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Supplementary figures 

 
 
Supplementary Figure 1: Data utilization for training and evaluating the AI system and the 
conformal predictor. (A) 10% of the complete data was set aside as test data. (B) 90% of the 
training data was used to form the proper training set and 10% was used to form the 
calibration set. (C) The AI-system is trained on the proper training set and label predictions 
are made for each biopsy. (D) In the second step, the conformal predictor uses the 
calibration set to construct confidence regions for the newly generated predictions based on 
all the previously available examples. All data splits are made on a man level, to avoid 
biopsies from the same man to be present in both training and validation data. 
  



 5 

 

 
Supplementary Figure 2: Calibration plot of the observed prediction error (i.e. the fraction 
of true labels not included in the prediction region) on the y-axis and the prespecified 
significance level e, i.e. the tolerated error rate. The conformal predictor is valid if the 
observed error rate does not exceed e, i.e. the observed error rate should be close to the 
diagonal line, the tolerated error rate for all significance levels. The main advantage of 
conformal predictors is that they provide valid predictions when new examples are 
independent and identically distributed to the training examples. Biopsies from the STHLM3 
study were digitized using two different scanners. We trained the AI system on only Aperio 
images and evaluated on a set of 449 biopsies that were scanned using both scanners. Thus, 
creating paired dataset comparison that singles out how model performance generalizes to a 
new scanner other than the one used to process the training data. The prediction regions 
were valid for the 449 biopsies when evaluated on same scanner used to process training 
data, as the prediction error is close to the tolerated error for all significance level 
(Kolmogorov-Smirnov P > 0.05).   
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Supplementary Figure 3: Kolmogorov-Smirnov test of equality of the distribution of the 
nonconformity scores in the calibration set and the nonconformity scores was used to test 
the validity of the prediction regions for each test data. The figure illustrates how many 
observations that would be needed in order to detect systematic differences between 
training data and each external test data. This was done by estimating the power of the 
Kolmogorov-Smirnov test for Testsets 1, 3, 4 and 5 by repeated random sampling of sets of 
increasing size of conformity scores from the validation datasets. A p-value of less than 5% 
was considered statistically significant (two-sided). The red horizontal line refers to a 5% 
statistical significance level of the Kolmogorov-Smirnov test. Points below this reference line 
were considered as a statistically significant difference between training and test data. Less 
than 11% of the data from each Testset was needed in order to detect a decline in model 
performance on external data. 
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Supplementary Figure 4: Calibration plot of the prespecified significance level e, i.e. the 
tolerated error rate (x-axis), plotted against the observed prediction error, i.e. the fraction of 
true labels not included in the prediction region (y-axis). The conformal predictor is valid if 
the observed error rate does not exceed e, i.e. the observed error rate should be close to the 
diagonal line, the tolerated error rate for all significance levels. Biopsies from the STHLM3 
study were digitized using two different scanners. Test set 3, a set of 449 slides, were 
scanned using both Hamamatsu and Aperio scanners to create a paired dataset, enabling 
direct comparison of how model performance generalizes to a new scanner other than the 
one used to process the training data. We trained the AI system on only Hamamatsu images 
and evaluated on the set of 449 biopsies scanned both on Hamamatsu and Aperio. We used 
the Kolmogorov-Smirnov test of equality of the distribution of the predictions in the 
calibration set and each test dataset to test the validity of the prediction regions. The null 
hypothesis was that the samples are drawn from the same distribution. A p-value of less 
than 5% was considered statistically significant (two-sided). Panel (a) shows that the 
prediction regions were valid when evaluated on the same scanner (Hamamatsu), as the 
prediction error is close to the tolerated error for all significance level (Kolmogorov-Smirnov 
P > 0.05). Panel (b): The prediction regions were non-valid when evaluating the same 449 
slides on the Aperio scanner.   

(a) Testset 3: Same scanner (b) Testset 3: External scanner

p-value=0.14 p-value=2.6e-06
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Supplementary Figure 5: Receiver operating characteristics curves and AUC for cancer 
detection on Test set 1 (n=794). AUC=area under the curve. The black line represents the 
ability of the AI system without conformal prediction to distinguish malignant from benign 
cores. The red line represents the following experimental approach: Firstly, point predictions 
are generated by the AI system. Secondly, the conformal predictor generates prediction 
intervals for the prediction at confidence level 99.9%, i.e. the true label of the case is 
guaranteed to be included in the prediction region with probability 99.9%. However, the 
predictions can be further divided into reliable single predictions and unreliable multi label 
predictions. Lastly, the unreliable predictions are assigned for human review, and the final 
grade is assigned by a pathologist. The standalone AI system achieved an AUC of 99.7% for 
cancer detection, while the experimental approach achieved an AUC of 99.9%. This shows 
how the error rate by AI models can be controlled via conformal prediction, and furthermore 
it illustrates the potential synergies of humans and machines working together to improve 
accuracy of prostate pathology. 
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Supplementary tables 

Supplementary Table 1: Brief introduction to conformal prediction. Conformal prediction uses past 
experience to determine precise levels of confidence in new predictions. Given a user specified error 
probability ε, together with a prediction method (such as an AI system), it produces a set of labels 
that contains the true label with probability 1 - ε. Conformal prediction can be applied to any 
prediction algorithm. Constructing a conformal predictor involves the following steps: Step 1: Select 
nonconformity measure. A nonconformity measure is a way of measuring how different a new 
example (i.e. an example for which we want to make predictions) is from previous examples. A 
simple nonconformity measure for classification problems is 1 minus the predicted probability of a 
class label. Given a nonconformity measure and a dataset, we can compute the nonconformity score 
αi for each labeled example i=1,…,N. Each test example (with an unknown label) will then be assigned 
a potential label (e.g. {0}). For each possible potential label (e.g. {0,1} for binary classification), we 
calculate α (i.e. we test all potential labels for the example to find the one most conforming with the 
previous data). Step 2: Compute p-values. To measure how conforming a potential label for a test 
example N+1 is with previous data, we count how many αi (i=1,…,N+1) that are equal to or larger 
than αN+1 of the test example, and divide by N+1. This ratio corresponds to the fraction of the training 
examples that are at least as conforming as the test example and is called the p-value. The larger the 
p-value, the more confident we are that the assigned label makes the example conform with 
previous data. Step 3: Make predictions. Given a user specified confidence level 1 - ε, the potential 
labels whose p-values are larger than ε will be accepted. The tables below schematically show 
predictions for 10 test examples at two different confidence levels (90% and 80%). With a higher 
confidence level, we get fewer error predictions (only test example 3 is incorrectly predicted), but 
more multiple predictions. At a lower confidence level, we get an additional error (test example 8), 
but fewer multiple predictions. We also get an empty prediction (test example 4), i.e. an example for 
which no p-value was larger than ε and a prediction could thus not be made. Conformal prediction 
thus enables us to only accept predictions with high confidence, such that the error rate can be kept 
low. The tradeoff is that the conformal predictor can output empty or multiple predictions, which 
identifies cases where the conformal predictor cannot assign reliable single predictions. 
 

Test 
example 

Predicted 
labels 

True 
label 

Prediction 
type 

Test 
example 

Predicted 
labels 

True 
label 

Prediction 
type 

1 {0, 1} 0 Multiple 1 {0} 0 Single 
2 {0} 0 Single 2 {0} 0 Single 
3 {0} 1 Error 3 {0} 1 Error 
4 {0} 0 Single 4 {} 0 Empty 
5 {1} 1 Single 5 {1} 1 Single 
6 {0, 1} 1 Multiple 6 {0, 1} 1 Multiple 
7 {1} 1 Single 7 {1} 1 Single 
8 {0, 1} 1 Multiple 8 {0} 1 Error 
9 {0, 1} 0 Multiple 9 {0, 1} 0 Multiple 
10 {0, 1} 1 Multiple 10 {1} 1 Single 
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Supplementary Table 2: Prediction regions on the ISUP Pathology Imagebase dataset (Test 
set 2) by ISUP score, n (%). The Imagebase dataset was independently graded by 23 
uropathologists. The performance in ISUP grading was evaluated using the mode of the ISUP 
grades assigned by the 23 Imagebase uropathologists as ground truth. 
 

ISUP grade  

Confidence  
ISUP 1 
(n=21) 

ISUP 2 
(n=32) 

ISUP 3 
(n=15) 

ISUP 4 
(n=8) 

ISUP 5 
(n=11) 

All grades 
(n=87) 

67% Error, n (%) 10 (48%) 6 (19%) 4 (27%) 2 (25%) 5 (45%) 27 (31%) 

 Empty, n (%) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 

 Single predictions, n (%) 11 (52%) 19 (59%) 7 (47%) 4 (50%) 2 (18%) 43 (49%) 

  Multiple predictions, n (%) 0 (0) 7 (22%) 4 (27%) 2 (25%) 4 (36%) 17 (20%) 

80% Error, n (%) 6 (29%) 4 (12%) 4 (27%) 0 (0) 2 (18%) 16 (18%) 

 Empty, n (%) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 

 Single predictions, n (%) 9 (43%) 10 (31%) 4 (27%) 4 (50%) 2 (18%) 29 (33%) 

  Multiple predictions, n (%) 6 (29%) 18 (56%) 7 (47%) 4 (50%) 7 (64%) 42 (48%) 
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Supplementary Table 3: Prediction regions on the baseline test set (Testset 1). The 
predictions regions are evaluated against the grade assigned by an experienced uro-
pathologist (L.E.) as ground truth. The rows show prediction regions assigned by the 
conformal predictor at confidence levels 80% and 67%, respectively. Percentages represent 
column percentages. 
 
Confidence: 80%       

Prediction 
regions, n (%) 

ISUP 1 
(n=172) 

ISUP 2 
(n=62) 

ISUP 3 
(n=31) 

ISUP 4 
(n=41) 

ISUP 5 
(n=48) 

All ISUP 
grades 
(n=354) 

Empty 3 (2%) 2 (3%) 0 (0%) 1 (2%) 1 (2%) 7 (2%) 
ISUP1 97 (56%) 8 (13%) 0 (0%) 0 (0%) 0 (0%) 105 (30%) 
ISUP1 ISUP2 41 (24%) 14 (23%) 0 (0%) 0 (0%) 0 (0%) 55 (16%) 
ISUP1 ISUP2 
ISUP3 3 (2%) 1 (2%) 0 (0%) 0 (0%) 0 (0%) 4 (1%) 
ISUP2 7 (4%) 8 (13%) 3 (10%) 1 (2%) 0 (0%) 19 (5%) 
ISUP2 ISUP3 18 (10%) 16 (26%) 12 (39%) 2 (5%) 1 (2%) 49 (14%) 
ISUP2 ISUP3 
ISUP4 1 (1%) 1 (2%) 4 (13%) 1 (2%) 0 (0%) 7 (2%) 
ISUP2 ISUP3 
ISUP4 ISUP5 1 (1%) 4 (6%) 2 (6%) 1 (2%) 1 (2%) 9 (3%) 
ISUP3 0 (0%) 3 (5%) 3 (10%) 3 (7%) 1 (2%) 10 (3%) 
ISUP3 ISUP4 0 (0%) 1 (2%) 3 (10%) 1 (2%) 2 (4%) 7 (2%) 
ISUP3 ISUP4 
ISUP5 1 (1%) 4 (6%) 1 (3%) 10 (24%) 12 (25%) 28 (8%) 
ISUP4 0 (0%) 0 (0%) 2 (6%) 6 (15%) 1 (2%) 9 (3%) 
ISUP4 ISUP5 0 (0%) 0 (0%) 1 (3%) 14 (34%) 11 (23%) 26 (7%) 
ISUP5 0 (0%) 0 (0%) 0 (0%) 1 (2%) 18 (38%) 19 (5%) 

       
Confidence: 67%       

Prediction 
regions, n (%) 

ISUP 1 
(n=172) 

ISUP 2 
(n=62) 

ISUP 3 
(n=31) 

ISUP 4 
(n=41) 

ISUP 5 
(n=48) 

All ISUP 
grades 
(n=354) 

Empty 5 (3%) 2 (3%) 0 (0%) 2 (5%) 1 (2%) 10 (3%) 
ISUP1 114 (66%) 11 (18%) 0 (0%) 0 (0%) 0 (0%) 125 (35%) 
ISUP1 ISUP2 4 (2%) 3 (5%) 0 (0%) 0 (0%) 0 (0%) 7 (2%) 
ISUP2 36 (21%) 20 (32%) 4 (13%) 1 (2%) 0 (0%) 61 (17%) 
ISUP2 ISUP3 12 (7%) 17 (27%) 15 (48%) 1 (2%) 2 (4%) 47 (13%) 
ISUP2 ISUP3 
ISUP4 0 (0%) 0 (0%) 0 (0%) 1 (2%) 0 (0%) 1 (0%) 
ISUP3 0 (0%) 5 (8%) 7 (23%) 4 (10%) 3 (6%) 19 (5%) 
ISUP3 ISUP4 0 (0%) 2 (3%) 1 (3%) 7 (17%) 4 (8%) 14 (4%) 
ISUP3 ISUP4 
ISUP5 0 (0%) 2 (3%) 1 (3%) 4 (10%) 8 (17%) 15 (4%) 
ISUP3 ISUP5 1 (1%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 1 (0%) 
ISUP4 0 (0%) 0 (0%) 2 (6%) 12 (29%) 2 (4%) 16 (5%) 
ISUP4 ISUP5 0 (0%) 0 (0%) 1 (3%) 4 (10%) 7 (15%) 12 (3%) 
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ISUP5 0 (0%) 0 (0%) 0 (0%) 5 (12%) 21 (44%) 26 (7%) 
 
 


