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Proof of Proposition 1

Proof. Let us write X as X = sechT where T ∼W (α, β), the cdf of X can be determined as

F (x, α, β) = P (X ≤ x) = P (sechT ≤ x) = P (arcsechx ≤ T ≤ ∞) = 1−
[
1− e−α(arcsechx)

β
]

= e−α(arcsechx)
β

.

Note that the hyperbolic secant function is a decreasing function on (0,∞). The associated pdf follows

by differentiating F (x, α, β) with respect to x and using ∂(arcsechx)/∂x = −
(
x
√

1− x2
)−1

. Hence, the
proof is completed.

Proof of Proposition 2

Proof. The ASHW distribution is identifiable once F (x, α1, β1) = F (x, α2, β2) is valid if and only if
α1 = α2 and β1 = β2. After some developments, we get

F (x, α1, β1) = F (x, α2, β2) ⇔ e−α1(arcsechx)
β1

= e−α2(arcsechx)
β2

⇔ α1 (arcsechx)
β1 = α2 (arcsechx)

β2 ⇔ α1

α2
(arcsechx)

β1−β2 = 1

⇔ log

(
α1

α2

)
+ (β1 − β2) log(arcsechx) = 0.

This equality is satisfied for any x if and only the term varying is x is not present, so β1 = β2, and this
also implies that log(α1/α2) = 0, so α1 = α2. It is concluded that the model is identifiable.

Proof of Proposition 3

Proof. Let us investigate the proof of the two items, in turn.

• From Equation (1), we have

∂

∂α
F (x, α, β) = F

′

α(x, α, β) = − (arcsechx)
β
e−α(arcsechx)

β

< 0.

Hence, F (x, α, β) is decreasing with respect to the parameter α. Moreover, we have

∂2

∂α2
F (x, α, β) = (arcsechx)

2β
e−α(arcsechx)

β

> 0,

proving the convexity of F (x, α, β) with respect to the parameter α.

• Similarly, we have

∂

∂β
F (x, α, β) = F

′

β(x, α, β) = −α (arcsechx)
β

log (arcsechx) e−α(arcsechx)
β

.

It is clear that the log(arcsechx) term determines the sign of above Equation, and log(arcsechx)
is positive if x ∈ (0, 2e/(e2 + 1)), and negative if x ∈ (2e/(e2 + 1), 1). Hence, it can be concluded
that F (x, α, β) is decreasing with respect to β if x ∈ (0, 2e/(e2 + 1)), and increasing with respect
to β if x ∈ (2e/(e2 + 1), 1).

Proposition 3 is proved.
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Proof of Proposition 4

Proof. After simplifications, owing to Equation (2), we arrive at

q(x, α1, α2, β) =
α1

α2
e(α2−α1)(arcsechx)

β

.

Hence

∂

∂x
q(x, α1, α2, β) = −βα1

α2
(α2 − α1)

(
x
√

1− x2
)−1

(arcsechx)
β−1

e(α2−α1)(arcsechx)
β

.

Since α2 − α1 ≥ 0, the above derivative function is negative, implying that q(x, α1, α2, β) is decreasing.
This finishes the proof of Proposition 4.

Proof of Proposition 5

Proof. The inequality is clear for x 6∈ (0, 1). For x ∈ (0, 1), let us notice that

arcsechx = log
[(

1 +
√

1− x2
)
/x
]

= − log x+ log
(

1 +
√

1− x2
)
≥ − log x.

Therefore, α (arcsechx)
β ≥ α (− log x)

β
, which implies that

F (x, α, β) = e−α(arcsechx)
β

≤ e−α(− log x)β = F∗(x, α, β).

This terminates the proof of Proposition 5.

Proof of Proposition 6

Proof. We can write X = sechT where T ∼W (α, β). Therefore, owing to the general binomial theorem
with e−2T ∈ (0, 1) almost surely, we obtain

Xr = (sechT )r = 2r
e−rT

(1 + e−2T )r
= 2r

+∞∑
k=0

(
−r
k

)
e−(r+2k)T .

Hence, by the Fubini-Tonelli theorem, we get

mr = E(Xr) = 2r
+∞∑
k=0

(
−r
k

)
E(e−(r+2k)T ).

Now, by the exponential series, Fubini-Tonelli theorem and the definition of the Weibull distribution, we
get

E(e−(r+2k)T ) =

+∞∑
`=0

(−1)`

`!
(r + 2k)`E(T `) =

+∞∑
`=0

(−1)`

`!
(r + 2k)`α−`/βΓ

(
`

β
+ 1

)
.

The desired result is obtained by putting all the above equalities together. This concludes the proof of
Proposition 6.

Proof of Proposition 7

Proof. By expressing Yt as Yt = sechT if {sechT ≤ t} = {T ≥ arcsech t} and 0 otherwise, we get

mr(t) = 2r
+∞∑
k=0

(
−r
k

)
E[e−(r+2k)T I(T ≥ arcsech t)],
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where I(T ≥ arcsech t) = 1 if the event {T ≥ arcsech t} is realized, and 0 otherwise. We conclude by
noticing that

E[e−(r+2k)T I(T ≥ arcsech t)] =

+∞∑
`=0

(−1)`

`!
(r + 2k)`E[T `I(T ≥ arcsech t)]

=

+∞∑
`=0

(−1)`

`!
(r + 2k)`α−`/βΓ

(
`

β
+ 1, α(arcsech t)β

)
.

The proof of Proposition 7 is completed.

Proof of Proposition 8

Proof. The binomial formula gives

m∗s,(j) =

∫ +∞

−∞
xsfX(j)

(x, α, β)dx

= ci,n

n−j∑
k=0

(
n− j
k

)
(−1)k

∫ 1

0

xsf(x, α, β)F (x, α, β)k+j−1dx.

Now, we can remark

f(x, α, β)F (x, α, β)k+j−1 =
αβ

x
√

1− x2
(arcsechx)

β−1
e−α(j+k)(arcsechx)

β

=
1

k + j
f(x, α(k + j), β).

Therefore

m∗s,(j) = ci,n

n−j∑
k=0

(
n− j
k

)
(−1)k

1

k + j

∫ 1

0

xsf(x, α(k + j), β)dx =

n−j∑
k=0

vj,km
†
j,k,s.

This concludes the proof of Proposition 8.

Proof of Proposition 9

Proof. By using some basics concepts in probability theory and the expressions of F (x, α2, β) and
f(x, α1, β) in Equations (1) and (2), respectively, we get

τ =

∫ +∞

−∞
F (x, α2, β)f(x, α1, β)dx

=

∫ 1

0

e−α2(arcsechx)
β α1β

x
√

1− x2
(arcsechx)

β−1
e−α1(arcsechx)

β

dx.

A rearrangement of the integral with the use of the integral property of the pdf of the ASHW (α1+α2, β)
distribution give

τ =
α1

α1 + α2

∫ 1

0

β(α1 + α2)

x
√

1− x2
(arcsechx)

β−1
e−(α1+α2)(arcsechx)

β

dx

=
α1

α1 + α2

∫ +∞

−∞
f(x, α1 + α2, β)dx =

α1

α1 + α2
.

Proposition 9 is proved.
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Score functions, observed information matrix and existence of
the MLEs

In theory, MLEs of the α and β parameters follow by solving

∂`(Λ)

∂α
=
n

α
−

n∑
i=1

(arcsechxi)
β

= 0

and
∂`(Λ)

∂β
=
n

β
+

n∑
i=1

arcsechxi − α
n∑
i=1

(arcsechxi)
β

log (arcsechxi) = 0.

From scroe function belong to α parameter , the desired solution satisfied

α =
n

n∑
i=1

(arcsechxi)
β
.

Then, by combining above equation and log-likelihood function, the following PLL function can be
derived:

` (β) =n log

 n
n∑
i=1

(arcsechxi)
β

+ n log β −
n∑
i=1

log

[
xi

√
1− x2i

]
+ (β − 1)

n∑
i=1

arcsechxi − n.

Going on the parameter estimation of the parameter β based on its PLL function, we have

∂` (β)

∂β
=
n

β
− n

n∑
i=1

(arcsechxi)
β

log (arcsechxi)

n∑
i=1

(arcsechxi)
β

+

n∑
i=1

arcsechxi.

Under mild regularity conditions, The MLEs have the bivariate normal distribution with mean µ =
(α, β) and covariance matrix I−1, where I denotes the following 2× 2 observed information matrix:

I = −


∂2

∂α2
`(Λ)

∂2

∂α∂β
`(Λ)

∂2

∂α∂β
`(Λ)

∂2

∂β2
`(Λ)


∣∣∣∣∣∣∣∣
Λ=(α̂,β̂)

,

The components of I can be derived through the following derivatives formula:

∂2

∂α2
`(Λ) = − n

α2
,

∂2

∂α∂β
`(Λ) =

∂2

∂β∂α
`(Λ) = −

n∑
i=1

(arcsechxi)
β

log (arcsechxi)

and

∂2

∂β2
`(Λ) = − n

β2
− α

n∑
i=1

(arcsechxi)
β

log2 (arcsechxi).

Now, we discuss the uniqueness and existence of the MLEs. Using the above second derivative of the
parameter α, it can be seen clearly that since for all α > 0 and n, ∂2` (Λ) /∂α2 < 0. This inequality
indicates that the ∂` (Λ) /∂α is strictly decreasing in α. Furthermore, limα→0 ∂` (Λ) /∂α = +∞ and

limα→+∞ ∂` (Λ) /∂α = −
n∑
i=1

(arcsechxi)
β
< 0. Then it is also concluded that α̂ exists and is unique

when parameter β is given or known.
On the other hand, using the above second derivative of the parameter β, it can be seen that

∂2` (Λ) /∂β2 < 0 and this inequality indicates that the ∂` (Λ) /∂β is strictly decreasing in β. Fur-

thermore, limβ→0 ∂` (Λ) /∂β = +∞ and limβ→+∞ ∂` (Λ) ∂β = −∞. Then it is conluded that β̂ exists
and is unique when parameter α is given or known.
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The competing distributions for univariate data modeling

• Beta distribution:

fBeta(x, α, β) =
1

B(α, β)
(1− x)

β−1
xα−1, x ∈ (0, 1),

and fBeta(x, α, β) = 0 for x 6∈ (0, 1), where α > 0, β > 0, and B(α, β) is the standard beta function.

• Kw distribution:
fKw(x, α, β) = αβ (1− xα)

β−1
xα−1, x ∈ (0, 1),

and fKw(x, α, β) = 0 for x 6∈ (0, 1), where α > 0 and β > 0 .

• Johnson SB distribution:

fSB (x, α, β) =
β

x (1− x)
φ

[
β log

(
x

1− x

)
+ α

]
, x ∈ (0, 1),

and fSB (x, α, β) = 0 for x 6∈ (0, 1), where α ∈ R, β > 0, and φ(x) is the pdf of the standard normal
distribution.

• UG distribution:
fUG(x, α, β) = αβx−β−1e−α(x−β−1), x ∈ (0, 1),

and fUG(x, α, β) = 0 for x 6∈ (0, 1), where α > 0 and β > 0.

Score vector components of the proposed regression model for
MLE method

The derivatives of the Equation (17) with respect to model parameters β and δ are given by

∂` (∆)

∂β
=
n

β
−

n∑
i=1

log (arcsechµi) +

n∑
i=1

log (arcsechyi) + log u

n∑
i=1

(
arcsechyi
arcsechµi

)β
log

(
arcsechyi
arcsechµi

)
and

∂` (∆)

∂δk
= −β

n∑
i=1

∂arcsechµi/∂δk
arcsechµi

− β log u

n∑
i=1

(arcsechyi)
β

(arcsechµi)
−β−1 ∂arcsechµi

∂δk
,

where

∂arcsechµi
∂δk

= −

(
exiδ

T

1 + exiδT

√
1− e2xiδT

(1 + exiδT )2

)−1
xike

xiδ
T

(1 + exiδT )2

= − xik√
1 + 2exiδT

= −xik
(

1 + µi
1− µi

)−1/2
.

Since above Equations consist of the nonlinear function according to model parameters, these log-
likelihood functions can be maximized directly by the software such as R and Matlab.

The competing distributions for regression modeling

• The pdf of the beta regression model is given as

fBeta(y, β, µ) =
Γ (β)

Γ (βµ) Γ ((1− µ)β)
yβµ−1 (1− y)

(1−µ)β−1
, y ∈ (0, 1),

fBeta(y, β, µ) = 0 for y 6∈ (0, 1), where µ ∈ (0, 1) and β > 0,
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• The pdf of the Kw model is specified by

fKw(y, β, µ) =
β log (0.5)

log (1− µβ)
yβ−1

(
1− yβ

)log(0.5)/(β(1−µ)−1)
, y ∈ (0, 1),

fKw(y, β, µ) = 0 for y 6∈ (0, 1), where µ ∈ (0, 1) and β > 0,

• The pdf of the LEEG model is given as

fLEEG(y, β, µ) =
βµβ

(
1− µβ

)
yβ−1

(µβ + (1− 2µβ) yβ)
2 , y ∈ (0, 1),

fLEEG(y, β, µ) = 0 for y 6∈ (0, 1), where µ ∈ (0, 1) and β > 0.
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