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BS-DPC imaging model 
Here, we briefly summarize the DPC imaging theory and its application to the BS-IDT data. Details 
on DPC imaging method can be found in the literature1. Under the DPC imaging model, we 
consider the 2D measured intensity to be composed of the product of the object’s complex 
transmittance 𝑂𝑂(𝑥𝑥,𝑦𝑦) and incident field function 𝑢𝑢𝑖𝑖(𝑥𝑥,𝑦𝑦|𝛎𝛎𝐢𝐢) convolved with the objective’s pupil 
function 𝑃𝑃(𝛎𝛎) 
                                 𝐼𝐼(𝑥𝑥, 𝑦𝑦) = ∬ |ℱ−1{ℱ{𝑢𝑢𝑖𝑖(𝑥𝑥, 𝑦𝑦|𝛎𝛎𝐢𝐢)𝑂𝑂(𝑥𝑥,𝑦𝑦)}𝑃𝑃(𝛎𝛎)} |2𝑑𝑑2𝛎𝛎𝐢𝐢,                                   (1) 

integrated over the discrete size of the illumination source occupying lateral spatial frequencies 
𝛎𝛎𝐢𝐢 . This term accounts for the field contribution from each point in the illumination source 
interacting with the object as it propagates to the imaging plane. In DPC imaging, the illumination 
source is usually of low coherence occupying a half circle or annular circle function in the Fourier 
or far-field regime1. Under the Weak Object Approximation (WOA), DPC imaging assumes the 
object’s complex transmission function can be linearized via a Taylor series expansion as 
𝑂𝑂(𝑥𝑥,𝑦𝑦) ≈ 1 − 𝜇𝜇(𝑥𝑥,𝑦𝑦) + 𝑗𝑗𝑗𝑗(𝑥𝑥,𝑦𝑦) where 𝜇𝜇(𝑥𝑥,𝑦𝑦) and 𝜙𝜙(𝑥𝑥,𝑦𝑦) represent the object’s 2D absorption 
and phase information, respectively. In a similar form to BS-IDT, this assumption enables a 
linearization of the scattering model. A forward model can be developed relating the object’s 
phase and absorption to the intensity spectra’s cross-interference terms 

                                        𝐼𝐼(𝛎𝛎) = 𝐴𝐴𝐴𝐴(𝛎𝛎) + 𝐻𝐻𝜇𝜇(𝛎𝛎)𝜇̂𝜇(𝛎𝛎) + 𝐻𝐻𝜙𝜙(𝛎𝛎)𝜙𝜙�(𝛎𝛎),                                            (2) 

with A measuring the total energy passing through the imaging system, phase 𝐻𝐻𝜙𝜙(𝛎𝛎) and 
absorption 𝐻𝐻𝜇𝜇(𝛎𝛎) TFs capturing the pupil function behavior between the object spectra and its 
complex conjugate  

              𝐻𝐻𝜇𝜇(𝛎𝛎) = −�∬ 𝑆𝑆(𝛎𝛎𝐢𝐢)𝑃𝑃∗(𝛎𝛎𝐢𝐢)𝑃𝑃(𝛎𝛎 + 𝛎𝛎𝐢𝐢)𝑑𝑑2𝛎𝛎𝐢𝐢 + ∬𝑆𝑆(𝛎𝛎𝐢𝐢)𝑃𝑃(𝛎𝛎𝐢𝐢)𝑃𝑃∗(𝛎𝛎 − 𝛎𝛎𝐢𝐢)𝑑𝑑2𝛎𝛎𝐢𝐢�,                    (3a) 

              𝐻𝐻𝜙𝜙(𝛎𝛎) = 𝑗𝑗�∬ 𝑆𝑆(𝛎𝛎𝐢𝐢)𝑃𝑃∗(𝛎𝛎𝐢𝐢)𝑃𝑃(𝛎𝛎 + 𝛎𝛎𝐢𝐢)𝑑𝑑2𝛎𝛎𝐢𝐢 − ∬ 𝑆𝑆(𝛎𝛎𝐢𝐢)𝑃𝑃(𝛎𝛎𝐢𝐢)𝑃𝑃∗(𝛎𝛎 − 𝛎𝛎𝐢𝐢)𝑑𝑑2𝛎𝛎𝐢𝐢�,                     (3b) 
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where 𝑆𝑆(𝛎𝛎𝐢𝐢) denotes the geometric source distribution in the Fourier plane. Of critical importance 
to DPC imaging is the phase TF’s asymmetry and the absorption TF’s symmetry between their 
first and second terms. For intensity image pairs using asymmetric illuminations, such as two half-
circle illuminations occupying opposing halves of the Fourier plane, the subtraction of the two 
images will remove the absorption information of the image and double the phase contrast. This 
creates the DPC image that allows for the recovery of the object’s phase information 

                                        𝐼𝐼𝐷𝐷𝐷𝐷𝐷𝐷(𝛎𝛎) = ℱ �𝐼𝐼+(𝜈𝜈)− 𝐼𝐼−(𝜈𝜈)
𝐼𝐼0

� ∝ 2𝐻𝐻𝜙𝜙(𝛎𝛎)𝜙𝜙�(𝛎𝛎),                                              (4) 

where ‘+’ and ‘-‘ represent intensity images from opposing illuminations in opposite halves of the 
Fourier plane and 𝐼𝐼0 is the background intensity obtained from an image average. For BS-DPC 
imaging, we generated four DPC images from the 16 diode-laser illuminations in the BS-IDT 
datasets. Half-annular ring illumination geometries along the horizontal and vertical axes of the 
Fourier plane were chosen for this process to provide maximum bandwidth coverage with minimal 
spatial frequency information loss. The intensity images from each laser illumination within these 
half annular rings were summed. The images with corresponding asymmetric illuminations were 
subtracted to generate DPC images. We subsequently generated the DPC phase TFs for each 
image and reconstructed the object’s 2D phase information using Tikhonov regularization after 
inverting the DPC forward model. 
 
Lipid quantification 
For the cancer cell’s invasiveness analysis, we prepared two test groups, the T24 cell (invasive 
type) sample, and the SW780 cell (non-invasive type) sample. Both test groups were cultured 
and processed under the same conditions. For each test group, we chose 30 different single cells 
arbitrarily in the FOV to perform measurements at a wavenumber of 1745 cm-1. Lipid contents 
absorb mid-IR radiation at this wavenumber strongly while other chemical components have no 
or significantly weak absorption, resulting in high lipid chemical signals. In addition, condensed 
lipid droplet areas have significantly higher RI than the surrounding medium, which enables an 
initial non-chemical filtering process. Based on the above facts, we first extracted 3D areas 
containing lipid droplets from the cold 3D reconstruction by local adaptive threshold. Then, we 
identified and extracted the true lipid droplets by comparing the filtered areas with the chemical 
imaging results. Finally, we calculated the lipid droplet volume by converting the total voxels into 
true spatial dimensions. We repeated the procedure above for 30 different cells per test group 
and made the box plot in Figure 3n. 

BS-IDT resolution characterization 
We characterized the resolution of BS-IDT and demonstrated the results in Figure S1. We used 
the fixed bladder cancer T24 cells as the test bed. By performing depth-resolved chemical imaging 
at 1745 cm-1 mid-IR wavenumber, we picked up two lipid droplets (Figure S1 a1, b1) to plot the 
lateral and axial line profiles (Figure S1 a2, b2). The FWHM of the lateral line profile is ~349 nm, 
and the FWHM of the axial line profile is ~1.082 µm. Here, we applied an additional halo artifact 
removal step to the chemical imaging data based on the work by Kandel et al. 2. This process 
relies on the assumption that the halo effect is predominantly encoded into slowly varying spatial 
frequencies in the recovered object spectrum. By applying Hilbert transforms to the gradient of 
the phase along different directions in the image, the slowly varying halo artifacts are removed 
from the image. After applying these transforms and obtaining a collection of filtered images of 
the object, the maximum value at each pixel across these images is obtained to produce a halo-
free image. For our BS-IDT chemical imaging data, the object’s RI at each slice differs from the 



corresponding phase only by a constant value. The object bandwidth still contains halo artifacts 
in low spatial frequencies. These factors allow us to apply the Hilbert transform approach 
equivalently to our sample for artifact removal. We performed a slice-wise artifact removal through 
our 3D RI reconstruction instead of the 2D phase image condition used in the original work2.  
 

 
Figure S1. Resolution characterizations using lipid chemical imaging result from bladder cancer cells. The lipid 
chemical imaging data used here are further improved by halo artifacts removal processing. (a1) The image 
corresponds to a depth of ~-1.065 µm. A selected lipid droplet is indicated by the white arrow shown in the inset. (a2) 
Blue curve: extracted lateral profile along the yellow dashed line cross the selected lipid droplet in (a1); Red curve: 
Gaussian line shape fitting (FWHM: ~349 nm, R square coefficient=0.99) for the main peak corresponding to the 
selected lipid droplet. (b1) The image corresponds to the depth of ~-0.532 µm. A selected lipid droplet is indicated by 
the white arrow shown in the inset. The orthogonal view of the selected lipid droplet is also demonstrated. “Z” indicates 
the depth direction. “X” and “Y” indicate lateral direction. (b2) Blue curve: extracted depth profile from the selected lipid 
droplet’s peak signal in (b1); Red curve: Gaussian line shape fitting (FWHM:~1.082 µm, R square coefficient=0.95) for 
the main peak corresponding to the selected lipid droplet.  
 
Heat dissipation measurement and simulation 
We performed experimental and numerical simulations to estimate the exponential temporal 
decay time constants under different scenarios (Figure S2). The experimental measurement was 
performed using BS-IDT by characterizing the MIP-induced RI changes with respect to the pump-
probe pulse time delay variations. The simulation was realized by COMSOL 5.4 (heat transfer in 
solid model). For all the simulation results shown in Figure S2, the bead is located in the center 
of a sphere that is composed of either D2O or soybean oil. The sphere's diameter is 40 times 
larger than the bead’s diameter. The initial temperature of the sphere and the bead were set as 
293 K and 298 K, respectively. The temperature of the sphere’s boundary was assumed to be 
constant. We simulated the temperature variation of the bead over time with different volumes 



and chemical compositions. For experimental measurement, the sample is a polymethyl 
methacrylate (PMMA) bead with a volume of ~1.4 µm3 immersed in D2O. As a comparison, we 
simulated the thermal decay process for a PMMA bead of the same size. The experimental and 
simulation results are demonstrated in Figures S2 (a1) and (a2), respectively. A consistent thermal 
decay process is observed from both experimental and simulation results. We further investigated 
the thermal decay process for human fat beads of varying sizes immersed in two different types 
of media. We assumed that the volumes of the human fat beads vary from 1 µm3 to 20 µm3. As 
shown in Figure S2, the chemical compositions of the beads do not play a significant role in the 
decay time when the bead’s volume is comparable to or smaller than 20 µm3. Similar to the 
demonstration by Zong et al.3, the larger size can significantly increase the temporal decay 
constant. In addition, beads immersed in heavy water demonstrate almost two times smaller 
temporal decay constant than those immersed in soybean oil. 

 
Figure S2. Experimental measurement and numerical simulations of thermal decay. (a1) BS-IDT measurement 
result for a PMMA bead immersed in D2O. (a2) Simulation results for a PMMA bead with the same size as (a1) immersed 
in D2O. (b1) Simulation results for human fat beads of different volumes immersed in D2O. (b2) Simulation results for 
human fat beads of different volumes immersed in soybean oil. The exponential temporal decay time constants are 
obtained by exponential decay curve fitting. All the R square coefficients for the fittings are equal to or larger than 0.97. 
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