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S1.1 Supplementary note: differential gene expression analysis of responders and non-
responders to TNFi therapy

To assess if responders and non-responders to TNFi therapies can be stratified based on gene expression profiles before
treatment, we perform differential gene expression analysis using their full gene expression profiles. We do not find
any significant differences at the fold change (FC) of FC = 1.8 and adjusted p-value (Benjamini-Hochberg correction)
of p < 0.05. Therefore, we demonstrate that there are no evident differences between responders’ and non-responders’
before treatment neither in the UMAP embedding space, nor in the actual full gene expression profile space.

Motivated by the fact that before treatment UC active patients’ gene expression profiles are not enough to distin-
guish responders from non-responders, we additionally consider normal tissue controls as a comparison reference to
derive more evident difference in the gene expression profiles between responders and non-responders. We construct
the following four sets of differentially expressed genes, comparing different groups of patients and normal controls
(see Figure S1 for illustration of the sets):

1. Responders-before-after set (RBA): differentially expressed genes in responders between before- and after-treatment;

2. Non-responders-before-after set (NRBA): differentially expressed genes in non-responders between before- and
after-treatment;

3. Responders set (R): differentially expressed genes between baseline responders and normal controls;

4. Non-responders set (NR): differentially expressed genes between baseline non-responders and normal controls.

Each of these paired states are measured separately in infliximab- and golimumab-based studies.
First, we observe that non-responders do not show significant changes in gene expression profiles upon treatment,

thus NRBA does not contain any significantly differentially expressed genes. Second, we observe that R, NR, and RBA
sets are highly concordant and have significant intersection size both for infliximab and golimumab studies, Figure S1,
panel (b). Pairwise hypergeometric test yields p = 9 · 10−910 and 5 · 10−1249 for the intersection between NR and R
sets, p = 4 ·10−64 and 8 ·10−91 for intersection between NR and RBA sets, p = 2 ·10−226 and 1 ·10−103 for intersection
of R and RBA sets in infliximab and golimumab studies, respectively.

Moreover, most RBA genes are differentially expressed in baseline responder samples relative to normal controls,
indicating that treatment with a TNFi results in reversion of the expression of a small subset of R genes. On the
contrary, despite the significant fraction of RBA genes is contained within the NR set, these genes are not significantly
altered in non-responders after treatment with TNFi.

The RBA gene sets are almost exclusively comprised of genes contained within the R and NR sets. Moreover,
as suggested by UMAP plots (Figure 2), the gene expression profiles of responders after treatment is closer to that
of normal controls, while non-responders after treatment remain close to their initial pre-treatment position in the
UMAP space. This suggests that to achieve low disease activity in responders, it is sufficient for TNFi treatment to
revert the expression profile of a subset of the differentially expressed genes constituting the RBA set.



S1.2 Supplementary note: module triad construction for psoriasis, Parkinson’s disease
(PD) and Alzheimer’s disease (AD)

To check how our target prioritization pipeline generalizes to other complex diseases, we repeat prioritization validation
using known approved targets for three complex diseases – psoriasis, PD and AD. These diseases are picked from the
6 diseases we have used previously to demonstrate the utility of the DSD metric (see Supplementary Figure S5). As
the focus of this paper is ulcerative colitis, we check performance of the module triad method only on the diseases that
have readily available data for the construction of the three modules. For Response modules, we use Harmonizome
database [1] to extract differentially expressed genes associated to the diseases, as extracting and normalizing relevant
datasets from various public databases separately for each disease would be a laborious task.

Therefore, in our analysis we omit multiple sclerosis (MS), as Harmonizome lists two datasets related to MS, one
based on the B cell lymphocyte samples for which we do not have any reasonable cell line model in LINCS database,
and another based on the spinal cord samples derived from mice. We also omit considering generalizability of the
framework in rheumatoid arthritis (RA) as we do not have any cell line in LINCS database that would be related to
the synovial tissue affected in RA patients. For the rest of the complex diseases, we describe the construction of the
corresponding module triad below.

Psoriasis Genotype module. We build psoriasis Genotype module by selecting “elite” genetic associations
from Malacards, “pathogenic”, “likely pathogenic”, and with “conflicting interpretations of pathogenecity” genetic
associations from ClinVar, and all genetic associations from GWAS Catalog. Overall, we find 121 genetic associations
reported in either of the three databases, and 96 of them can be mapped to one of the HI nodes. We observe that
only 27 of 96 genes form the largest connected component (LCC) which is barely significant under degree-preserving
randomization (Z-score = 1.76, p = 0.04, degree-preserving randomization). As we observe that the majority of genetic
associations are discarded from the LCC, we choose to include all 96 subgraph nodes in the psoriasis Genotype module.
For consistency, we measure the proximity to Genotype module with respect to random subgraphs of the same size,
without considering their connectivity, as the original observed subgraph is not fully connected.

PD Genotype module. We build PD Genotype module by selecting “elite” genetic associations from Malacards,
“pathogenic”, “likely pathogenic”, and with “conflicting interpretations of pathogenecity” genetic associations from
ClinVar that specify the term “Parkinson disease” in the associated condition field, and all genetic associations from
GWAS Catalog. Overall, we find 137 genetic associations reported in either of the three databases, and 109 of them
can be mapped to one of the HI nodes. We observe that only 24 of 109 genes form the largest connected component
(LCC) which is barely significant under degree-preserving randomization (Z-score = 1.77, p = 0.04, degree-preserving
randomization). As we observe that the majority of genetic associations are discarded from the LCC, we choose to
include all 109 subgraph nodes in the PD Genotype module. Similar to the case of psoriasis, we measure the proximity
to the PD Genotype module with respect to random subgraphs of the same size, without considering their connectivity.

AD Genotype module. We build AD Genotype module by selecting “elite” genetic associations from Malacards,
“pathogenic”, “likely pathogenic”, and with “conflicting interpretations of pathogenecity” genetic associations from
ClinVar that specify the term “Alzheimer disease” in the associated condition field, and all genetic associations from
GWAS Catalog. Overall, we find 209 genetic associations reported in either of the three databases, and 163 of them can
be mapped to one of the HI nodes. We observe that 61 of 163 genes form the largest connected component (LCC) which
is significant under degree-preserving randomization (Z-score = 1.77, p = 0.02, degree-preserving randomization). As
we the LCC covers about one third of all genetic associations mapped to the HI, we choose to use this LCC as the AD
Genotype module. Unlike the cases of psoriasis and PD, we measure the proximity to the AD Genotype module with
respect to random connected subgraphs of the same size.

Psoriasis Response module. We derive the list of significantly differentially expressed genes for patients with
psoriasis with respect to normal controls using Harmonizome database [1]. Harmonizome database lists gene sets
differentially expressed in patients diagnosed with a disease with respect to normal controls. As we do not have
access to an extensive collection of transcriptomic datasets that compare psoriasis patients before and after successful
treatment as we do for the case of UC, we resort to comparing psoriasis patients before treatment and normal controls,
assuming that successful treatment of psoriasis imposes transcriptomic changes in patients such that they become
similar to normal controls. We find 3 psoriasis datasets listed in Harmonizome (GEO accession numbers GSE13355,
GSE14905, GSE6710). Each of the datasets lists 600 significantly differentially expressed genes. We observe that
these gene sets are not largely consistent with each other (see Supplementary Figure S10), however, 64 DE genes are
reported in two sets simultaneously. Therefore, we extract these consistently observed DE genes and map them on the
HI. 52 of 64 are mapped on the HI, and only 4 out of 52 genes form an LCC. The size of the LCC is not significant



(Z-score −1.03, p-value 0.77, degree-preserving randomization), therefore, we use the full subgraph of 52 nodes as the
psoriasis Response module.

PD Response module. Similarly to the psoriasis case, we use Harmonizome to extract differentially expressed
genes for patients with PD with respect to normal controls. The only dataset related to PD lists DE genes of PD
patients in samples collected postmortem from substantia nigra (GEO accession number GSE7621). We find that of
600 DE genes reported by Harmonizome, 537 can be mapped on the HI, and 439 of them form an LCC. However, the
size of this LCC is not significant (Z-score 0.67, p-value 0.23, degree-preserving randomization), therefore, we use the
full subgraph of 537 nodes as the PD Response module.

AD Response module. Harmonizome contains two datasets related to AD: GSE5281 and GSE1297. The latter
is based on the samples collected from hippocampus, while the former is based on the samples from entorhinal cortex.
However, upon further inspection of the original GEO entry of the GSE5281 dataset, it appears that it also contains
multiple samples collected from hippocampus. However, for GSE5281, Harmonizome only reports DE genes associated
with the entorhinal cortex samples. We therefore derive DE genes for both sets from scratch using the GEO2R tool
provided at GEO and selecting the samples collected from hippocampus. We find that GEO2R reports no significant
DE genes in GSE1297 dataset based on the adjusted p-value, so we use the unadjusted p-value in this dataset. We
use a p-value threshold of 0.05 for both datasets, and extract genes that have consistent sign of the log-fold-changes
across the two datasets. We extract all genes that pass the significance threshold, and have |log2(FC)| > 0.5 in both
datasets. We obtain 341 genes after this filtering, and 335 of them can be mapped on the HI. Moreover, 217 out of
335 genes form an LCC of significant size (Z-score 1.90, p-value 0.02, degree-preserving randomization). We use this
LCC as the AD Response module.

Psoriasis Treatment module. We construct the Treatment module of psoriasis following similar procedure as
described for UC in the main text. As the psoriasis Response module was constructed by considering samples from the
skin tissue, in LINCS database, we consider compound perturbation experiments in A375 cell line (Phase I and II), as
it has the largest number of compound experiments among all skin-derived cell lines covered by LINCS. We find a total
of 51 compound experiments with known protein targets that pass statistical significance and WTCS score filters. We
extract a total of 139 protein targets from these compounds (136 of them are mapped on the HI), and observe that
101 of them form an LCC of significant size (Z-score 5.33, p-value < 10−4, degree-preserving randomization). We use
this LCC as the psoriasis Treatment module. As the Treatment module is connected, we use connected randomized
subgraphs for selectivity calculation, as was done in the case of UC.

PD Treatment module. The PD Response module is constructed using the brain-derived samples, therefore,
we consider compound perturbation experiments in NEU cell line from LINCS (Phase I and II) to construct the PD
Treatment module. The NEU cells are primary terminally differentiated neuron cells. We do not select SHSY5Y cell
line, which is more frequently used as a model for PD [2], for our analysis as there are no compound perturbation
experiments in this cell line covered in LINCS. We find a total of 6 compound experiments with known protein targets
that pass statistical significance and WTCS score filters. We extract a total of 21 protein targets from these compounds
(20 of them are mapped on the HI), and observe that 3 of them form an LCC of insignificant size (Z-score 0.23, p-value
0.12, degree-preserving randomization). We therefore use the full subgraph of 20 nodes as the PD Treatment module.
As the Treatment module is unconnected, we use unconnected randomized subgraphs for selectivity calculation.

AD Treatment module. The AD Response module is constructed using the hippocampus-derived samples,
therefore, we consider compound perturbation experiments in NEU cell line from LINCS (Phase I and II) to construct
the AD Treatment module. We find a total of 26 compound experiments with known protein targets that pass
statistical significance and WTCS score filters. We extract a total of 93 protein targets from these compounds (91
of them are mapped on the HI), and observe that 73 of them form an LCC of significant size (Z-score 4.72, p-value
< 10−4, degree-preserving randomization). We use this LCC as the AD Treatment module. As the Treatment module
is connected, we use connected randomized subgraphs for selectivity calculation.



S1.3 Supplementary note: pathway enrichment analysis of differentially expressed
genes in responders and non-responders to TNFi therapy

To have a better understanding of the underlying molecular mechanisms of non-response, we perform pathway enrich-
ment analysis on the R and NR sets. For each of the KEGG pathways [3], we determine the fraction of nodes that are
part of the R and NR gene sets (Figure S2, see below for details). Of 282 KEGG pathways that include at least one
gene from the R and NR sets, 40 pathways are significantly enriched with NR genes (hypergeometric test, p < 0.05).
The majority of the genes in these pathways are common to the NR and R sets. To identify pathways that are more
enriched in NR-exclusive genes, we perform a statistical test based on random sampling to assess the significance of
difference between the number of NR-exclusive versus R-exclusive genes within the pathway (see below for details).
From the 40 pathways, 28 have significantly more NR-exclusive genes than R-exclusive genes are retained (p < 0.05)
(Figure S2, panel (c)). Pathways relevant to UC such as “Inflammatory bowel disease”, “TNF signaling pathway”,
“Intestinal immune network for IgA production”, “Rheumatoid arthritis”, “Cell adhesion molecules”, “IL-17 signaling
pathway” are significantly more disrupted in non-responders. This observation is supported by pathway enrichment
analysis done using Enrichr [4]. The Enrichr analysis reports a nearly identical list of enriched biological pathways
between the R and NR gene sets; however, individual pathways tend to have a greater number of genes, p-value and
q-values for the NR gene set. The differentially expressed genes unique to non-responders among these pathways
include genes involved in cytokine signaling (IL6, OSM, IL1A, IL1R1, IL11, CXCL8/IL8, IL21R), receptor mediation
(toll-like receptors, TLR1, TLR2, TLR8 ) and signal transduction (Src-like kinases: HCK, FYN ).

UC-relevant KEGG pathways are more enriched in NR-exclusive genes than that of responders (Figure S2, panel
(c)). Unsurprisingly, this includes other inflammatory conditions such as rheumatoid arthritis and diabetes, and likely
represents general immune system disfunctions common to these conditions. An estimated 25-35% of patients with
an autoimmune disease may develop one or more additional autoimmune disorders [5, 6]. Other enriched pathways
highlighted the role of the intestinal microbiome in ulcerative colitis. Genes annotated in the intestinal immune network
for IgA production are enriched among non-responders. IgA antibodies are the primary secreted immunoglobulins,
and pro-inflammatory bacterial taxa may be more significantly coated with IgA in inflammatory bowel disease patients
than healthy controls [7]. Specifically, Staphylococcus aureus infection is one enriched bacterial KEGG pathway. Gram
positive bacteria such as S. aureus induce TNF-α secretion from macrophages, and TNF-α enhances neutrophil-
mediated bacterial killing[8]. Perturbation of TNF-α affects the ability of immune system to control an S. aureus
infection, leading to an elevated risk of infection after TNFi treatment [9]. Innate immunity plays an important role
in maintaining intestinal homeostasis, as highlighted by the TLR and NOD-like signaling KEGG pathways. TLR
pattern recognition receptors detect conserved structures of microbes, including those of the gut microbiota, and,
upon activation, induce inflammatory signaling pathways and regulate antibody-producing B cell responses [10, 11].
TLR2, 4, 8 and 9 are upregulated in the colonic mucosa of patients with active UC relative to quiescent UC or
healthy control samples [12]. Cytokine signaling, including the TNF-α and IL-17 pathways, are enriched among non-
responders. IL-17 signaling, in addition to being a potent pro-inflammatory cytokine that amplifies TNF-α and IL-16
signaling, induces genes to recruit and activate neutrophils and promotes expression of epithelial barrier genes [13, 14].
Additional disruption of colonic epithelial barrier integrity in non-responders is highlighted through the enrichment
of genes in the cell adhesion molecules and fluid shear stress KEGG pathways. Loss of barrier integrity increases
the permeability of nutrients, water, bacterial toxins and pathogens across the epithelial barrier [15]. Overall, the
pathways that are more significantly enriched suggest that UC disease biology – inflammation, barrier integrity and
microbiome disequilibrium – is more broadly disrupted among TNFi non-responders.

To determine if the gene expression profile of non-responders is more severely dysregulated in comparison to that
of responders with respect to various pathways, we perform enrichment analysis of signaling pathways from the Kyoto
Encyclopedia of Genes and Genomes (KEGG) database. First, pathways that are significantly enriched with non-
responders’ differentially expressed genes are selected using the significance threshold of padj. < 0.05 (hypergeometric
test with Benjamini-Hochberg correction). Second, for each selected pathway, genes that are coming exclusively
from the R and NR gene sets are identified. Next, we compute the difference between the number of these R- and
NR-exclusive genes, and assess its significance using the random permutation of R- and NR-exclusive labels on the
remaining genes. Only the pathways for which there is a significant difference between the number of NR-exclusive
and R-exclusive genes are retained (padj. < 0.05, random permutation test with Benjamini-Hochberg correction).



Healthy controls

RBA NRBA

No difference

R NR

(a) (b)
Baseline

responders
Baseline

non-responders

Responders
after treatment

Non-responders
after treatment

46

7

21
577
320681

509

1
1 1

4

251
71 13

Responders
w.r.t. healthy

Non-responders
w.r.t. healthy

Responders
before/after treatment

Infliximab

Golimumab

350
579
209

457
771
63

317
302
14

Infliximab
Golimumab

Responders
w.r.t. healthy

Non-responders
w.r.t. healthy

Responders
before/after
treatment

(c)

Figure S1: Overview of the DE analyses performed in this paper. (a): schematic illustration of the differential
expression gene sets obtained by comparing different pairs of states of responders, non-responders, and normal controls,
with the DE genes set names used throughout the paper specified; (b): Venn diagrams for R, NR, and RBA sets in
infliximab and golimumab studies; (c): mutual overlaps of R, NR, and RBA sets across the studies.
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Figure S2: KEGG pathway enrichment analysis for genes differentially expressed in responders and
non-responders at the baseline with respect to healthy controls. (a) Venn diagram for responders’ (R) and
non-responders’ (NR) differentially expressed genes at the baseline with respect to healthy controls after merging the
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Figure S5: Recovery of the targets approved for 6 complex disease based on diffusion state distance
(DSD). Receiver operator characteristic (ROC) and Precision-Recall (PR) curves for recovery of know approved
targets for treatment of (a), (g) Alzheimer’s disease; (b), (h) ulcerative colitis; (c), (i) rheumatoid arthritis; (d),
(j) multiple sclerosis; (e), (k) psoriasis; (f), (l) Parkinson’s disease. Individual ROC curves demonstrate recovery of
the approved targets given one known approved target and DSD from it to the rest of the HI nodes. Red lines represent
mean ROC/PR curves obtained by averaging over the individual curves, and area under the curve (AUC/AUPR) is
reported for the mean ROC/PR curve.
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Figure S6: Venn diagram of the UC approved targets according to different databases and performance
curves of recovery of the approved targets. Recovery of the UC approved targets is tested in three scenarios: (1)
considering approved targets from Citeline database; (2) considering the set union of the approved targets from Drug-
Bank, Repurposing Hub, and Therapeutic Target Database; (3) considering the approved targets that are mentioned
in at least two of the three open access databases (DrugBank, Repurposing Hub, and Therapeutic Target Database).
Areas under the ROC and PR curves are reported in the figures’ legends. We note that the seemingly excessive number
of targets reported only in Repurposing Hub may be due to the fact that this database only provides a single clinical
phase indicator for each drug, and may therefore pull drugs that are reported to be “launched” for some indications,
but may still be in clinical or preclinical trials for UC.
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Figure S7: Venn diagram of the psoriasis approved targets according to different databases and per-
formance curves of recovery of the approved targets. Recovery of the psoriasis approved targets is tested in
three scenarios: (1) considering approved targets from Citeline database; (2) considering the set union of the approved
targets from DrugBank, Repurposing Hub, and Therapeutic Target Database; (3) considering the approved targets
that are mentioned in at least two of the three open access databases (DrugBank, Repurposing Hub, and Therapeutic
Target Database). Areas under the ROC and PR curves are reported in the figures’ legends.
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Figure S8: Venn diagram of the Parkinson’s disease (PD) approved targets according to different
databases and performance curves of recovery of the approved targets. Recovery of the PD approved
targets is tested in three scenarios: (1) considering approved targets from Citeline database; (2) considering the set
union of the approved targets from DrugBank, Repurposing Hub, and Therapeutic Target Database; (3) considering
the approved targets that are mentioned in at least two of the three open access databases (DrugBank, Repurposing
Hub, and Therapeutic Target Database). Areas under the ROC and PR curves are reported in the figures’ legends.
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Figure S9: Venn diagram of the Alzheimer’s disease (AD) approved targets according to different
databases and performance curves of recovery of the approved targets. Recovery of the AD approved
targets is tested in three scenarios: (1) considering approved targets from Citeline database; (2) considering the set
union of the approved targets from DrugBank, Repurposing Hub, and Therapeutic Target Database; (3) considering
the approved targets that are mentioned in at least two of the three open access databases (DrugBank, Repurposing
Hub, and Therapeutic Target Database). Areas under the ROC and PR curves are reported in the figures’ legends.
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Figure S10: Venn diagram of the 600 differentially expressed genes in patients with psoriasis with
respect to normal controls, according to the three GEO datasets reported in Harmonizome. Genes that
are reported in at least two datasets are retained for the Response module construction.



GEO
accession
number

Normal
controls

UC
active
patients

Number of
patients/normal
controls

TNFi
response
label

Response
label
timepoints

Pre-
treatment
expression
data

Post-
treatment
expression
data

Infliximab, Affymetrix U133 Plus 2 array
GSE16879 + + 24/6 + week 4-6 + +
GSE23597 − + 45/− + week 8, 30 + +
GSE38713 + + 14/13 − − + −
GSE13367 − + 8/− − − + −
GSE36807 + + 15/7 − − + −
GSE47908 + + 39/15 − − + −

Golimumab, Affymetrix U133+ array
GSE92415 + + 87/21 + week 6 + +

Table S1: TNFi treatment studies used to identify a molecular signature of UC patient response.



GEO accession
number

Definition of TNFi response

GSE16879 “For UC and CDc, the response to infliximab was defined as a complete mucosal healing with a decrease of at
least 3 points on the histological score for CDc [8] and as a decrease to a Mayo endoscopic subscore of 0 or 1 with
a decrease to grade 0 or 1 on the histological score for UC [26,27]. Patients who did not achieve this healing were
considered nonresponders although some of them presented endoscopic and/or histologic improvement.” [16]

GSE23597 “...defined as a decrease from baseline in the total Mayo score of at least three points and at least 30%, with
an accompanying decrease in the subscore for rectal bleeding of at least one point or an absolute subscore for
rectal bleeding of 0 or 1 [4].” [17]

GSE92415 “Response was defined as complete mucosal healing and histologic normalization (a Mayo endoscopic subscore
of 0 or 1 and a grade of 0 or 1 on the Geboes histological scale).” [18]

Table S2: Definitions of TNFi response across cohorts with specified UC patients’ response labels.



Top-K ranked
proteins

Selectivity
ranking

Proximity
ranking

Combined
ranking

Local radiality
ranking

Random walk
ranking

node2vec
ranking

10 0/23 0/23 0/23 0/23 0/23 1/23
50 2/23 1/23 1/23 1/23 3/23 2/23
100 3/23 1/23 3/23 1/23 4/23 3/23
500 11/23 2/23 8/23 8/23 8/23 5/23
1, 000 14/23 5/23 12/23 10/23 10/23 5/23
5, 000 19/23 19/23 22/23 15/23 18/23 7/23
10, 000 22/23 23/23 23/23 20/23 20/23 14/23

Table S3: Fraction of recovered approved targets for UC treatment according to Citeline database among
top-K proteins ranked by selectivity, proximity, combined proximity and selectivity, Local radiality with
respect to the Response module, random walk with restart with respect to UC-associated genes, and
node2vec embedding ranking with respect to UC-associated genes.



Drug name Known mechanism of action

diethylstilbestrol estrogen receptor agonist
dexamethasone-acetate glucocorticoid receptor agonist
acarbose glucosidase inhibitor
betaxolol adrenergic receptor antagonist
avicin-d AMP-activated protein kinase activation
piceatannol SYK inhibitor
calcifediol vitamin D receptor agonist
UNC-0321 G9a inhibitor
homatropine acetylcholine receptor antagonist
PD-184352 MEK inhibitor
wortmannin PI3K inhibitor
ERK-inhibitor-11E ERK inhibitor
reversine Aurora kinase inhibitor
vemurafenib RAF inhibitor
PLX-4720 RAF inhibitor
carbamazepine carboxamide antiepileptic
leucodin TNF-alpha, TIMP Metallopeptidase Inhibitor

Table S4: Drugs and their known mechanisms of action mapped to the protein targets belonging to the
Treatment module.



Pathway iden-
tifier

Pathway name Num.
enti-
ties
found

Num.
enti-
ties
total

Num.
in-
ter-
ac-
tors
found

Num.
in-
ter-
ac-
tors
total

Entities
ratio

Entities
p-val.

Entities
FDR

Num.
reac-
tions
found

Num.
reac-
tions
total

Reactions
ratio

R-HSA-6783783 Interleukin-10 signaling 16 86 6 93 5.7E-03 4.5E-09 5.4E-06 15 15 1.1E-03

R-HSA-383280 Nuclear Receptor tran-
scription pathway

13 86 1 34 5.7E-03 9.1E-09 5.6E-06 2 2 1.4E-04

R-HSA-6785807 Interleukin-4 and
Interleukin-13 signal-
ing

19 211 9 162 1.4E-02 8.3E-07 3.4E-04 44 47 3.3E-03

R-HSA-912526 Interleukin receptor SHC
signaling

6 29 0 3 1.9E-03 6.5E-06 1.6E-03 6 6 4.3E-04

R-HSA-5660668 CLEC7A/inflammasome
pathway

5 8 2 25 5.3E-04 6.7E-05 1.4E-02 3 4 2.8E-04

R-HSA-449147 Signaling by Interleukins 58 658 53 2161 4.3E-02 1.4E-04 2.3E-02 352 505 3.6E-02

R-HSA-8877330 RUNX1 and FOXP3 con-
trol the development of
regulatory T lymphocytes
(Tregs)

6 17 3 42 1.1E-03 1.6E-04 2.4E-02 15 20 1.4E-03

R-HSA-2219530 Constitutive Signaling by
Aberrant PI3K in Cancer

7 96 0 0 6.3E-03 4.1E-04 5.2E-02 2 2 1.4E-04

R-HSA-448706 Interleukin-1 processing 4 12 2 16 7.9E-04 4.3E-04 5.2E-02 4 5 3.6E-04

R-HSA-9027276 Erythropoietin activates
Phosphoinositide-3-
kinase (PI3K)

4 16 1 12 1.1E-03 5.7E-04 6.3E-02 5 7 5.0E-04

R-HSA-9020958 Interleukin-21 signaling 3 12 0 1 7.9E-04 8.2E-04 8.2E-02 5 5 3.6E-04

R-HSA-9012546 Interleukin-18 signaling 3 11 0 5 7.2E-04 1.0E-03 9.4E-02 4 4 2.8E-04

R-HSA-5632681 Ligand-receptor interac-
tions

3 8 0 9 5.3E-04 1.2E-03 1.1E-01 4 4 2.8E-04

R-HSA-9671555 Signaling by PDGFR in
disease

4 27 0 10 1.8E-03 1.8E-03 1.5E-01 8 24 1.7E-03

R-HSA-9673770 Signaling by PDGFRA
extracellular domain mu-
tants

3 19 0 0 1.3E-03 2.4E-03 1.7E-01 3 7 5.0E-04

R-HSA-9673767 Signaling by PDGFRA
transmembrane, jux-
tamembrane and kinase
domain mutants

3 19 0 0 1.3E-03 2.4E-03 1.7E-01 3 7 5.0E-04

R-HSA-3928663 EPHA-mediated growth
cone collapse

4 33 0 11 2.2E-03 3.4E-03 2.2E-01 3 4 2.8E-04

R-HSA-1963642 PI3K events in ERBB2
signaling

3 22 0 0 1.4E-03 3.6E-03 2.2E-01 7 7 5.0E-04

R-HSA-8853659 RET signaling 7 43 5 110 2.8E-03 3.6E-03 2.2E-01 23 24 1.7E-03

R-HSA-418990 Adherens junctions inter-
actions

7 35 1 116 2.3E-03 3.9E-03 2.3E-01 2 16 1.1E-03

R-HSA-1280215 Cytokine Signaling in Im-
mune system

69 1107 67 2946 7.3E-02 4.2E-03 2.3E-01 456 726 5.2E-02

R-HSA-109704 PI3K Cascade 5 58 1 24 3.8E-03 5.5E-03 2.7E-01 3 6 4.3E-04

R-HSA-5603029 IkBA variant leads to
EDA-ID

2 8 0 0 5.3E-04 5.6E-03 2.7E-01 2 2 1.4E-04

R-HSA-194313 VEGF ligand-receptor in-
teractions

3 8 4 26 5.3E-04 7.7E-03 3.2E-01 4 4 2.8E-04

R-HSA-195399 VEGF binds to VEGFR
leading to receptor dimer-
ization

3 8 4 26 5.3E-04 7.7E-03 3.2E-01 3 3 2.1E-04

R-HSA-112399 IRS-mediated signalling 5 65 1 24 4.3E-03 7.7E-03 3.2E-01 4 9 6.4E-04

R-HSA-6811558 PI5P, PP2A and IER3
Regulate PI3K/AKT Sig-
naling

8 129 1 85 8.5E-03 8.6E-03 3.4E-01 4 7 5.0E-04

R-HSA-8854691 Interleukin-20 family sig-
naling

8 29 15 193 1.9E-03 9.6E-03 3.4E-01 52 56 4.0E-03

R-HSA-3928665 EPH-ephrin mediated re-
pulsion of cells

5 55 0 39 3.6E-03 9.6E-03 3.4E-01 8 9 6.4E-04

R-HSA-9028335 Activated NTRK2 signals
through PI3K

2 11 0 0 7.2E-04 1.0E-02 3.4E-01 2 2 1.4E-04

R-HSA-2428928 IRS-related events trig-
gered by IGF1R

5 69 2 30 4.5E-03 1.1E-02 3.4E-01 5 12 8.5E-04

R-HSA-9670439 Signaling by phosphory-
lated juxtamembrane, ex-
tracellular and kinase do-
main KIT mutants

3 28 1 8 1.8E-03 1.3E-02 3.4E-01 7 11 7.8E-04

R-HSA-9669938 Signaling by KIT in dis-
ease

3 28 1 8 1.8E-03 1.3E-02 3.4E-01 7 26 1.8E-03

R-HSA-2428924 IGF1R signaling cascade 5 72 2 30 4.7E-03 1.3E-02 3.4E-01 5 17 1.2E-03

R-HSA-2404192 Signaling by Type 1
Insulin-like Growth Fac-
tor 1 Receptor (IGF1R)

5 73 2 30 4.8E-03 1.3E-02 3.4E-01 5 19 1.3E-03

R-HSA-9700649 Drug resistance of ALK
mutants

1 1 0 0 6.6E-05 1.4E-02 3.4E-01 7 7 5.0E-04

R-HSA-9717319 brigatinib-resistant ALK
mutants

1 1 0 0 6.6E-05 1.4E-02 3.4E-01 1 1 7.1E-05

R-HSA-9717301 NVP-TAE684-resistant
ALK mutants

1 1 0 0 6.6E-05 1.4E-02 3.4E-01 1 1 7.1E-05

R-HSA-9717323 ceritinib-resistant ALK
mutants

1 1 0 0 6.6E-05 1.4E-02 3.4E-01 1 1 7.1E-05

R-HSA-5602410 TLR3 deficiency - HSE 1 1 0 0 6.6E-05 1.4E-02 3.4E-01 1 1 7.1E-05

R-HSA-9717316 alectinib-resistant ALK
mutants

1 1 0 0 6.6E-05 1.4E-02 3.4E-01 1 1 7.1E-05

R-HSA-9717326 crizotinib-resistant ALK
mutants

1 1 0 0 6.6E-05 1.4E-02 3.4E-01 1 1 7.1E-05

R-HSA-9717329 lorlatinib-resistant ALK
mutants

1 1 0 0 6.6E-05 1.4E-02 3.4E-01 1 1 7.1E-05

R-HSA-9717264 ASP-3026-resistant ALK
mutants

1 1 0 0 6.6E-05 1.4E-02 3.4E-01 1 1 7.1E-05

R-HSA-5673001 RAF/MAP kinase cas-
cade

13 322 2 183 2.1E-02 1.6E-02 3.9E-01 26 75 5.3E-03

R-HSA-190371 FGFR3b ligand binding
and activation

2 10 0 4 6.6E-04 1.6E-02 3.9E-01 2 2 1.4E-04

R-HSA-2129379 Molecules associated with
elastic fibres

3 37 0 2 2.4E-03 1.7E-02 4.0E-01 3 10 7.1E-04



R-HSA-199418 Negative regulation of the
PI3K/AKT network

8 137 1 109 9.0E-03 1.8E-02 4.0E-01 4 10 7.1E-04

R-HSA-1250342 PI3K events in ERBB4
signaling

2 15 0 0 9.9E-04 1.8E-02 4.2E-01 2 2 1.4E-04

R-HSA-1810476 RIP-mediated NFkB acti-
vation via ZBP1

3 19 1 26 1.3E-03 2.1E-02 4.7E-01 4 4 2.8E-04

R-HSA-9006335 Signaling by Erythropoi-
etin

4 35 2 48 2.3E-03 2.3E-02 5.1E-01 6 25 1.8E-03

R-HSA-1839124 FGFR1 mutant receptor
activation

5 39 10 82 2.6E-03 2.3E-02 5.2E-01 9 25 1.8E-03

R-HSA-5602566 TICAM1 deficiency - HSE 1 2 0 0 1.3E-04 2.7E-02 5.7E-01 1 1 7.1E-05

R-HSA-1839122 Signaling by activated
point mutants of FGFR1

2 15 0 4 9.9E-04 2.8E-02 6.0E-01 2 4 2.8E-04

R-HSA-5655332 Signaling by FGFR3 in
disease

4 33 3 56 2.2E-03 3.2E-02 6.5E-01 13 21 1.5E-03

R-HSA-5684996 MAPK1/MAPK3 signal-
ing

14 329 3 296 2.2E-02 3.3E-02 6.5E-01 31 82 5.8E-03

R-HSA-190375 FGFR2c ligand binding
and activation

2 17 0 4 1.1E-03 3.4E-02 6.5E-01 2 2 1.4E-04

R-HSA-1839130 Signaling by activated
point mutants of FGFR3

2 17 0 4 1.1E-03 3.4E-02 6.5E-01 2 6 4.3E-04

R-HSA-2033514 FGFR3 mutant receptor
activation

2 17 0 4 1.1E-03 3.4E-02 6.5E-01 2 10 7.1E-04

R-HSA-421270 Cell-cell junction organi-
zation

7 68 1 165 4.5E-03 3.5E-02 6.6E-01 2 21 1.5E-03

R-HSA-9014826 Interleukin-36 pathway 2 7 0 15 4.6E-04 3.7E-02 7.1E-01 3 3 2.1E-04

R-HSA-190373 FGFR1c ligand binding
and activation

2 15 0 8 9.9E-04 4.0E-02 7.2E-01 2 3 2.1E-04

R-HSA-210993 Tie2 Signaling 5 23 7 123 1.5E-03 4.2E-02 7.4E-01 14 14 9.9E-04

R-HSA-2559582 Senescence-Associated
Secretory Phenotype
(SASP)

5 91 2 49 6.0E-03 4.3E-02 7.4E-01 8 22 1.6E-03

R-HSA-8851907 MET activates
PI3K/AKT signaling

2 10 1 15 6.6E-04 4.3E-02 7.4E-01 4 5 3.6E-04

R-HSA-190322 FGFR4 ligand binding
and activation

2 17 0 7 1.1E-03 4.3E-02 7.4E-01 2 4 2.8E-04

R-HSA-190372 FGFR3c ligand binding
and activation

2 18 0 6 1.2E-03 4.3E-02 7.4E-01 2 4 2.8E-04

R-HSA-190239 FGFR3 ligand binding
and activation

2 19 0 6 1.3E-03 4.7E-02 7.7E-01 4 6 4.3E-04

R-HSA-5654710 PI-3K cascade:FGFR3 4 24 10 78 1.6E-03 4.8E-02 7.7E-01 7 7 5.0E-04

R-HSA-5654720 PI-3K cascade:FGFR4 4 25 10 78 1.6E-03 5.0E-02 8.0E-01 7 7 5.0E-04

Table S5: Pathways enriched by the UC prioritized targets derived from Reactome.
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