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https://doi.org/10.5281/zenodo.7147740. Anonymized training data are available as part of the PANDA challenge (https://www.kaggle.com/c/prostate-cancer-
grade-assessment and Bulten et al. Nature Medicine, 2022).

No formal sample size calculation was performed. This was motivated by the fact that we do not have a specific null hypothesis to test. We
digitized all cases enrolled in the STHLM3 study with GS 5+5 and 4+4 plus a stratified random selection of the other GS including benign
subjects. The size of the test set was chosen as a tradeoff between leaving enough data for efficient training and for achieving high enough
precision in the evaluation.

No data were excluded from the analyses.

All attempts at replication of the experimental findings were successful. Accuracy in cancer detection and ISUP grading was evaluated in the
internal test dataset, and grading performance was also evaluated on 87 biopsies digitized biopsies from the Imagebase database. The
accuracy was similar in both test datasets. Furthermore, results on the Imagebase database showed that the uncertainty in the grading by the
AI system closely approximated the uncertainty associated with the grades by the pathologist panel. The ability of the conformal predictor to
detect unreliable predictions caused by differences between training and test data was evaluated and confirmed in total in four test datasets.
The conformal predictor was able to detect unreliable predictions on these datasets, due to changes in tissue preparation techniques in
different laboratories, digitization utilizing different digital pathology scanners, and the presence of atypical prostatic tissue, such as variants
of prostatic adenocarcinoma and benign mimics of cancer.

The study data were randomly split into a proper training set of 6951 biopsies from 1069 men, the calibration set consisting of 837 biopsies
from 123 men, and a test set of 794 biopsies from 123 men. The training set was used to train the deep learning models and the calibration
set was used for construction of the conformal p-values. We employed a collection of six different datasets (numbered 1-6 in the manuscript)
comprising, in total, 3059 digitized biopsies for the evaluation of the AI system and conformal predictor.

The group allocation of the main training and test split was based on random sampling, stratified on a man level to keep data independent in
training and test data. In addition, external validation sets were used. The biopsies in the six test datasets were blinded to the investigators
during model development and were excluded from any analysis until the final evaluation.




