Supplemental Materials

Proof of Proposition 1

Proof. Let us write X as $X = \text{sech}T$ where $T \sim W(\alpha, \beta)$, the cdf of X can be determined as

$$
F(x, \alpha, \beta) = P(X \le x) = P(\text{sech} T \le x) = P(\text{arcsech} x \le T \le \infty) = 1 - \left[1 - e^{-\alpha(\text{arcsech} x)^{\beta}}\right]
$$

$$
= e^{-\alpha(\text{arcsech} x)^{\beta}}.
$$

Note that the hyperbolic secant function is a decreasing function on $(0, \infty)$. The associated pdf follows √ $\overline{(1-x^2)}^{-1}$. Hence, the by differentiating $F(x, \alpha, \beta)$ with respect to x and using $\partial(\text{arcsech}x)/\partial x = -\left(x\right)^2$ proof is completed. \Box

Proof of Proposition 2

Proof. The ASHW distribution is identifiable once $F(x, \alpha_1, \beta_1) = F(x, \alpha_2, \beta_2)$ is valid if and only if $\alpha_1 = \alpha_2$ and $\beta_1 = \beta_2$. After some developments, we get

$$
F(x, \alpha_1, \beta_1) = F(x, \alpha_2, \beta_2) \iff e^{-\alpha_1(\text{arcsech}x)^{\beta_1}} = e^{-\alpha_2(\text{arcsech}x)^{\beta_2}}
$$

\n
$$
\iff \alpha_1 (\text{arcsech}x)^{\beta_1} = \alpha_2 (\text{arcsech}x)^{\beta_2} \iff \frac{\alpha_1}{\alpha_2} (\text{arcsech}x)^{\beta_1 - \beta_2} = 1
$$

\n
$$
\iff \log\left(\frac{\alpha_1}{\alpha_2}\right) + (\beta_1 - \beta_2) \log(\text{arcsech}x) = 0.
$$

This equality is satisfied for any x if and only the term varying is x is not present, so $\beta_1 = \beta_2$, and this also implies that $\log(\alpha_1/\alpha_2) = 0$, so $\alpha_1 = \alpha_2$. It is concluded that the model is identifiable. \Box

Proof of Proposition 3

Proof. Let us investigate the proof of the two items, in turn.

• From Equation (1) , we have

$$
\frac{\partial}{\partial \alpha} F(x, \alpha, \beta) = F_{\alpha}^{'}(x, \alpha, \beta) = - (\operatorname{arcsech} x)^{\beta} e^{-\alpha (\operatorname{arcsech} x)^{\beta}} < 0.
$$

Hence, $F(x, \alpha, \beta)$ is decreasing with respect to the parameter α . Moreover, we have

$$
\frac{\partial^2}{\partial \alpha^2} F(x, \alpha, \beta) = (\operatorname{arcsech} x)^{2\beta} e^{-\alpha (\operatorname{arcsech} x)^{\beta}} > 0,
$$

proving the convexity of $F(x, \alpha, \beta)$ with respect to the parameter α .

• Similarly, we have

$$
\frac{\partial}{\partial \beta} F(x, \alpha, \beta) = F'_{\beta}(x, \alpha, \beta) = -\alpha \left(\operatorname{arcsech} x \right)^{\beta} \log \left(\operatorname{arcsech} x \right) e^{-\alpha (\operatorname{arcsech} x)^{\beta}}.
$$

It is clear that the $log(arcsechx)$ term determines the sign of above Equation, and $log(arcsechx)$ is positive if $x \in (0, 2e/(e^2+1))$, and negative if $x \in (2e/(e^2+1), 1)$. Hence, it can be concluded that $F(x, \alpha, \beta)$ is decreasing with respect to β if $x \in (0, 2e/(e^2 + 1))$, and increasing with respect to β if $x \in (2e/(e^2+1), 1)$.

Proposition 3 is proved.

 \Box

Proof of Proposition 4

Proof. After simplifications, owing to Equation (2), we arrive at

$$
q(x, \alpha_1, \alpha_2, \beta) = \frac{\alpha_1}{\alpha_2} e^{(\alpha_2 - \alpha_1)(\text{arcsech}x)^{\beta}}.
$$

Hence

$$
\frac{\partial}{\partial x}q(x,\alpha_1,\alpha_2,\beta)=-\beta\frac{\alpha_1}{\alpha_2}(\alpha_2-\alpha_1)\left(x\sqrt{1-x^2}\right)^{-1}(\operatorname{arcsech} x)^{\beta-1}e^{(\alpha_2-\alpha_1)(\operatorname{arcsech} x)^{\beta}}.
$$

Since $\alpha_2 - \alpha_1 \geq 0$, the above derivative function is negative, implying that $q(x, \alpha_1, \alpha_2, \beta)$ is decreasing. This finishes the proof of Proposition 4. \Box

Proof of Proposition 5

Proof. The inequality is clear for $x \notin (0,1)$. For $x \in (0,1)$, let us notice that

$$
\operatorname{arcsech} x = \log \left[\left(1 + \sqrt{1 - x^2} \right) / x \right] = -\log x + \log \left(1 + \sqrt{1 - x^2} \right) \ge -\log x.
$$

Therefore, $\alpha (\text{arcsech} x)^{\beta} \ge \alpha (-\log x)^{\beta}$, which implies that

$$
F(x, \alpha, \beta) = e^{-\alpha(\operatorname{arcsech} x)^{\beta}} \le e^{-\alpha(-\log x)^{\beta}} = F_*(x, \alpha, \beta).
$$

This terminates the proof of Proposition 5.

Proof of Proposition 6

Proof. We can write $X = \text{sech}T$ where $T \sim W(\alpha, \beta)$. Therefore, owing to the general binomial theorem with $e^{-2T} \in (0,1)$ almost surely, we obtain

$$
X^{r} = (\text{sech}T)^{r} = 2^{r} \frac{e^{-rT}}{(1 + e^{-2T})^{r}} = 2^{r} \sum_{k=0}^{+\infty} {\binom{-r}{k}} e^{-(r+2k)T}.
$$

Hence, by the Fubini-Tonelli theorem, we get

$$
m_r = E(X^r) = 2^r \sum_{k=0}^{+\infty} \binom{-r}{k} E(e^{-(r+2k)T}).
$$

Now, by the exponential series, Fubini-Tonelli theorem and the definition of the Weibull distribution, we get

$$
E(e^{-(r+2k)T}) = \sum_{\ell=0}^{+\infty} \frac{(-1)^{\ell}}{\ell!} (r+2k)^{\ell} E(T^{\ell}) = \sum_{\ell=0}^{+\infty} \frac{(-1)^{\ell}}{\ell!} (r+2k)^{\ell} \alpha^{-\ell/\beta} \Gamma\left(\frac{\ell}{\beta}+1\right).
$$

The desired result is obtained by putting all the above equalities together. This concludes the proof of Proposition 6. \Box

Proof of Proposition 7

Proof. By expressing Y_t as $Y_t = \text{sech } T$ if $\{\text{sech } T \le t\} = \{T \ge \text{arcsech } t\}$ and 0 otherwise, we get

$$
m_r(t) = 2^r \sum_{k=0}^{+\infty} \binom{-r}{k} E[e^{-(r+2k)T} I(T \ge \operatorname{arcsech} t)],
$$

 \Box

where $I(T \ge \operatorname{arcsech} t) = 1$ if the event $\{T \ge \operatorname{arcsech} t\}$ is realized, and 0 otherwise. We conclude by noticing that

$$
E[e^{-(r+2k)T}I(T \ge \operatorname{arcsech} t)] = \sum_{\ell=0}^{+\infty} \frac{(-1)^{\ell}}{\ell!} (r+2k)^{\ell} E[T^{\ell}I(T \ge \operatorname{arcsech} t)]
$$

=
$$
\sum_{\ell=0}^{+\infty} \frac{(-1)^{\ell}}{\ell!} (r+2k)^{\ell} \alpha^{-\ell/\beta} \Gamma\left(\frac{\ell}{\beta}+1, \alpha(\operatorname{arcsech} t)^{\beta}\right).
$$

The proof of Proposition 7 is completed.

Proof of Proposition 8

Proof. The binomial formula gives

$$
m_{s,(j)}^{*} = \int_{-\infty}^{+\infty} x^{s} f_{X_{(j)}}(x, \alpha, \beta) dx
$$

= $c_{i,n} \sum_{k=0}^{n-j} {n-j \choose k} (-1)^{k} \int_{0}^{1} x^{s} f(x, \alpha, \beta) F(x, \alpha, \beta)^{k+j-1} dx.$

Now, we can remark

$$
f(x, \alpha, \beta)F(x, \alpha, \beta)^{k+j-1} = \frac{\alpha\beta}{x\sqrt{1-x^2}} \left(\operatorname{arcsech} x\right)^{\beta-1} e^{-\alpha(j+k)(\operatorname{arcsech} x)^{\beta}}
$$

$$
= \frac{1}{k+j} f(x, \alpha(k+j), \beta).
$$

Therefore

$$
m_{s,(j)}^* = c_{i,n} \sum_{k=0}^{n-j} \binom{n-j}{k} (-1)^k \frac{1}{k+j} \int_0^1 x^s f(x, \alpha(k+j), \beta) dx = \sum_{k=0}^{n-j} v_{j,k} m_{j,k,s}^{\dagger}.
$$

This concludes the proof of Proposition 8.

Proof of Proposition 9

Proof. By using some basics concepts in probability theory and the expressions of $F(x, \alpha_2, \beta)$ and $f(x, \alpha_1, \beta)$ in Equations (1) and (2), respectively, we get

$$
\tau = \int_{-\infty}^{+\infty} F(x, \alpha_2, \beta) f(x, \alpha_1, \beta) dx
$$

=
$$
\int_{0}^{1} e^{-\alpha_2 (\text{arcsech}x)^{\beta}} \frac{\alpha_1 \beta}{x \sqrt{1 - x^2}} (\text{arcsech}x)^{\beta - 1} e^{-\alpha_1 (\text{arcsech}x)^{\beta}} dx.
$$

A rearrangement of the integral with the use of the integral property of the pdf of the $ASHW(\alpha_1+\alpha_2, \beta)$ distribution give

$$
\tau = \frac{\alpha_1}{\alpha_1 + \alpha_2} \int_0^1 \frac{\beta(\alpha_1 + \alpha_2)}{x\sqrt{1 - x^2}} \left(\operatorname{arcsech} x\right)^{\beta - 1} e^{-(\alpha_1 + \alpha_2)(\operatorname{arcsech} x)^{\beta}} dx
$$

$$
= \frac{\alpha_1}{\alpha_1 + \alpha_2} \int_{-\infty}^{+\infty} f(x, \alpha_1 + \alpha_2, \beta) dx = \frac{\alpha_1}{\alpha_1 + \alpha_2}.
$$

Proposition 9 is proved.

 \Box

 \Box

 \Box

Score functions, observed information matrix and existence of the MLEs

In theory, MLEs of the α and β parameters follow by solving

$$
\frac{\partial \ell(\mathbf{\Lambda})}{\partial \alpha} = \frac{n}{\alpha} - \sum_{i=1}^{n} (\operatorname{arcsech} x_i)^{\beta} = 0
$$

and

$$
\frac{\partial \ell(\mathbf{\Lambda})}{\partial \beta} = \frac{n}{\beta} + \sum_{i=1}^{n} \operatorname{arcsech} x_i - \alpha \sum_{i=1}^{n} (\operatorname{arcsech} x_i)^{\beta} \log (\operatorname{arcsech} x_i) = 0.
$$

From scroe function belong to α parameter, the desired solution satisfied

 \boldsymbol{n}

$$
\alpha = \frac{n}{\sum_{i=1}^{n} (\text{arcsech } x_i)^{\beta}}.
$$

Then, by combining above equation and log-likelihood function, the following PLL function can be derived:

$$
\ell(\beta) = n \log \left(\frac{n}{\sum_{i=1}^{n} (\operatorname{arcsech} x_i)^{\beta}} \right) + n \log \beta - \sum_{i=1}^{n} \log \left[x_i \sqrt{1 - x_i^2} \right] + (\beta - 1) \sum_{i=1}^{n} \operatorname{arcsech} x_i - n.
$$

Going on the parameter estimation of the parameter β based on its PLL function, we have

$$
\frac{\partial \ell(\beta)}{\partial \beta} = \frac{n}{\beta} - n \frac{\sum\limits_{i=1}^{n} (\operatorname{arcsech} x_i)^{\beta} \log (\operatorname{arcsech} x_i)}{\sum\limits_{i=1}^{n} (\operatorname{arcsech} x_i)^{\beta}} + \sum\limits_{i=1}^{n} \operatorname{arcsech} x_i.
$$

Under mild regularity conditions, The MLEs have the bivariate normal distribution with mean $\mu =$ (α, β) and covariance matrix I^{-1} , where I denotes the following 2×2 observed information matrix:

$$
I = -\left(\begin{array}{cc} \frac{\partial^2}{\partial \alpha^2} \ell(\mathbf{\Lambda}) & \frac{\partial^2}{\partial \alpha \partial \beta} \ell(\mathbf{\Lambda}) \\ \frac{\partial^2}{\partial \alpha \partial \beta} \ell(\mathbf{\Lambda}) & \frac{\partial^2}{\partial \beta^2} \ell(\mathbf{\Lambda}) \end{array}\right)\right|_{\mathbf{\Lambda} = (\hat{\alpha}, \hat{\beta})},
$$

The components of I can be derived through the following derivatives formula:

$$
\frac{\partial^2}{\partial \alpha^2} \ell(\Lambda) = -\frac{n}{\alpha^2},
$$

$$
\frac{\partial^2}{\partial \alpha \partial \beta} \ell(\Lambda) = \frac{\partial^2}{\partial \beta \partial \alpha} \ell(\Lambda) = -\sum_{i=1}^n (\operatorname{arcsech} x_i)^{\beta} \log (\operatorname{arcsech} x_i)
$$

and

$$
\frac{\partial^2}{\partial \beta^2} \ell(\mathbf{\Lambda}) = -\frac{n}{\beta^2} - \alpha \sum_{i=1}^n (\operatorname{arcsech} x_i)^{\beta} \log^2 (\operatorname{arcsech} x_i).
$$

Now, we discuss the uniqueness and existence of the MLEs. Using the above second derivative of the parameter α , it can be seen clearly that since for all $\alpha > 0$ and n , $\frac{\partial^2 \ell(\Lambda)}{\partial \alpha^2} < 0$. This inequality indicates that the $\partial\ell(\Lambda)/\partial\alpha$ is strictly decreasing in α . Furthermore, $\lim_{\alpha\to 0} \partial\ell(\Lambda)/\partial\alpha = +\infty$ and $\lim_{\alpha\to+\infty}\partial\ell\left(\mathbf{\Lambda}\right)/\partial\alpha = -\sum^{n}$ $\sum_{i=1}^{n} (\text{arcsech}x_i)^{\beta} < 0$. Then it is also concluded that $\hat{\alpha}$ exists and is unique when parameter β is given or known.

On the other hand, using the above second derivative of the parameter β , it can be seen that $\frac{\partial^2 \ell(\Lambda)}{\partial \beta^2}$ < 0 and this inequality indicates that the $\frac{\partial \ell(\Lambda)}{\partial \beta}$ is strictly decreasing in β . Furthermore, $\lim_{\beta\to 0} \partial\ell(\Lambda)/\partial\beta = +\infty$ and $\lim_{\beta\to+\infty} \partial\ell(\Lambda)\partial\beta = -\infty$. Then it is conluded that $\hat{\beta}$ exists and is unique when parameter α is given or known.

The competing distributions for univariate data modeling

• Beta distribution:

$$
f_{Beta}(x, \alpha, \beta) = \frac{1}{B(\alpha, \beta)} (1 - x)^{\beta - 1} x^{\alpha - 1}, \quad x \in (0, 1),
$$

and $f_{Beta}(x, \alpha, \beta) = 0$ for $x \notin (0, 1)$, where $\alpha > 0$, $\beta > 0$, and $B(\alpha, \beta)$ is the standard beta function.

• Kw distribution:

$$
f_{Kw}(x, \alpha, \beta) = \alpha \beta \left(1 - x^{\alpha}\right)^{\beta - 1} x^{\alpha - 1}, \quad x \in (0, 1),
$$

and $f_{Kw}(x, \alpha, \beta) = 0$ for $x \notin (0, 1)$, where $\alpha > 0$ and $\beta > 0$.

• Johnson S_B distribution:

$$
f_{S_B}(x,\alpha,\beta) = \frac{\beta}{x(1-x)} \phi \left[\beta \log \left(\frac{x}{1-x} \right) + \alpha \right], \quad x \in (0,1),
$$

and $f_{S_B}(x, \alpha, \beta) = 0$ for $x \notin (0, 1)$, where $\alpha \in \mathbb{R}, \beta > 0$, and $\phi(x)$ is the pdf of the standard normal distribution.

• UG distribution:

$$
f_{UG}(x,\alpha,\beta) = \alpha\beta x^{-\beta - 1} e^{-\alpha(x^{-\beta} - 1)}, \quad x \in (0,1),
$$

and $f_{UG}(x, \alpha, \beta) = 0$ for $x \notin (0, 1)$, where $\alpha > 0$ and $\beta > 0$.

Score vector components of the proposed regression model for MLE method

The derivatives of the Equation (17) with respect to model parameters β and δ are given by

$$
\frac{\partial \ell(\mathbf{\Delta})}{\partial \beta} = \frac{n}{\beta} - \sum_{i=1}^{n} \log \left(\operatorname{arcsech} \mu_i \right) + \sum_{i=1}^{n} \log \left(\operatorname{arcsech} y_i \right) + \log u \sum_{i=1}^{n} \left(\frac{\operatorname{arcsech} y_i}{\operatorname{arcsech} \mu_i} \right)^{\beta} \log \left(\frac{\operatorname{arcsech} y_i}{\operatorname{arcsech} \mu_i} \right)
$$

and

$$
\frac{\partial \ell(\mathbf{\Delta})}{\partial \delta_k} = -\beta \sum_{i=1}^n \frac{\partial \text{arcsech}\mu_i/\partial \delta_k}{\text{arcsech}\mu_i} - \beta \log u \sum_{i=1}^n (\text{arcsech}\mu_i)^{\beta} (\text{arcsech}\mu_i)^{-\beta-1} \frac{\partial \text{arcsech}\mu_i}{\partial \delta_k},
$$

where

$$
\frac{\partial \text{arcsech}\mu_i}{\partial \delta_k} = -\left(\frac{e^{\mathbf{x}_i \boldsymbol{\delta}^T}}{1 + e^{\mathbf{x}_i \boldsymbol{\delta}^T}} \sqrt{1 - \frac{e^{2\mathbf{x}_i \boldsymbol{\delta}^T}}{(1 + e^{\mathbf{x}_i \boldsymbol{\delta}^T})^2}}\right)^{-1} \frac{x_{ik} e^{\mathbf{x}_i \boldsymbol{\delta}^T}}{(1 + e^{\mathbf{x}_i \boldsymbol{\delta}^T})^2}
$$

$$
= -\frac{x_{ik}}{\sqrt{1 + 2e^{\mathbf{x}_i \boldsymbol{\delta}^T}}} = -x_{ik} \left(\frac{1 + \mu_i}{1 - \mu_i}\right)^{-1/2}.
$$

Since above Equations consist of the nonlinear function according to model parameters, these loglikelihood functions can be maximized directly by the software such as R and Matlab.

The competing distributions for regression modeling

• The pdf of the beta regression model is given as

$$
f_{Beta}(y,\beta,\mu) = \frac{\Gamma(\beta)}{\Gamma(\beta\mu)\Gamma((1-\mu)\beta)} y^{\beta\mu-1} (1-y)^{(1-\mu)\beta-1}, \quad y \in (0,1),
$$

 $f_{Beta}(y, \beta, \mu) = 0$ for $y \notin (0, 1)$, where $\mu \in (0, 1)$ and $\beta > 0$,

• The pdf of the Kw model is specified by

$$
f_{Kw}(y,\beta,\mu) = \frac{\beta \log(0.5)}{\log(1-\mu^{\beta})} y^{\beta-1} (1-y^{\beta})^{\log(0.5)/(\beta(1-\mu)-1)}, \quad y \in (0,1),
$$

 $f_{Kw}(y, \beta, \mu) = 0$ for $y \notin (0, 1)$, where $\mu \in (0, 1)$ and $\beta > 0$,

• The pdf of the LEEG model is given as

$$
f_{LEEG}(y,\beta,\mu) = \frac{\beta \mu^{\beta} (1 - \mu^{\beta}) y^{\beta - 1}}{\left(\mu^{\beta} + (1 - 2\mu^{\beta}) y^{\beta}\right)^2}, \quad y \in (0,1),
$$

 $f_{LEEG}(y, \beta, \mu) = 0$ for $y \notin (0, 1)$, where $\mu \in (0, 1)$ and $\beta > 0$.