
 

Supplementary data 

 

Supplementary Appendix 1. Implementation detail about coronary artery 

recognition network 

Model structure 

Existing DNN algorithms usually predict the category of each pixel. The pixel-level accuracy may be 

high, but the relationship between pixels is easily overlooked, making the vessel segmentation results 

discontinuous. Thus, we modified a special DNN: conditional generative adversarial network (cGAN) 

(Supplementary Figure 4) for image segmentation (so-called pix2pix, pix2pixHD). This cGAN 

consists of a generator and a discriminator. The training process of this cGAN can be treated as a 

competitive procedure between the generator and the discriminator. In the end, the entire model 

reaches Nash equilibrium. In the evaluation process, we only apply the generator to generate artery 

recognition results. The generator takes the coronary angiogram input and outputs the coronary artery 

category to which each pixel belongs. We rearrange the prediction results of each pixel into an image, 

indicating the recognition result of DNN. The size of the input angiogram and the output image result 

is 512×512 pixels. 

 

In the generator, we apply the U-net structure with four down-sampling blocks (down-sample the input 

from 512x512 to 32x32) and four up-sampling blocks (up-sample the input from 32x32 to 512x512) as 

the generator part, which is shown in Supplementary Figure 4. The discriminator part contains three 

sub-discriminators to discriminate on three different scales and average the results. The three 

distinguishing scales are the original image, 1/2 down-sampling of the original image, and 1/4 down-

sampling of the original image. These three layers build an image pyramid and train a discriminator for 

each layer. It is notable that we use a convolutional “PatchGAN” classifier in these sub-discriminators, 

which only penalises structure at the scale of image patches. More specifically, each sub-discriminator 

outputs an 8×8 matrix. Each element of this matrix is a single value (from 0 to 1) corresponding to a 

64×64 patch of input. Each sub-discriminator tries to classify if each 64×64 patch in an image is real or 

fake. We run this discriminator convolutionally across the image, averaging all responses to provide 

the ultimate output of sub-discriminator. This design can significantly improve the spatial continuity of 

segmentation results. 

 

In the network testing process, the outputs of the generator are treated as segmentation results. The 

output has three RGB channels (a GAN model output has the same shape as its input). Each pixel in the 

output will be converted to a prediction label according to the Euclidean distance between pixel value 

and prediction label value. The mapping relationship between prediction label value and coronary 

artery segments is shown in Supplementary Table 4. For example, a predicted pixel (250,249,248) 

will be converted to the label value (255,255,255), which has the minimal Euclidean distance to this 

predicted pixel. Different kinds of ground-truth triad value only contain 0,128 or 255, which ensures 

the large Euclidean distance between different ground-truth values so that each pixel will eventually 

converge to its ground-truth label. However, the model will publish various kinds of misclassified 

pixels differently in the initial stage of network training, which slows down the network training. 



 

Multiple-channel output (21 one-hot channels) may improve the issue even though it increases the 

amount calculation slightly. In this work, we set the output as 3 RGB image. 

 

Loss function 

(1) GAN loss. 

The optimisation process of our Conditional GANs can be described as the following minimax game: 

min
𝐺

max
𝐷

𝐿𝐺𝐴𝑁(𝐺, 𝐷), 

Where the loss function 𝐿𝐺𝐴𝑁(𝐺, 𝐷) is given by  

𝐸(𝑖,𝑜)[𝑙𝑜𝑔𝐷(𝑖, 𝑜)] +  𝐸(𝑖)[log (1 − 𝐷(𝑖, 𝐺(𝑖)))], 

where 𝑖 is an angiogram and 𝑜 is a segmentation result image. Our discriminator part has three sub-

discriminators. The learning problem then becomes a multi-task learning problem of 

min
𝐺

max
𝐷1𝐷2𝐷3

∑ 𝐿𝐺𝐴𝑁(𝐺, 𝐷𝑘)𝑘=1,2,3 . 

(2) Feature matching loss. 

In each sub-discriminator, we calculated the pixel-wise loss between the feature of the generated 

segmentation result by generator and the feature of the ground truth. The loss is shown as:  

𝐿𝐹𝑀(𝐺, 𝐷𝑘) =  ∑
1

𝑁𝑖

𝑇
𝑖=1 ‖𝐷𝑘

(𝑖)(𝑖, 𝑜) − 𝐷𝑘
(𝑖)(𝑖, 𝐺(𝑖))‖

1
, 

where T is the total number of layers (herein there are five layers in each sub-discriminator), Ni denotes 

the number of elements in each layer, 𝐷𝑘
(𝑖)

 denotes the ith-layer feature extractor of sub-discriminator 

𝐷𝑘. 

 

(3) VGG-based perceptual loss. 

Like feature matching loss, we also extract the VGG feature of the generated segmentation result by 

generator and the VGG feature of the ground truth, considering the low-level feature (edge and 

context) extracted by pre-trained VGG network, also avails angiogram analysis. The loss is shown as: 

𝐿𝑉𝐺𝐺(𝐺, 𝐷𝑘) =  ∑
1

𝑀𝑗

𝑁
𝑗=1 ‖𝑉𝐺𝐺 

(𝑗)(𝑜) − 𝑉𝐺𝐺 
(𝑗)(𝐺(𝑖))‖

1
 

, 

where N is the total number of VGG layers, Mj denotes the number of elements in each layer, 𝑉𝐺𝐺𝑘
(𝑗)

 

denotes the jth-layer feature extractor of VGG. 

The total loss function is the sum of the above three losses, shown as: 

min
𝐺

max
𝐷1𝐷2𝐷3

∑ 𝐿𝐺𝐴𝑁(𝐺, 𝐷𝑘)

𝑘=1,2,3

+ 𝛼 ∑ 𝐿𝐹𝑀(𝐺, 𝐷𝑘)

𝑘=1,2,3

+ 𝛽 ∑ 𝐿𝑉𝐺𝐺(𝐺, 𝐷𝑘)

𝑘=1,2,3

 

 

Implementation detail 

For training, the initial learning rate is 2×105, which gradually dropped to 106 during training. For 

the weight parameter, we set 𝛼 as 0.5 and 𝛽 as 10. The number of training epochs is 400. 

Graphics processing units are NVIDIA GTX 1080Ti GPUs. Adam optimiser was used to optimise 

our model. Training time lasted about five days. 

  



 

Supplementary Appendix 2. Implementation detail about lesion morphology 

detection network 

Model structure 

For the lesion morphology detection task, we developed a convolutional DNN (Supplementary Figure 

4), which takes coronary angiogram input and outputs the location (the upper left and lower right 

coordinates of the predicted rectangular area) and type (a scalar) of all the lesion morphologies that 

appeared in the input angiogram. Deep residual block, up-sampling layer, and lateral connection are 

used to extract different scale features of different lesions. Using these feature maps, the Region 

Proposal Network generates region proposal areas where lesion morphologies may occur. After that, 

features of every region proposal area are fed into convolutional layers and fully connected layers, to 

predict the type and location of lesion morphologies. 

 

As shown in Supplementary Figure 5, the input angiograms are down-sampled by 22 pooling layers 

and up-sampled by 22 interpolated layers. Different down-sampling features and up-sampling features 

are combined by element-sum (light green arrows) operator. Convolutional layers (green arrows) 

extract four different scale detection features. Using these feature maps. RPN (region proposal 

network) generates region proposal areas where lesion morphologies may occur. After that, features of 

every region proposal area are fed into several convolutional layers and fully connected layers, to 

predict the type and location of lesion morphologies.  

 

We treated four different scale detection features (dark blue blocks as F0, F1, F2, F3) as a feature 

pyramid and viewed it as if it were produced from an image pyramid. Thus, we can adapt the 

assignment strategy of region-based detectors (in Fast r-cnn) in the case when they run on image 

pyramids. Formally, we assign a region of interest (RoI) of width w and height h (on the input image to 

the network) to the level Fk of our feature pyramid by: 𝑘 = ⌊𝑘0 + 𝑙𝑜𝑔2(√𝑤ℎ/224)⌋. Here k0 is the 

target level on which an RoI with 𝑤 × ℎ = 2242 should be mapped into. We set k0 to 3. Intuitively, the 

equation above means that if the RoI’s scale becomes smaller (say, 1/2 of 224), it should be mapped 

into a finer-resolution level (say, k = 2). 

 

Loss function 

After assigning the detection feature for a RoI, the optimisation process of our lesion detection network 

can be described as: 

𝐿(𝑝𝑖, 𝑡𝑖) =
1

𝑁𝑐𝑙𝑠
∑ 𝐿𝑐𝑙𝑠(𝑝𝑖, 𝑝𝑖

∗)

𝑖

+ 𝜆
1

𝑁𝑟𝑒𝑔
∑ 𝑝𝑖

∗𝐿𝑟𝑒𝑔(𝑡𝑖, 𝑡𝑖
∗)

𝑖

 

Where 𝑝𝑖 is the classification possibility of the ith anchor (the region proposal box generated by RPN, 

presented by a four tuple {𝑥1, 𝑦1, 𝑥2, 𝑦2}, where (𝑥1, 𝑦1) is the left-top corner of the box and (𝑥2, 𝑦2) 

is the right-bottom corner of the box), we name the ith anchor as Anchor[i].  

 

When the Anchor[i] is positive region proposal (the IOU of Anchor[i] and its Ground Truth Box >0.7), 

𝑝𝑖
∗ = 1. When the Anchor[i] is negative region proposal (the IOU of Anchor[i] and its Ground Truth 

Box <0.3), 𝑝𝑖
∗ = 0. Anchors that are not positive or negative were not trained by the network. 𝑡𝑖 is the 



 

parameterised coordinates of the predicted box of Anchor[i], and 𝑡𝑖
∗ is the parameterised coordinates 

of the Ground Truth Box of Anchor[i].  

 

For an anchor box, 𝑡𝑖 = {𝑡𝑥, 𝑡𝑦, 𝑡𝑤, 𝑡ℎ} where 𝑡𝑥 = (𝑥 − 𝑥𝑎/𝑤𝑎), 𝑡𝑦 = (𝑦 − 𝑦𝑎/ℎ𝑎), 𝑡𝑤 =

𝑙𝑜𝑔(𝑤/𝑤𝑎), 𝑡ℎ = 𝑙𝑜𝑔(ℎ/ℎ𝑎); 𝑡𝑖
∗ = {𝑡𝑥

∗, 𝑡𝑦
∗ , 𝑡𝑤

∗ , 𝑡ℎ
∗} where 𝑡𝑥

∗ = (𝑥 
∗ − 𝑥𝑎/𝑤𝑎), 𝑡𝑦 = (𝑦 

∗ −

𝑦𝑎/ℎ𝑎), 𝑡𝑤 = 𝑙𝑜𝑔(𝑤 
∗/𝑤𝑎), 𝑡ℎ = 𝑙𝑜𝑔(ℎ 

∗/ℎ𝑎), where (𝑥, 𝑦) is the centre point of the predicted box, 

𝑤, ℎ are the weight and height of the predicted box, (𝑥𝑎 , 𝑦𝑎) is the centre point of the anchor box, 

𝑤𝑎 , ℎ𝑎 are the weight and height of the anchor box, (𝑥 
∗, 𝑦 

∗) is the centre point of the Ground Truth 

box, 𝑤 
∗, ℎ 

∗ are the weight and height of the Ground Truth box. 

 𝑁𝑐𝑙𝑠 is the minibatch size. 𝑁𝑟𝑒𝑔 is the number of anchor box. 𝐿𝑐𝑙𝑠(𝑝𝑖, 𝑝𝑖
∗) = −log [𝑝𝑖𝑝𝑖

∗ + (1 −

𝑝𝑖)(1 − 𝑝𝑖
∗)] and 𝐿𝑟𝑒𝑔(𝑡𝑖, 𝑡𝑖

∗) = 𝑆𝑚𝑜𝑜𝑡ℎ𝐿1(𝑡𝑖 − 𝑡𝑖
∗) where 𝑆𝑚𝑜𝑜𝑡ℎ𝐿1(𝑥) = {

0.5 ∗ 𝑥2     |𝑥| < 1
    |𝑥| − 0.5  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 . 

 

Implementation details 

All architectures in Supplementary Figure 4 are trained end to end. We adopt synchronised SGD 

optimiser to update our network. Graphics processing units are NVIDIA GTX 1080Ti GPUs. A mini-

batch involves two images and 256 anchors per image. We use a weight decay of 0.0001, a momentum 

of 0.9 and a 𝜆 of 10. The learning rate is 0.02 for the first 30k mini-batches and 0.002 for the next 10k. 

The implementation details of FPN feature selection are set the same as in FPN (feature pyramid 

networks). 

 

 

 



 

 

Supplementary Figure 1. The annotation procedure for coronary artery recognition 

and lesion morphology detection. 

A) Coronary artery recognition. The first image is an original image. The second 

image is a sketchy-labelled image. The third image is a fine-labelled image.  

B) Lesion morphology detection. The first image is an original image. The second 

image is a labelled image including lesion type and lesion location. 

 

 

 



 

 

Supplementary Figure 2. Annotated coronary artery segments. 

A total of 20 coronary artery segments were annotated in our study. 

 

  



 

 

 

 

 

Supplementary Figure 3. The structure of the coronary artery recognition network. 

This GAN consists of a generator and a discriminator. The training process of this 

network can be treated as a competitive procedure between the generator and the 

discriminator. In the end, the entire model reaches Nash equilibrium and the accuracy 

of the discriminator is equal to 50%, which means that the discriminator is hard to 

discern the difference between recognition results and ground-truth images, showing 

that generator outputs a high-quality recognition result. In the evaluation process, we 

only apply the generator to generate artery recognition results. 

In the generator, the input angiograms are down-sampled (white arrows) and then up-

sampled (blue arrows) to generate features of different scale. These features are 

combined by concatenated operator (yellow arrows) to enrich the semantic 

information for better performance. In the discriminator, recognition results and 

ground truth are resized to different scale and processed and combined by several 

convolutional layers to generate the discrimination result. 

 

  



 

 

 

 

Supplementary Figure 4. The structure of the lesion morphology detection network. 

The input angiograms are down-sampled by 2x2 pooling layers and up-sampled by 

2x2 interpolated layers. Different down-sampling features and up-sampling features 

are combined by element-sum (light green arrows) operator. Convolutional layers 

(green arrows) extract four different scale detection features. Using these feature 

maps, the RPN network generates region proposal areas where lesion morphologies 

may occur. After that, features of every region proposal area are fed into several 

convolutional layers and fully connected layers, to predict the type and location of 

lesion morphologies. RPN: region proposal network 

 

 

 



 

 

Supplementary Figure 5. Evaluation process of the coronary artery recognition 

model and the lesion morphology detection model. 

For the coronary artery recognition model, we feed an angiogram (A) as input image. The 

recognition model will output the results (C). The middle image is ground truth (B). D and E 

are generated by zooming in the LM segment in B and C. In the result image, the red area is 

the predicted area of the LM segment by the model. We counted the number of red pixels in 

this area (E) and ground-truth area (D) to calculate the pixel number of true positive (TP), true 

negative (TN), false positive (FP) and false negative (FN). The TP pixel is the red pixel in D 

and E. The TN pixel is the non-red pixel in D and E. The FP pixel is the red pixel in E but the 

non-red pixel in D. The FN pixel is the non-red pixel in E but the red pixel in D. Based on 

these results, we evaluate the segment recognition model by several metrics including 

accuracy ([TP+TN]/[TP+TN+FP+FN]), sensitivity (TP/[TP+FN]), specificity (TN/[TN+FP]), 

positive predictive value (TP/[TP+FP]), negative predictive value (TN/[TN+FN]). For the 

lesion morphology detection model, we feed an angiogram (A) as input. The detection model 

will output the results (C). The yellow bounding box and lesion name are ground truth (B). 

The white bounding boxes are detected lesion cases by models. One dissection lesion (a, 

overlap rate=0.90 >0.5) is detected correctly, and another one (b, overlap rate=0 <0.5) is 

detected incorrectly. For this angiogram, the precision rate is 50%, the recall rate is 100% and 

the F1 score is 0.667. We counted all detected lesion cases by models and all correctly 



 

detected lesion cases in the test data set to calculate the precision rate, recall rate and F1 score 

of every kind of lesion.  

 

 

 

 

Supplementary Figure 6. Performance of vessel extraction. 

A) Input angiogram.  

B) – F) Result images of recognition models which were trained using a different 

amount of data (1,000, 3,000, 5,500, 8,000, 11,900 images). 

 



 

 

 

Supplementary Figure 7. Expected automatic calculation system for the SYNTAX 

score. 

 

First column: input angiograms under different angiographic views. Second and third 

columns: the intermediate results generated by DeepDiscern system. Fourth column: 

combined results. All images are zoomed in for better visualisation. 

  



 

Supplementary Table 1. Coronary arteries labelled in different angiographic 

views. 

Coronary artery segments CRAb CAUb 

LAO (right)a 

LAO_CAU (right)a 

LAO_CRA (right)a 

LAO_

CAUb 

LAO_

CRAb 

RAO_CAUb RAO_CRAb 

LM √ √  √ √ √ √ 

LAD proximal √   √ √  √ 

First diagonal √   √ √  √ 

Add. first diagonal √   √ √  √ 

LAD mid √   √ √  √ 

Second diagonal √           √  √ 

Add. second diagonal √    √  √ 

LAD apical √   √ √  √ 

Intermediate  √  √  √  

LCX proximal  √  √  √  

LCX distal  √  √  √  

Second obtuse marginal  √  √  √  

First obtuse marginal  √  √  √  

Left posterolateral  √  √  √  

Posterior descending (LCX)  √  √  √  

RCA proximal   √     

RCA mid.   √     

RCA distal   √     

Posterior descending (RCA)   √     

Posterolateral   √     

Unconcerned arteriesc √ √ √ √ √ √ √ 

Background √ √ √ √ √ √ √ 

Catheter √ √ √ √ √ √ √ 



 

DIA: diagonal; LAD: left anterior descending artery; LCX: left circumflex artery; LM: left main; L-

PDA: left posterior descending; L-PLA: left posterolateral; OM: obtuse marginal; PDA: posterior 

descending; PLA: posterolateral; RCA: right coronary artery 

 aIn the LAO_CAU (right) part of the data set, all angiograms were obtained in the LAO_CAU view. 

Only the right coronary artery appeared in these angiograms, as well as for LAO and LAO_CRA 

(right) parts.  

bIn the other parts of the data set, all angiograms were obtained in the angiographic view corresponding 

to their part name. Only the left coronary artery appeared in these angiograms.  

cFor every part of the data set, all coronary artery segments without check marks were labelled as 

“unconcerned arteries”. These coronary artery segments will not be overly concerned in the 

angiographic view of this part of the data set. 

  



 

Supplementary Table 2. National Heart, Lung and Blood Institute (NHLBI) 

coronary dissection criteria. 

Variable Definition 

Dissection  

A Small radiolucent area within the lumen of the vessel 

B Linear non-persisting extravasation of contrast 

C Extraluminal, persisting extravasation of contrast 

D Spiral – shaped filling defect 

E Persistent luminal defect with delayed anterograde flow 

F Filling defect accompanied by total coronary occlusion 

 

  



 

Supplementary Table 3. The mapping relationship between prediction label 

value and coronary artery segments. 

DIA: diagonal; LAD: left anterior descending artery; LCX: left circumflex artery; LM: left main; L-

PDA: left posterior descending; L-PLA: left posterolateral; OM: obtuse marginal; PDA: posterior 

descending; PLA: posterolateral; RCA: right coronary artery 

  

Coronary artery 

segments 

Label value Colour 

Coronary artery 

segments 

Label value Colour 

LM (255,0,0) ■ Second obtuse marginal (128,128,0) ■ 

LAD proximal (0,255,0) ■ First obtuse marginal (128,0,128) ■ 

First diagonal (0,0,255) ■ Left posterolateral (0,128,128) ■ 

Add. first diagonal (0,128,255) ■ Posterior descending (LCX) (128,255,0) ■ 

LAD mid (255,0,255) ■ RCA proximal (255,128,0) ■ 

Second diagonal (0,255,255) ■ RCA mid (255,0,128) ■ 

Add. second diagonal (128,0,255) ■ RCA distal (0,255,128) ■ 

LAD apical (255,255,0) ■ Posterior descending (RCA) (128,128,255) ■ 

Intermediate (128,0,0) ■ Posterolateral (128,255,128) ■ 

LCX proximal (0,0,128) ■ Background (0,0,0) ■ 

LCX distal (0,128,0) ■ Catheter (255,255,255) ■ 



 

Supplementary Table 4. Recognition performance of all segments under 

different angiographic views. 

CAU: caudal view; CRA: cranial view; LAO: left anterior oblique view; LAO_CAU: left anterior 

oblique-caudal view; LAO_CRA: left anterior oblique-cranial view; NPV: negative predictive value; 

PPV: positive predictive value; RAO: right anterior oblique view; RAO_CAU: right anterior oblique-

caudal view; RAO_CRA: right anterior oblique-cranial view  

 

Angiographic view 

Accuracy % 

(95% CI) 

Sensitivity % 

(95% CI) 

Specificity % 

(95% CI) 

PPV % 

(95% CI) 

NPV % 

(95% CI) 

Left coronary artery      

CRA 98.5 (98.4-98.6) 86.8 (85.8-87.8) 98.9 (98.9-99.0) 74.0 (72.8-75.2) 99.5 (99.5-99.6) 

CAU 98.5 (98.5-98.6) 83.8 (82.8-84.8) 98.9 (98.8-99.0) 70.8 (69.7-72.0) 99.5 (99.5-99.6) 

LAO_CRA 98.4 (98.3-98.5) 86.6 (85.5-87.6) 98.8 (98.7-98.9) 70.8 (69.7-71.9) 99.5 (99.4-99.5) 

LAO_CAU 98.7 (98.6-98.8) 87.8 (86.8-88.9) 99.0 (99.0-99.1) 73.4 (72.1-74.6) 99.6 (99.6-99.7) 

RAO_CRA 98.4 (98.3-98.5) 86.6 (85.6-87.5) 98.8 (98.7-98.9) 71.0 (69.9-72.1) 99.5 (99.5-99.5) 

RAO_CAU 99.0 (98.9-99.1) 87.8 (86.9-88.8) 99.4 (99.3-99.4) 80.3 (79.2-81.3) 99.6 (99.6-99.7) 

Right coronary artery      

LAO 98.1 (98.0-98.2) 78.5 (77.2-79.7) 98.8 (98.7-98.9) 72.8 (71.5-74.2) 99.2 (99.1-99.2) 

LAO_CAU 98.6 (98.5-98.6) 83.2 (82.3-84.1) 99.2 (99.1-99.2) 79.7 (78.8-80.6) 99.3 (99.2-99.4) 

LAO_CRA 98.1 (97.9-98.2) 86.5 (85.8-87.3) 99.4 (99.3-99.4) 85.1 (84.3-85.9) 99.5 (99.4-99.5) 

RAO 97.1 (96.8-97.3) 83.4 (81.7-85.0) 99.2 (99.1-99.3) 79.0 (77.2-80.9) 99.4 (99.3-99.5) 




