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REVIEWER COMMENTS 

Reviewer #1 (Remarks to the Author): expertise in AI and digital pathology 

This paper addresses an interesting and timely question: how AI systems perform when presented 

with out-of-domain examples during testing. This is a practical challenge for the deployment of AI 

systems in healthcare. 

The positive points of this manuscript are the large training and testing cohorts (several thousands 

of patients in total, although some of the individual test sets are very small with <50 pats). Also, 

the task (prostate cancer detection) is a common benchmark task in this field, although it could be 

considered a "solved" problem, given that several expert-level algorithms on this problem have 

been published, and partly approved for diagnostic use. 

My main concern is that for me that I find the statistical endpoints of the system hard to judge. In 

a diagnostic task, I am interested in positive predictive value (PPV) and negative predictive value 

(NPV) as well as sensitivity and specificity and F1 score (all of them at pre-specified thresholds). 

Can the authors provide these metrics obtained by their new system and compare them with 

SOTA? These pieces of information seem to be missing and should be reported in results, 

discussed in the discussion, and even mentioned in the abstract. 

The authors write "This means that the conformal predictor flagged 22% predictions" but what 

does this mean exactly? How do I judge this? Would this system be better if it had flagged 12% of 

predictions, or 32%, or 100%? or 0%? How can I compare this to the SOTA? This needs to be 

explained better, and not just in the discussion section. 

A major point is that the source codes do not seem to be available. This is a must and the authors 

should provide a github link or even better, a DOI, to their codes. 

Also, adherence to relevant reporting guidelines (TRIPOD, STARD, etc.) must be added. 

Finally, the manuscript would benefit from more and more educational figures to illustrate the 

concept, and to report the results. Also, the batch effect and domain shifts could be visualized 

better. In addition, some actual pathology image data, including common and uncommon patterns 

could and should be shown. 

In summary, this is a timely question and the method is an interesting concepts, but the authors 

failed to convince me that this method really improves on the SOTA in terms of hard end points. 

Reviewer #2 (Remarks to the Author): expertise in artificial intelligence 

In this manuscript, the authors highlight the need to detect unreliable AI predictions for practical 

deployment in healthcare. Conformal prediction (CP) can ensure reliability for some predictions 

while flagging others for humans to review. This study demonstrates the application of conformal 

prediction for AI diagnosis of prostate pathology to successfully detect unreliable predictions. The 

conformal prediction introduction is well-written and informative. 

The original deep learning model and dataset comes from Strom et al. 2020. The test sets were 

selected to analyze different scenarios (idealized conditions, systematic differences, and 

morphological differences). Overall, this is a valuable contribution to the literature demonstrating 

the usefulness of conformal prediction for medical AI applications. This represents a novel 

application of conformal prediction to the field of histopathology. One related publication (doi 

10.1109/JBHI.2020.2996300) on the use of CP in region segmentation on whole slide scans, which 

shared an author (OS) with the current ms, should probably have been cited--although the 

application described was substantially different. 

However, there a few concerns: 

The external data experiments should make it more clear if the model used was only trained on 



the single scanner (such as in the Figure 2 caption). It is noted in the methods that the single 

scanner model is used to evaluate only test set 3. It is consequently not clear if Figure 2 is 

showing evaluation of both models or just the single scanner model on all three test sets. Also, it 

would be helpful to see a similar analysis for a model trained on a dataset with both scanners, and 

also the reverse (training on Hamamatsu, evaluation on Aperio). 

More details on the AI system used from Strom et al. 2020 should be provided in the methods. 

Right now, the manuscript simply cites the paper without any additional details (Line 309). A 

simple summary mentioning the architectures used, training methodology, etc. should suffice. 

Also, I think a reference to a previous paper authored in part by one of the authors on a related 

application of conformal prediction could have been included. While it discusses the use of CP in 

analysis of whole slide images, the actual use case is quite different. 

(https://doi.org/10.1109/JBHI.2020.2996300) 

The language is understandable. One edit is suggested: (Line 46): A barrier to the implementation 

of AI systems in healthcare is [add: “the need”] to ensure accurate AI performance across 

different settings. 

Minor error: Table 1 has a mix of proportions and percentages 

Reviewer #3 (Remarks to the Author): expert in prostate cancer pathology 

Artificial intelligence (AI) has been proposed to be a very powerful tool in healthcare, especially in 

pathology and disease diagnosis. However, whether a specific AI system maintains a high accurate 

rate across different settings, or in another word, how to judge the reliability of AI prediction 

remain essential questions before a wide usage of the AI system in pathology. In this study, 

authors tried to utilized conformal prediction to assess the prediction quality of AI in the 

histopathological diagnosis and grading of prostate cancer. They firstly used slides of prostate 

cancer biopsies from the STHLM3 cohort for training and a small subset of slides in the same study 

for testing. They showed that conformal prediction was able to identify 0.1% error and 22% AI 

prediction as unreliable when the AI-system was exposed to new histological images from the 

same histopathological lab and slide scanner. Furthermore, they found that conformal prediction 

could detect systematic differences when AI was presented with external histopathological data. In 

addition, the AI-system with conformal prediction can flag atypical prostate tissue with a higher 

efficiency than AI without conformal prediction. This study is dealing with an important scientific 

question and provide a plausible solution to assess the accuracy of AI-assisted histopathological 

diagnosis. However, the authors should design/conduct additional study to clarify the following 

issues before publication in Nature Communications. 

Here are my concerns and suggestions: 

(1) The STHLM2 cohort is a very large cohort with 7406 patients and 59159 slides. Only 1192 

patients and 7788 slides were used for training. Please provide the procedure and rational to select 

those slides for training. 

(2) The training data are from the same cohort. As a matter of fact, the corresponding author has 

published several papers using multi-center PCa cohorts. It will be more convincing if this study 

can expand to other large cohorts (including different human races) for both training and testing. 

(3) The n number for the atypical prostate tissues is small. The authors are suggested to include a 

larger number of atypical prostate tissue slides or to include PCa variants such as neuroendocrine 

prostate cancer or prostate cancer with neuroendocrine differentiation to test the application of 

conformal prediction. 

(4) Conformal prediction is not the only solution to assess the uncertainty of AI. The authors are 

suggested to compare or at least discuss different methods to demonstrate the advantage of their 

conformal prediction in AI-assisted histopathological diagnosis. 



(5) Please specify LE for the first time mentioned in the manuscript in line 93 



 
 
 
RESPONSE TO REVIEWER COMMENTS 
 
 
Reviewer #1 (Remarks to the Author): expertise in AI and digital pathology 
 
This paper addresses an interesting and timely question: how AI systems perform when 
presented with out-of-domain examples during testing. This is a practical challenge for the 
deployment of AI systems in healthcare. 
 
We thank the reviewer for this comment; indeed, we agree that this is a timely topic. As 
implementation of AI systems in healthcare get more common, we need to address the 
question of how to ensure that these systems are safe and provide value to patients in 
constantly changing clinical settings and across different populations, technical platforms, 
labs, etc. 
 
The positive points of this manuscript are the large training and testing cohorts (several 
thousands of patients in total, although some of the individual test sets are very small with 
<50 pats). Also, the task (prostate cancer detection) is a common benchmark task in this 
field, although it could be considered a "solved" problem, given that several expert-level 
algorithms on this problem have been published, and partly approved for diagnostic use. 
 
We agree with the reviewer that AI systems show promise for the diagnosis and grading of 
prostate biopsies. We and others have previously reported on the accuracy of state-of-the-
art AI systems for prostate pathology (see e.g. our publications Ström et al. Lancet Oncology, 
2020 [1] and Bulten et al. Nature Medicine, 2022 [2]), and demonstrated that the 
performance of these AI systems is comparable to that of international experts in prostate 
pathology with respect to sensitivity, specificity and grading concordance with expert uro-
pathologists. 

 
Despite these successes in advancing AI for prostate pathology, we caution against 
considering diagnostics and – in particular – grading to be solved problems. As far as we are 
aware, there is currently no high-level evidence demonstrating that AI systems improve 
quality of prostate pathology in a prospective clinical setting and we do not know of any 
ongoing prospective multi-site clinical trials. Similarly, to the best of our knowledge, only one 
study exists to this date, that independently assesses the validity of multiple algorithms for 
the problem in a multinational setting (the PANDA challenge [2], which we organized 
together with colleagues from Radboud MC and Google). 
 
In particular, the problem with generalizability of AI systems is currently unsolved. 
Widespread clinical implementation of AI systems will inevitably expose these systems to 
data beyond the domain upon which they were trained, either because it is unusual or 
because it originates from a different imaging scanner provider, a different laboratory (or 
even stain variation or changing processes within a lab [3]), a different patient population, 
wear and tear of scanners, etc. These are challenging problems already with simple clinical 



risk calculators or nomograms used today [4], and the challenges will only become larger 
with implementation of complex AI systems [5]. 
 

1. P. Ström, K. Kartasalo, H. Olsson, L. Solorzano, B. Delahunt, D. Berney, D. Bostwick, A. 
Evans, P. Humphrey, K. Iczkowski, J. Kench, G. Kristiansen, T. van der Kwast, K. Leite, 
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Varma, M. Zhou, J. Lindberg, C. Lindskog, P. Ruusuvuori, C. Wählby, H. Grönberg, M. 
Rantalainen, L. Egevad, and M. Eklund. Artificial intelligence for diagnosis and grading 
of prostate cancer in biopsies: a population-based, diagnostic study. Lancet 
Oncology. 2020, 21(2):222-232. PMID: 31926806 

2. W. Bulten, K. Kartasalo, P.C. Chen, P. Ström, H. Pinckaers, K. Nagpal, Y. Cai, D.F. 
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A.J. Evans, T. van der Kwast, R. Allan, P.A. Humphrey, H. Grönberg, H. Samaratunga, 
B. Delahunt, T. Tsuzuki, T. Häkkinen, L. Egevad, M. Demkin, S. Dane, F. Tan, M. 
Valkonen, G.S. Corrado, L. Peng, C.H. Mermel, P. Ruusuvuori, G. Litjens, and M. 
Eklund for the PANDA challenge consortium. International Assessment of Artificial 
Intelligence for Diagnosis and Gleason Grading of Prostate Cancer in Biopsies: The 
PANDA Challenge. Nature Medicine, 2022, 28(1):154-163. PMID: 35027755 

3. C. Cong et al. Colour adaptive generative networks for stain normalisation of 
histopathology images. Medical Image Analysis, Volume 82, November 2022, 102580. 

4. J. Chandra Engel, T. Palsdottir , D. Ankerst, S. Remmers, A. Mortezavi, V. Chellappa, L. 
Egevad, H. Grönberg, M. Eklund, and T. Nordström. External validation of the 
Prostate Biopsy Collaborative Group Risk Calculator (PBCG-RC) and the Rotterdam 
Prostate Cancer Risk Calculator (RPCRC) in a Swedish population-based screening 
cohort. Eur Urol Open Sci. 2022, 41:1-7. PMID: 35813248 

5. S.G Finlayson  et al. Adversarial attacks on medical machine learning. Science. 2019 
Mar 22;363(6433):1287-1289. PMID: 30898923 

 
My main concern is that for me that I find the statistical endpoints of the system hard to 
judge. In a diagnostic task, I am interested in positive predictive value (PPV) and negative 
predictive value (NPV) as well as sensitivity and specificity and F1 score (all of them at pre-
specified thresholds). Can the authors provide these metrics obtained by their new system 
and compare them with SOTA? These pieces of information seem to be missing and should 
be reported in results, discussed in the discussion, and even mentioned in the abstract.  
 
We agree that the performance metrics the reviewer mentions are the conventional way to 
estimate the accuracy of prediction models on external test data. We and others have 
previously reported on the operating characteristics of state-of-the-art AI systems for 
prostate pathology (see e.g. our publications Ström et al. Lancet Oncology, 2020 [1] and 
Bulten et al. Nature Medicine, 2022 [2]), and demonstrated that the performance of these AI 
systems is comparable to that of international experts in prostate pathology with respect to 
sensitivity, specificity and grading concordance with expert uro-pathologists. The main goal 
of this study was however not to directly improve the accuracy of the performance of the 
underlying deep learning algorithm per se, but to construct a framework based on conformal 
prediction that can assess the reliability and estimate the uncertainty of the predictions for 
AI systems in digital pathology, such that unreliable predictions can be identified for human 
intervention. 



 
Conformal predictors are primarily evaluated based on validity and efficiency. The validity 
(the maximum allowed error rate) refers to the calibration of the predictions. This is usually 
evaluated using calibration curves where the accuracy of the predictor is plotted against the 
desired confidence (Figure 3 in our manuscript). We evaluated the validity graphically using 
calibration curves and tested the validity using the Kolmogorov-Smirnov test. The efficiency 
is most commonly assessed by the width of the prediction intervals for regression or by the 
fraction of single label predictions for classification. The efficiency quantifies how 
informative or specific the prediction is, while still being valid. To evaluate the conformal 
prediction framework, we assessed efficiency, defined as the fraction of all predictions 
resulting in a correct single label prediction (Table 2 and 3). 
 
However, as the reviewer probably is alluding to the, using conformal prediction can of 
course also affect the performance of the entire prediction system (consisting of the 
underlying deep learning algorithm plus the conformal predictor) by enabling flagging of 
unreliable predictions (as either multiple predictions or empty predictions). The errors that 
the AI system without conformal prediction is committing can thus be compared to the 
errors the AI together with conformal prediction is committing. In the previous version of 
the manuscript, we had included this information for the evaluation of Test set 5 (Table 3). 
We agree with the reviewer that this data should also have been included for Test set 1 
(Table 2) for easier comparison of the impact of conformal predictor on the accuracy of the 
predictions. Table 2 has now been updated accordingly, and we have included a comparison 
of the results in the body of the manuscript (pages 6 and 7, line 108-148). Following the 
reviewer’s suggestion, we have also updated the abstract to reflect this comparison. We 
note that Nature Communication abstracts are only 150 words long, making it challenging to 
include too many results in the abstract; we are however happy to make the abstract more 
descriptive and longer in case the editors feel it is needed. 
 
Conformal predictors output multiple predictions in the cases where it cannot assign reliable 
single predictions. So, for example, in the case of classifying cases as either benign or 
malignant, the conformal predictor would classify an unreliable prediction as both classes 
(i.e. both malignant and benign). Although such a prediction is not incorrect per se, it is 
inconclusive and human intervention would be needed. It is therefore not possible to 
directly compare the sensitivity and specificity with and without the use of conformal 
prediction. However, this opens up for a very interesting discussion about the synergies of 
humans and machines working together to improve accuracy of prostate pathology, where 
the conformal predictor flags unreliable predictions for human assessment. We can then 
achieve expert uro-pathologist level diagnostic accuracy on the flagged biopsies, enabling us 
to construct ROC curves corresponding to the performance of AI system working together 
with expert human pathologists. We have now updated the manuscript to include such ROC 
curves in the supplement (Figure S5 and manuscript body page 7, line 139-148, and page 9, 
line 222-224). 
 
The reporting of the positive and negative predictive values (PPV and NPV) and F1 score are 
complicated by the study design. The dataset used in the current manuscript was digitized 
for out paper published in the Lancet Oncology in 2020 [1]. For that work, we oversampled 
high-grade disease in order to cost- and time-efficiently ensure to get enough training data 



of higher grades. A consequence of this design is that the interpretation of an estimated PPV 
is not straightforwardly meaningful in the context of a specific study population, since the 
PPV is a function of the prevalence in the dataset. 
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The authors write "This means that the conformal predictor flagged 22% predictions" but 
what does this mean exactly? How do I judge this? Would this system be better if it had 
flagged 12% of predictions, or 32%, or 100%? or 0%? How can I compare this to the SOTA? 
This needs to be explained better, and not just in the discussion section.  
 
We thank the reviewer for this comment; we acknowledge that the fraction of 22% 
predictions flagged for human intervention at a confidence level of 99.9% is somewhat hard 
to assess on its own. As described above, we have extended Table 2 to include results 
without the use of conformal prediction to facilitate easier interpretation of the results (see 
also pages 6 and 7, line 108-148 in the manuscript). 
 
Conformal predictors are mathematically guaranteed to provide valid predictions when new 
examples are independent and identically distributed to the training examples. This means 
that the probability that the prediction region determined by the conformal predictor does 
not include the true label is mathematically guaranteed to be less than or equal to a user set 
significance level (a proportion of acceptable errors). At a given (user-defined) confidence 
level (in our case 99.9% for cancer classification, representing about one twentieth of errors 
committed by pathologists [1, 2]), we would like the number of unreliable predictions (i.e. 
those flagged for human intervention) to be as few as possible. 
 
We believe that the use of conformal prediction helps to facilitate responsible 
implementation of an AI systems in the clinics, promoting patient safety by keeping the error 
rate low and providing ways to detect unreliable predictions.  
 

1. Beltran, L. et al. Histopathologic False-positive Diagnoses of Prostate Cancer in the 
Age of Immunohistochemistry. Am. J. Surg. Pathol. 43, 361–368 (2019). 



2. Oxley, J. D. & Sen, C. Error rates in reporting prostatic core biopsies. Histopathology 
58, 759–765 (2011). 

 
A major point is that the source codes do not seem to be available. This is a must and the 
authors should provide a github link or even better, a DOI, to their codes. 
 
We fully agree with the reviewer of the importance of open science. The code for the 
implementation of the conformal predictor – the main contribution of the current study and 
the code that was developed specifically for this project – resides in the github repository 
https://github.com/heolss/Conformal_analyses. We include a Nature “Code and Software 
Submission Checklist” with this revision. 
 
The code used for training the underlying deep learning models has a large number of 
dependencies on internal tooling, infrastructure and hardware, and its release is therefore 
not feasible. However, all experiments and implementation details are described in sufficient 
detail in our publication Ström et al. Lancet Oncology, 2020 [1] to support replication with 
non-proprietary libraries. Several major components of our work are available in open 
source repositories: Tensorflow (https://www.tensorflow.org); Tensorflow Object Detection 
API (https://github.com/tensorflow/models/tree/master/research/object_detection). 
 
In addition, as part of the PANDA challenge (https://www.kaggle.com/c/prostate-cancer-
grade-assessment and Bulten et al. Nature Medicine, 2022), we publicly released all training 
data used for the current study (as the test data was collected outside a trial setting without 
informed consent for data sharing, we are not permitted to release that data). The PANDA 
challenge website also contains tutorials for how to start working with the data 
(https://www.kaggle.com/code/wouterbulten/getting-started-with-the-panda-dataset ) as 
well as the code used by the competing teams 
(https://www.kaggle.com/competitions/prostate-cancer-grade-assessment/code ). 
 

1. P. Ström, K. Kartasalo, H. Olsson, L. Solorzano, B. Delahunt, D. Berney, D. Bostwick, A. 
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Oncology. 2020, 21(2):222-232. PMID: 31926806 

 
Also, adherence to relevant reporting guidelines (TRIPOD, STARD, etc.) must be added. 
 
The statistical analysis section has been updated with a statement that methods and results 
are reported according to the TRIPOD statements. A TRIPOD checklist is also included with 
this revision, which describes where the different sections of the TRIPOD statements can be 
found in the manuscript. 
 
Finally, the manuscript would benefit from more and more educational figures to illustrate 
the concept, and to report the results. Also, the batch effect and domain shifts could be 

https://github.com/heolss/Conformal_analyses
https://www.tensorflow.org/
https://github.com/tensorflow/models/tree/master/research/object_detection
https://www.kaggle.com/c/prostate-cancer-grade-assessment
https://www.kaggle.com/c/prostate-cancer-grade-assessment
https://www.kaggle.com/code/wouterbulten/getting-started-with-the-panda-dataset
https://www.kaggle.com/competitions/prostate-cancer-grade-assessment/code


visualized better. In addition, some actual pathology image data, including common and 
uncommon patterns could and should be shown. 
 
We have added a new figure (Figure 1) to conceptually describe and illustrate conformal 
prediction. We have also added pathology imaging data (Figure 4). The conformal prediction 
calibration plots (Figures 3, S2, and S4) are a natural and standard way when using 
conformal prediction of how to illustrate batch effects or domain shifts (see e.g. Vovk et al. 
[1] and other publications on conformal prediction). To comply with the previous literature 
on conformal prediction, we argue that we should stick to this method of illustration. 
 

1. Vovk, V., Gammerman, A. & Shafer, G. Algorithmic learning in a random world. 
Algorithmic Learn. a Random World 1–324 (2005). doi:10.1007/b106715 

 
In summary, this is a timely question and the method is an interesting concepts, but the 
authors failed to convince me that this method really improves on the SOTA in terms of hard 
end points. 
 
We thank the reviewer for the thorough review and the many good suggestions for how to 
improve our manuscript. We hope and believe that our answers to the comments above as 
well as the changes made to the manuscript addresses the reviewer’s concerns. 
 
Reviewer #2 (Remarks to the Author): expertise in artificial intelligence  
 
In this manuscript, the authors highlight the need to detect unreliable AI predictions for 
practical deployment in healthcare. Conformal prediction (CP) can ensure reliability for some 
predictions while flagging others for humans to review. This study demonstrates the 
application of conformal prediction for AI diagnosis of prostate pathology to successfully 
detect unreliable predictions. The conformal prediction introduction is well-written and 
informative. 
 
The original deep learning model and dataset comes from Strom et al. 2020. The test sets 
were selected to analyze different scenarios (idealized conditions, systematic differences, 
and morphological differences). Overall, this is a valuable contribution to the literature 
demonstrating the usefulness of conformal prediction for medical AI applications. This 
represents a novel application of conformal prediction to the field of histopathology. One 
related publication (doi 10.1109/JBHI.2020.2996300) on the use of CP in region 
segmentation on whole slide scans, which shared an author (OS) with the current ms, should 
probably have been cited--although the application described was substantially different.  
 
We thank the reviewer for the nice words about this work. 
 
However, there a few concerns:  
The external data experiments should make it more clear if the model used was only trained 
on the single scanner (such as in the Figure 2 caption). It is noted in the methods that the 
single scanner model is used to evaluate only test set 3. It is consequently not clear if Figure 
2 is showing evaluation of both models or just the single scanner model on all three test 
sets. Also, it would be helpful to see a similar analysis for a model trained on a dataset with 



both scanners, and also the reverse (training on Hamamatsu, evaluation on Aperio). 
 
We agree that the label of Figure 2 was not sufficiently clear. We have updated Figure 2 label 
to describe better that a single scanner model was used to evaluate on Test set 3. 

 
Additionally, as suggested by the reviewer, we have also reversed the analysis with training 
on Hamamatsu and evaluation on Aperio. Supplementary Figure S4 shows results from that 
experiment. The results were nearly identical to the evaluation of Test set 3 currently in the 
manuscript, showing that the conformal predictor was able to identify systematic 
differences in test data compared to training data (in this case a new scanner). Please also 
see added sentences about this in the manuscript (page 8, line 171-173, and page 15, line 
397-399). 
 
More details on the AI system used from Strom et al. 2020 should be provided in the 
methods. Right now, the manuscript simply cites the paper without any additional details 
(Line 309). A simple summary mentioning the architectures used, training methodology, etc. 
should suffice.  
 
We agree that more details about the underlying deep learning model would be beneficial. 
The methods section has now been updated with more information describing the training 
of the AI system (page 14, line 362-379).  
 
Also, I think a reference to a previous paper authored in part by one of the authors on a 
related application of conformal prediction could have been included. While it discusses the 
use of CP in analysis of whole slide images, the actual use case is quite different. 
(https://doi.org/10.1109/JBHI.2020.2996300) 
 
We thank the reviewer for this suggestion; the reference has been added to the manuscript. 
 
The language is understandable. One edit is suggested: (Line 46): A barrier to the 
implementation of AI systems in healthcare is [add: “the need”] to ensure accurate AI 
performance across different settings. 
 
The section has been updated with this suggestion.  
 
Minor error: Table 1 has a mix of proportions and percentages 
 
Thank you for pointing this out. The table has been updated accordingly.  
 
 
Reviewer #3 (Remarks to the Author): expert in prostate cancer pathology 
 
Artificial intelligence (AI) has been proposed to be a very powerful tool in healthcare, 
especially in pathology and disease diagnosis. However, whether a specific AI system 
maintains a high accurate rate across different settings, or in another word, how to judge 
the reliability of AI prediction remain essential questions before a wide usage of the AI 
system in pathology. 

https://eur01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fdoi.org%2F10.1109%2FJBHI.2020.2996300&data=05|01|henrik.olsson@ki.se|807da69a8c6d41ce236608da4f75fc70|bff7eef1cf4b4f32be3da1dda043c05d|0|0|637909665821865115|Unknown|TWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D|3000|||&sdata=t9TI8OanH%2BqveZxrZc%2FHcOpJewuIGO%2FOuuuYbubFAAA%3D&reserved=0


 
We could not agree more with this statement. 
 
In this study, authors tried to utilized conformal prediction to assess the prediction quality of 
AI in the histopathological diagnosis and grading of prostate cancer. They firstly used slides 
of prostate cancer biopsies from the STHLM3 cohort for training and a small subset of slides 
in the same study for testing. They showed that conformal prediction was able to identify 
0.1% error and 22% AI prediction as unreliable when the AI-system was exposed to new 
histological images from the same histopathological lab and slide scanner. Furthermore, they 
found that conformal prediction could detect systematic 
differences when AI was presented with external histopathological data. In addition, the AI-
system with conformal prediction can flag atypical prostate tissue with a higher efficiency 
than AI without conformal prediction. This study is dealing with an important scientific 
question and provide a plausible solution to assess the accuracy of AI-assisted 
histopathological diagnosis. However, the authors should design/conduct additional study to 
clarify the following issues before publication in Nature Communications.  
 
We thank the reviewer for the nice words about our study. Below we give answers to the 
comments raised by the reviewer, and detail the changes we have done to the manuscript. 
 
Here are my concerns and suggestions: 
(1) The STHLM2 cohort is a very large cohort with 7406 patients and 59159 slides. Only 1192 
patients and 7788 slides were used for training. Please provide the procedure and rational to 
select those slides for training. 
 
The analysis of the current study was based on the digitized dataset that was used in Ström 
et al 2020, and the data collection for that study was performed in multiple rounds during 
2017 to 2019. The data collection is described in more detail in Ström et al. Lancet Oncology 
2020, and we have added a brief description to the current manuscript (page 5, line 84-88). 
 
In summary, a selection of 8571 biopsies from 1289 STHLM3 study participants were 
randomly sampled (stratified random sampling within Gleason score to enrich for higher 
Gleason scores). The cases were chosen to represent the full range of diagnoses using 
random sampling. the majority of cases in a screening-by-invitation cohort such as the 
STHLM3 cohort are either benign or low-grade diseases. Therefore, additional samples of 
high-grade cancers, Gleason score 4+4 and higher were selected to enrich the number of 
training examples from high-grade prostate cancers. 
 
It is a major undertaking in labor and cost to digitize pathology slides, and to digitize all 
benign or Gleason score 6 cases from the STHLM3 cohort will have extremely marginal (if 
any) effect on the performance of the training AI system. The bottleneck for training the 
system is the rarer, higher grade cases. This is the background to the selection procedure we 
used when digitizing the slides. 
 
(2) The training data are from the same cohort. As a matter of fact, the corresponding 
author has published several papers using multi-center PCa cohorts. It will be more 



convincing if this study can expand to other large cohorts (including different human races) 
for both training and testing.  
 
We agree with the importance of external validation in large cohorts. This is the reason to 
why we performed external validation on the dataset from the Karolinska University Hospital 
(Test set 4). This analysis replicates the entire laboratory and digital pathology from an 
external data source with both a different laboratory and scanner compared to the training 
data. The advantage of this dataset is that it is assessed by the same pathologist (Professor 
Lars Egevad) as the training data, meaning that any differences between predictions on held-
out data from the training dataset (Test set 1) and the external validation set (Test set 4) are 
likely to be due to differences in laboratory processing and digitalization (as opposed to 
differences in grading by different pathologists). 
 
More external from additional sources are of course always valuable. We have therefore 
managed to access a dataset from Stavanger in Norway (n=1,220 slides), representing a large 
additional external test set. This test set has now been added to the manuscript. 
 
(3) The n number for the atypical prostate tissues is small. The authors are suggested to 
include a larger number of atypical prostate tissue slides or to include PCa variants such as 
neuroendocrine prostate cancer or prostate cancer with neuroendocrine differentiation to 
test the application of conformal prediction. 
 
We have extended the set of atypical prostate tissue with this revision. We have performed 
an additional pathology review and identified an additional set of n=152 cases of benign 
mimics and rare prostate cancer subtypes. We have digitized these new cases and combined 
them with the old Test set 5 that consisted of n=27 cases. Thus, the new updated Test set 5 
includes n=179 cases in total. The results are similar after adding these additional 152 cases: 
Without conformal prediction, the AI system misclassifies 29% of these cases, while with 
conformal prediction it does not commit any errors but instead flags 80% of these unusual 
cases for human intervention. 
 
Except from updating this test set, no modifications were done to the underlying AI-model 
providing the point predictions or the conformal predictor used to construct the prediction 
regions.  
 
(4) Conformal prediction is not the only solution to assess the uncertainty of AI. The authors 
are suggested to compare or at least discuss different methods to demonstrate the 
advantage of their conformal prediction in AI-assisted histopathological diagnosis. 
 
We of course agree with the reviewer that other methods for assessing reliability in AI 
predictions exist. The advantages with conformal prediction is that it is a mathematically 
very well developed theory with known and proved properties (for example, it is known 
from Vovk et al. [1] that conformal predictors are essentially the only way to achieve valid 
prediction regions). Conformal prediction thus works without having to rely on ad hoc or 
empirical evidence. In addition, conformal prediction is simple to implement and does not 
impose additional computational overhead. A new paragraph has been added to discussion 



section of the manuscript, where we discuss other methods to assess the uncertainty of AI 
systems (page 11, line 260-267). 
 
Vovk, V., Gammerman, A. & Shafer, G. Algorithmic learning in a random world. Algorithmic 
Learn. a Random World 1–324 (2005). doi:10.1007/b106715 
 
(5) Please specify LE for the first time mentioned in the manuscript in line 93 
 
This has been updated in the manuscript.  
 



REVIEWERS' COMMENTS

Reviewer #1 (Remarks to the Author): 

The authors have addressed my concerns. However, I do not agree with their statement that "The 

code used for training the underlying deep learning models has a large number of dependencies on 

internal tooling, infrastructure and hardware, and its release is therefore not feasible.". Other 

groups have solved this problem, e.g., please check the Warwick Digital Pathology Lab's 

workflows, which are fully publicly released as the "tiatoolbox", or Mahmood Labs workflows, which 

are fully publicly released as the CLAM pipeline. Although the current manuscript can be accepted 

despite this shortcoming, I urge the authors to adopt such a transparent approach for their full 

analysis pipeline in the future. 

Reviewer #3 (Remarks to the Author): 

The authors have addressed my concerns. I have no further questions.
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