, at RT for 15 min and blocked

with 5% Normal donkey serum and 0.1% Triton X-100. Primary

antibody incubations were performed overnight at 4°C. Secondary
antibody incubations were performed at RT, for 1 h. The cells were

incubated with 1:1000 Dapi for 30 min at RT and rinsed with PBS.

Slides were mounted with DABCO and imaged using Zeiss Apotome

2 microscope.

Quantification and statistical analysis
Images taken by Zeiss Apotome 2 were processed with FIJI soft-

ware. Contrast and image size of IF images were adjusted with

Adobe photoshop. Expression profiles of genes of interest were pro-

duced in R. Bar graphs were generated by GraphPad Prism 7. All fig-

ures were made in Adobe Illustrator CS6.

Sample size is mentioned in the excel sheets for the quantifica-

tions. For FACS analysis, for Hes5::GFP transgenic embryos, only

the bright GFP-positive cells were collected. For Tbr2::GFP trans-

genic embryos, both bright and dim GFP-positive cells were col-

lected and analyzed. For IF images, three fields of views were

analyzed and quantified per sample. Unpaired t-tests were used for

qPCR validation experiments. The cutoff value for statistical signifi-

cance was indicated in corresponding tables.

Read mapping and data preprocessing

Reads from single cell and cell population mRNA-Seq were

mapped to the transcriptome (GENCODE Release M2 GRCm38.p2)

with kallisto 0.43.0[*]. The option --pseudobam was used to save

the pseudoalignments to transcriptome in BAM file. The reads

mapping to multiple transcripts were uniformly distributed. To

obtain the expression per transcript, we first divided the number
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of reads mapping to each transcript by the length of the transcript

in nucleotides and then transformed the length-normalized read

counts in transcript per million (TPM). Gene expression was

obtained by summing for each gene the TPM of the transcripts cor-

responding to the gene. Promoter expression was obtained by

summing for each promoter the length-normalized count of the

transcripts associated with the promoter and then transformed in

TPM. We added a pseudo-count of 0.5 to express transcript, gene,

and promoter expression in logarithmic space (log2(TPM + 0.5)).

For the population mRNA-Seq, we computed replicate averages in

log2(TPM + 0.5). The method used is adapted from Bray et al

(2016a, 2016b).

Differentially expressed genes in different cell types

A pairwise comparison between each two cell types is applied using

tximport and Deseq2 packages in R. Next, the first 50 top DEGs (dif-

ferentially expressed genes) for each cell type have been selected

considering fold change of more than 2 and adjusted P-value < 1e-3.

Finally, the common DEGs of each cell type are used for visualiza-

tion. The complete list of DEGs of each comparison is given in

(Dataset EV1).

The goal of our analysis was to find the most optimal marker

genes. That is, if we were to only make gene expression measure-

ments of a few genes (using qPCR, for example), those that give us

the most information about the sample. When we are only inter-

ested in knowing whether the sample belongs to one of two classes

(e.g., NSC vs. non-NSC), this information content is given by the

conditional entropy described below. Hence, we use it as a score to

find good marker genes. In the derivation, we account for the fact

that the empirical expression variance from a few data does not nec-

essarily reflect its true variance by using a prior that makes very

small and very large variances unlikely.

Assuming that the probability P xjw; μð Þ to measure log-

expression x of a gene follows a Gaussian distribution with mean μ

and inverse variance w, and using a uniform prior for μ and a

gamma-distribution prior P wjα; βð Þ ¼ βαwα�1exp �βwð Þ=Γ αð Þ for w,

we find the likelihood of getting a set of measurements

Dc ¼ x1; x2; . . . ; xncð Þ for samples of class c to be

P Dcjα; βð Þ ¼ βα

β þ ncvc=2ð Þαþ nc�1ð Þ=2
Γ αþ nc�1ð Þ=2ð Þ

Γ αð Þ

where vc is the empirical variance of Dc. Hence, we numerically

find the maximum-likelihood estimates α�; β� from maximizing the

sum of log-likelihoods across all genes. Finally, the inferred proba-

bility distribution of x in class c is:

P xjcð Þ ¼ Zc 1þ x�xcð Þ2
Vc

 !�γc

where xc ¼ xh ic;Vc ¼ nc þ 1ð Þ vc þ 2β�=ncð Þ; γc ¼ α� þ nc�1ð Þ=2 and

Zc ¼ Γ γcð Þffiffiffiffiffiffi
πVc

p
Γ γc�1=2ð Þ. This distribution is approximately Gaussian with

variance σ2 ¼ Vc= 2γcð Þ, which provides us with a more accurate es-

timate of the true variance of a gene rather than simply taking vc.

Furthermore, we can take the expression of P xjcð Þ and

P cð Þ ¼ 1= cj j to calculate the conditional entropy H cjxð Þ ¼ H x; cð Þ�
H xð Þ. While

H x; cð Þ ¼ �∑c

Z
dx P xjcð ÞP cð Þ log P xjcð ÞP xð Þ½ �

¼ � log Zcð Þ þ γc ψ γcð Þ�ψ γc�1=2ð Þð Þ;

with ψ being the digamma function, has an analytical solution,

H xð Þ ¼ R P xð Þlog P xð Þð Þ with P xð Þ ¼ ∑cP xjcð ÞP cð Þ can be calculated

through numerical integration.

In an experiment that only measures the expression of a single

gene, H cjxð Þ serves as a measure for how much information the

result provides about the class of the sample. With only two classes,

we can write H xjcð Þ ¼ �pelogpe� 1�peð Þlog 1�peð Þ, which we can

numerically invert to find pe, the probability to falsely classify a

sample based on gene expression. The table below summarizes the

classes for which we looked for such marker genes:

Class 2
Number of marker genes
pe <0:01

By cell type

NSC Non-NSC 37

BP Non-BP 0

NBN Non-NBN 136

NSC BP 49

NSC NBN 469

BP NBN 249

NSC by phase

Expansion NSC Non-expansion NSC 222

Neurogenesis
NSC

Non-neurogenesis
NSC

4

Gliogenesis
NSC

Non-gliogenesis
NSC

102

Expansion NSC Neurogenesis NSC 207

Expansion NSC Gliogenesis NSC 759

Neurogenesis
NSC

Gliogenesis NSC 117

Neurogenic (E12.5–16.5) NSC by day

E12.5 Other days 0

E13.5 Other days 3

E14.5 Other days 0

E15.5 Other days 1

E16.5 Other days 50

E12.5-E13.5 E14.5-E16.5 9

E12.5-E14.5 E15.5-E16.5 16

BP by day

E12.5 Other days 248

E13.5 Other days 0

E14.5 Other days 29

E15.5 Other days 0

E16.5 Other days 1

E17.5 Other days 3

E18.5 Other days 1

PN Other days 38

E12.5-E13.5 E14.5-PN 54
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Class 2
Number of marker genes
pe <0:01

E12.5-E14.5 E15.5-PN 83

E12.5-E15.5 E16.5-PN 0

E12.5-E16.5 E17.5-PN 15

E12.5-E17.5 E18.5-PN 4

Other

BP
E12.5-E14.5

NBN 354

BP E15.5-PN NBN 650

Gene regulatory networks

Using a set of curated binding motifs for 503 families of transcrip-

tion factors, ISMARA predicts TF binding sites in the promoters

(TSS � 500 bp) of all genes’ genome-wide and summarizes these

predictions by total count Npm of the number of binding sites for

motif m on the promoter region of promoter p. Using a matrix of

measured gene expression of promoter p in sample s Eps (measured

in logarithms of transcripts per million transcripts), ISMARA infers

the matrix Ams of activities of each motif m in each sample s, using

the likelihood

P E j A;N; σð Þ / Πps 1=σ exp Eps�Σm Npm Ams

� �2
=2σ2

h i

together with a Gaussian prior on the motif activities. To quantify

the significance of the regulatory interaction from each motif m to

each target promoter p (where all promoters that contain at least

on binding site for motif m are potential targets), ISMARA calcu-

lates the log-likelihood ratio of the model without and with the

specific interaction Npm. The core regulatory networks of Fig 3E

and H were obtained by taking all interactions with a log-

likelihood of at least 28 for Fig 3E and at least 15 for Fig 3H.

Furthermore, motif activities at each time point and cell type

are given as a mean and a standard deviation of the posterior dis-

tribution over motif activities. The significance of each motif is

characterized by a Z-score, which is calculated as follows: for each

sample, the ratio of the estimated motif activity and its standard

deviation is squared, averaged across the samples, and finally the

square root of the average is calculated. That is, a motif’s Z-score

corresponds to the average number of standard deviations the

motif activity is away from zero across the samples. For Fig 3H,

we further restricted the core regulatory network to motifs with a

Z-score of at least 1.

When analyzing the NSCs, we noticed that motifs can be roughly

distinguished as being active in either the expansion, neurogenic or

gliogenic phases. To make this more visible, we have color-coded

each motif of the graph (Fig 3E) in red for motifs active in expansion

phase, in green for motif active in neurogenesis phase, and in blue

for motifs active in gliogenesis phase. Some motifs are active in mul-

tiple phases, and we colored motifs using an HSV wheel to interpo-

late the motif activity profile between those three states. For

example, Pou5f1 in Fig 3E is active in both neurogenesis and glio-

genesis phases and is therefore colored in cyan, i.e., between green

and blue on the HSV wheel.

When analyzing the Neurogenic NSCs, BPs, and NBNs, we

noticed that motifs would either mostly vary along the first PC axis,

i.e., distinguishing samples of cell types, or along the second PC

axis, i.e., distinguishing samples from different time points. We

therefore color-coded the motifs of the graph (Fig 3H) from cyan to

magenta, cyan representing genes that vary across time but that are

constant across cell types and magenta representing motifs that vary

across cell types but that are constant across time. We use a contin-

uous gradient to report motifs varying across both time and cell

types, as for instance, motifs Pou2f2_Pou3f1 on Fig 3H.

Each node on the networks of Fig 3E and H represents a TF

motif. ISMARA also reports interactions between motifs and genes

that are not transcription factors. To summarize the predicted target

genes of each motif of the network, we ran a GO analysis (The Gene

Ontology resource: enriching a GOld mine; Gene Ontology, 2021),

and we use dotted edges to associate each motif with the main gene

ontology biological process categories that are overrepresented

among its predicted target genes.

Selection of highly variable genes

To select the most highly variable genes (HVGs), we have defined a

score for each gene based on the contribution of each gene on each

principal component and the variance that each component explains

considering the first two components, as following:

Score gið Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wgi pc1ð Þ � var pc1ð Þ� �2 þ wgi pc2ð Þ � var pc2ð Þ� �2q

:

Where wgi pckð Þ refers to the weight (contribution) of gene i in pck,

and var pckð Þ denotes the percentage of variance that is covered by

pck. Next, the first 2000 genes with the highest scores are selected

as the highly variable genes, HVGs.

Clustering of single cells

First, single cells at each time point are clustered by applying 500

times k-means clustering to avoid the dependency of k-means clus-

tering on the random initialization number (seed value). To imple-

ment k-means clustering, clustering package considering Euclidean

distance as metric in R is used. Next, the assignment matrix is esti-

mated based on the frequency of observing each two single cells in

the same clustering at each iteration. Next, the hierarchal clustering

is used to sort the assignment matrix using Euclidean distance as

metric and ward. D2 as method in hclust function in R.

Selection of differentially expressed gene in single cells

Kruskal–Wallis non-parametric test is used to select differentially

expressed genes, and genes with adjusted P-value of less than 1e-3

are considered as significantly differentially expressed genes.

Visualization

PCA is applied using prcomp function in R after centering the log

transferred data. Heatmap are illustrated using pheatmap package in

R on log transferred data.

Secondary KNN clustering and UMAP visualization

Raw counts were globally normalized; the expression of each gene

was normalized against the total expression for each cell and multi-

plied by a scale factor of 10,000 using LogNormalize in Seurat v4.0.

The most variable genes were then identified using FindVariableFea-

tures; this used local polynomial regression to fit log-variance to
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log-mean value with gene variance being calculated from the stan-

dardized values. The top 2,000 most variable genes were scaled and

used for downstream analyses. Significant principal components

were carried forward, and a K-nearest neighbor graph was con-

structed on the Euclidean distance in PCA space. Edges were

weighted based on shared overlap in neighborhoods using Jaccard

index and graph-based Louvain clustering was conducted using

FindClusters. For UMAP visualization, UMAP coordinates were cal-

culated in PCA space for significant PCs and cells were assigned by

previously derived cluster identities.

Trajectory inference analysis

Cell embeddings from established clustering were then used to infer

lineage structures in low-dimensional space using Slingshot. First,

the global lineage structure was identified constructing a cluster-

based minimal spanning tree in a semi-supervised manner using a

priori knowledge using GetLineages. This was then converted into

smooth lineages to infer pseudotime by fitting simultaneous princi-

pal curves for each lineage with the getCurves function.

Linnarsson comparisons

Our C1 dataset was compared against (La Manno et al, 2021) single-

cell developmental time course dataset, all cells from tissue labeled

as “Forebrain” and “Dorsal Forebrain” by (La Manno et al, 2021)

were clustered to capture cells spanning E9-E18 developmental

timepoints. For radial glial exclusive comparisons, the cells were

further subset to include only cells classed as “Radial Glia” in the

original analysis. Canonical correlation analysis (CCA) was used to

integrate this dataset with our C1 data. Log-normalized and scaled

variable features that were repeatedly variable in both datasets were

called and used to define cell anchors between the datasets, these

anchors were then used to integrate the two datasets together. The

integrated datasets were then clustered and visualized using UMAP

as described above.

NeuroStemX data exploration web app

The NeuroStemX data exploration web app makes it possible to nav-

igate data produced in the NeuroStemX project. The site supports

viewing data by focusing on one of several parameters: gene list,

biological sample, or measurement type (single cell vs. population).

The website allows entry of a list of mouse genes (either as gene

symbol or Ensembl ID) to focus on the data acquired for those

genes. It alternatively allows viewing data on individual samples.

When looking at a sample, a list of genes that have been determined

to be outliers are shown. A gene is considered an outlier for a sam-

ple if the expression value of the gene either exceeds the 75th per-

centile +1.5*iqr or is less than the 25th percentile −1.5*iqr, where

percentiles and inter-quartile range are computed based on the

expression values for the given gene over all samples within the

measurement type (single cell or population).

When viewing all data for a measurement type, data are dis-

played using hierarchical clustering. The InCHLib widget displays

the clustered data. Clustering is performed using the fastcluster

package in python with distance (both row and column) calculated

using the Euclidean metric and linkage (both row and column) per-

formed using Ward’s method (Mullner, 2013; Skuta et al, 2014).

The site supports performing gene ontology enrichment analysis

either locally, using goatools, or with PANTHER. For local

enrichment analysis, we use the MGI_Gene_Model_Coord annota-

tions based on the GRCm38 assembly (Mi et al, 2017).

Goatools: https://github.com/tanghaibao/goatools

Haibao Tang et al GOATOOLS: Tools for Gene Ontology. Zenodo.

10.5281/zenodo.31628.

MGI_Gene_Model_Coord.rpt

http://www.informatics.jax.org/downloads/reports/index.html

Data availability

The RNA sequencing datasets have been deposited in Gene Expres-

sion Omnibus (GEO) with accession number GEO:

GSE134688

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE134688

and

GSE134738

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE134738

For ISMARA, data can be found here:

https://ismara.unibas.ch/NeuroStemX

Expanded View for this article is available online.
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Expanded View Figures

▸Figure EV1. Experimental paradigm and validation of the transcriptional analyses.

A Hes5::GFP and Tbr2::GFP transgenic mice used for cell isolation.
B Expression of Hes5::GFP and Tbr2::GFP embryonic cortices at E17.5. Scale bar = 100 μm. Arrowheads pointing to Tbr2::GFP cells in VZ. Immunostainings for Pax6

and Tbr2 with Hes5::GFP and Tbr2::GFP coronal sections from E17.5. Arrows point to GFP+Pax6+ cells and arrowheads point to GFP+Tbr2+ cells. Scale
bare = 100 μm.

C Examples of FACS plots for GFP positive cell sorting at E14.5 Hes5::GFP and E15.5 Tbr2::GFP.
D–F Expression validation of Hes5::GFP and Tbr2::GFP positive cells after FAC sorting in vitro. Scale bar = 20 μm.
G Expression plots of some known markers of NSCs. Each dot defines the mean and lines define the SD. Three to four biological replicates were collected for each

time point.
H Heatmap showing differentially expressed genes in three cell populations illustrating NSCs, BPs and NBNs vary in expression, based on z-scored log2(TPM)

expression values.
I Bar plot representing the proportion of variance covered by each PC in PCA of all cell types.
J, L, N Volcano plots for DEG analysis for NSCs versus BPs, NSCs versus NBNs and BPs versus NBNs, respectively. Significantly DEGs are colored as gray and top 100

DEGs are colored by red.
K, M, O Top 10 DEGs for NSCs versus BPs, NSCs versus NBNs, and BPs versus NBNs, respectively. Central band is the median, the whiskers define the upper and lower

limit, and the box defines the interquartile ranges. (J–O) are related to analysis of Fig 1E. The range of P-values is very different: NSC (0.01–0.4%), BP (1.6–4.9%),
NBN (0.06–0.2%). There are no good marker genes for BPs as their gene expression tends to be similar to either NSC or NBN.
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▸Figure EV2. Experimental validation of transcriptional profile changes in NSCs over time.

A Bar plot representing the variance coverage by PC corresponding to PCA plot in Fig 2A.
B Heatmap illustrating the expression changes in signature genes in time points corresponding to expansion, neurogenesis, and gliogenesis.
C qPCR validation of signature genes in three zones. Each time point has samples varying from N = 3 to N = 7 biological replicates. (Statistical test used- Unpaired

Student’s t-test, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001).
D–G k-Means clustering of z-scored log2 (TPM) gene expression profiles over developmental time course in NSCs with genes showing upregulation, e.g., Cspg4, down-

regulation, e.g., Shh, transient downregulation, e.g., Jag1, transient upregulation, e.g., Neurog2.
H Bar plot representing the variance coverage by PC corresponding to PCA plot in Fig 2E.
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Figure EV3. Experimental validation of transcriptional profile changes in BPs and NBNs over time.

A, B Bar plots representing the variance coverage by PCs corresponding to PCA plot in Fig 2I and M.
C Heatmap illustrating the expression changes in signature genes in time points corresponding to early BPs, mid-BPs, and NBNs.
D qPCR validation of signature genes for three sample types. Each time point has samples varying from N = 3 to N = 7 biological replicates (statistical test used—

Unpaired Student’s t-test, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001).
E k-Means clustering of z-scored log2(TPM) gene expression profiles over developmental time course in BPs with genes showing downregulation, e.g., Tbr1 and upreg-

ulation, e.g., Cux2.
F k-Means clustering of z-scored log2(TPM) gene expression profiles over developmental time course in NBNs with genes showing downregulation, e.g., Tbr1 and

upregulation e.g., Cux2.
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▸Figure EV4. C1 data integration and comparison with Linnarsson dorsal cortex data (La Manno et al, 2021).

A UMAP visualization of identified clusters of NSCs, BPs and NBNs when analyzed together, segregating all cells in eight clusters—four NSC, two BP, and two NBN
clusters.

B UMAP visualization of post CCA integrated merged dataset containing C1 and dissected forebrain and dorsal forebrain cells; Linnarsson dataset from (La Manno
et al, 2021), into 10 clusters.

C UMAP clustering visualization of Linnarsson dataset with C1 data post CCA. Cells are labeled with established “Class” from original manuscript. Our NSCs and NBNs
fall in Linnarsson radial glia and neuronal clusters.

D C1 data maps onto Linnarsson clusters.
E UMAP clustering visualization after CCA. Cells are labeled by our previously identified clusters. Our C1 clusters integrate mostly with Linnarsson radial glia and

neuronal clusters and maintain their separate clustering.
F Example feature plots showing consistent expression of markers in NSCs, BPs and NBNs between two datasets. Y-axis is the log normalized expression.
G UMAP clustering visualization post CCA integration of C1 NSCs and radial glial classed cells from Linnarsson dataset, segregating in five clusters.
H Positional mapping of C1 onto Linnarsson clusters.
I After CCA integration, we find C1 NSCs integrate well with Linnarsson radial glial cells. Cells labeled with our previously identified five NSC clusters.
J Example feature plots showing consistent expression of markers in NSCs and radial glial cells, between two datasets.
K Example feature plots showing consistent expression of Hbb subunits in NSCs and radial glial cells, between two datasets.
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▸Figure EV5. Heterogeneity of cortical layering marker expression in NSCs, BPs and NBNs.

A Heatmap of cortical layer markers in NSC single cells, based on z-scored log2(TPM) expression values.
B Heatmap of cortical layer markers in BP single cells, based on z-scored log2(TPM) expression values.
C Heatmap of cortical layer markers in NBN single cells, based on z-scored log2(TPM) expression values.
D Temporal distribution of NSC single cells along the deep or upper layer markers.
E Temporal distribution of BP single cells along the deep or upper layer markers.
F Temporal distribution of NBN single cells along the deep or upper layer markers.

Data Information: In (D–F), X axis: deep layer markers- Bcl11b, Tbr1, Lhx2, Lix1, Sox5, and Y axis- Cux2, Satb2, Bhlhe22, Mef2c, Mdga1.
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